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SUMMARY
Normal organogenesis cannot be recapitulated in vitro for mammalian organs, unlike in species including
Drosophila and zebrafish. Available 3D data in the form of ex vivo images only provide discrete snapshots
of the development of an organ morphology. Here, we propose a computer-based approach to recreate
its continuous evolution in time and space from a set of 3D volumetric images. Our method is based on
the remapping of shape data into the space of the coefficients of a spherical harmonics expansion where
a smooth interpolation over time is simpler. We tested our approach on mouse limb buds and embryonic
hearts. A key advantage of this method is that the resulting 4D trajectory can take advantage of all the avail-
able data while also being able to interpolate well through time intervals for which there are little or no data.
This allows for a quantitative, data-driven 4D description of mouse limb morphogenesis.
INTRODUCTION

Progress in imaging technology has been central to understand-

ing morphogenesis, which is an intrinsically 3D and dynamical

process. In the case of externally developing organisms, such

as Drosophila and zebrafish, it is now possible to image in vivo

whole-embryo development at a cellular level, up to and

including the later organ-forming stages (Tomer et al., 2012;

Royer et al., 2016). However, for more complex animal models

(e.g., mouse embryogenesis), it is still not possible to observe

organogenesis in real time, due to the limitations of in vitro cul-

ture techniques. The dynamics of early post-implantation mouse

embryogenesis have been successfully imaged in great detail

(McDole et al., 2018); however, embryo culture beyond E10.5

is not robust enough to recapitulate the full development of com-

plex organs—largely due to the lack of blood flow. In vivo/in utero

imaging techniques (such as MRI) do not yet provide sufficient

spatial resolution to capture the morphogenesis of organs, and

our understanding of complex mammalian organogenesis is

therefore largely derived from capturing series of ex vivo and

static 3D images, often using mesoscopic imaging techniques

such as optical projection tomography (Sharpe et al., 2002) (Fig-

ure 1A), light sheet imaging (Huisken et al., 2004), or ex vivoMRI

(Wong et al., 2012, 2014).

An important remaining challenge is to integrate these series

of static 3D datasets into a smooth, continuous and 4D trajectory

that realistically models the morphogenesis of the organ in
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question. There have been diverse attempts to recapitulate the

development of a full mouse embryo. Among others, Wong

et al. (2015) used 3D optical projection tomography (OPT) im-

ages taken at six developmental time points (between E11.5

and E14.0), to create a 4Dmodel of mouse embryo growth. Spe-

cifically, the outcome was the result of spline fitting and interpo-

lating over time the displacement vectors of homologous points

of the 3D voxel images. While this model provided a global

overview of mouse embryo development, it was not able to

accurately recreate smooth shape trajectories for all the organs.

In particular, the registration of the voxel data was not able to

align parts of the embryo whose positions are intrinsically vari-

able over time, such as the limbs and the tail. Therefore, this

method was not able to precisely reproduce the development

of these particular mouse’s structures. Indeed, the large degree

of natural variation in samples represents a key challenge in the

effort of recapitulating the growth of a mouse embryo or even a

sub-part of it such as the limb.

Two embryos at the exact same age do not look identical, due

to the intrinsic variation both in shape and in development. We

therefore ideally need a technique which, on the one hand can

take advantage of as much shape data as possible, while at

the same time not giving excessiveweight to any specific individ-

ual. In practice, this means a procedure in which each sample

(i.e., each real limb) is able to influence the mean trajectory at

ages both younger and older than itself, or, in other words, the

final reconstruction needs to capture the right balance between
2 The Authors. Published by Elsevier Inc.
commons.org/licenses/by/4.0/).
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hind limb

(A) Three mouse embryos at different develop-

mental stages: E10:09, E11:05, and E12:02.

(B) Graphical illustration of a smooth trajectory tak-

ing into account all the different characteristics of

the dataset.

(C) Two-dimensional interpolation of mouse limb

from E10:06 to E12:06 at 6-h intervals.

(D) Alignment of three embryos at the same devel-

opmental stage according to their right hind limbs

shown with transparency (left) and as surface in

solid color (right). The red line represents the output

of the staging system (Musy et al., 2018).

(E) Dataset of mouse right hind limbs used in this

study ordered according to their developmental

stage from E10:09 to E12:02.
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the overall shape trends across the whole dataset, and the

actual details of each limb. Another challenge is that the shape

complexity of an organ increases during development. We

need a method that performs some degree of dimensionality

reduction, but without losing the more complex features of the

older stages (Figure 1B).

Spherical harmonics have been known since 1782 (Laplace,

Mécanique Céleste) and form a natural basis for describing how

a scalar quantity varies on the surface of a sphere. They produce

an orthogonal basis for mathematically describing a 3D shape

and provide a compact parametric representation of it. Spherical

harmonics have been widely used in different fields and, in recent

years, also in biology. One of their main use has been to charac-

terize, among others, the shapes of cells and organs (Styner et al.,

2006; Morishita et al., 2017; Medyukhina et al., 2020), deforma-
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tions and movements of tissues in an

easier and more robust way (Khairy et al.,

2018). Moreover, spherical harmonics

expansion has been also applied to mesh

refinements (Lai et al., 2009). The expan-

sion of a function in spherical harmonics

is characterized by a finite set of coeffi-

cients, which multiply the set of functions

constituting the orthogonal basis. These

coefficients encode the information of the

original function; therefore, the higher the

degree (i.e., the number of coefficients

used) the more accurate the representa-

tion. Among other properties, one impor-

tant feature that makes spherical har-

monics particularly convenient is that the

degree of the expansion represents the

level of detail that is experimentally desir-

able. Therefore, limiting the number of co-

efficients of the series will not cause a loss

of themain characteristic of the shape rep-

resented. Previous studies using spherical

harmonics have considered collections of

objects (both surfaces or volumes) often

analyzed for the purpose of quantifying

the differences or similarities between the
sets. We are only aware of one previous use of spherical har-

monics to characterize a changing morphology over time—in

the chick embryo (Morishita et al., 2017). We therefore propose

and demonstrate an approach to describe the evolution in time

and space ofmouse limbs both from volumetric and surface data.

A 2D trajectory of limb bud shape change has previously been

created (not using spherical harmonics) and has been developed

into a method to estimate the embryonic stage of a limb bud to a

high temporal resolution (Musy et al., 2018; Figure 1C). This

work, although only in 2D, allows us to have a reference to align

in space and time mouse embryos according to a chosen limb

(Figure 1D). Here, we develop and demonstrate two different ver-

sions of this approach for the case of limb development. We

believe this approach has a widespread applicability in develop-

mental biology, to provide a quantitatively reliable baseline
l 57, 2140–2150, September 12, 2022 2141
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description of organ development—something surprisingly ab-

sent in the field so far—and so we also demonstrate its use on

3D images of another mouse organ, the developing heart.
DESIGN

Our understanding of morphogenetic processes has increased

in the last years due to the progress in image technologies. While

it is now possible to image in vivo externally developing organ-

isms, such as Drosophila and zebrafish, at a cellular level (Tomer

et al., 2012; Royer et al., 2016), it is still unfeasible to observe

organogenesis in real time for more complex animal models

(e.g., mouse embryogenesis), due to the limitations of in vitro

culture techniques. Additionally, the current available in vivo/

in utero imaging methods are not robust enough to recapitulate

the full development of complex organs (McDole et al., 2018).

Therefore, our notion of complex mammalian organogenesis is

mainly derived from series of static 3D images (Huisken et al.,

2004; Sharpe et al., 2002; Wong et al., 2012, 2014). The lack of

possibilities to obtain continuous time-lapse imaging of devel-

oping mammalian organs, prompted us to develop a com-

puter-based approach able to fill this gap and to recreate a

continuous evolution in time and space of organ morphogenesis

from a set of 3D volumetric images.
RESULTS

Spherical harmonics, first investigated by Laplace in 1782 in his

Mécanique Céleste are a set of expressions used to represent

functions on the surface of the sphere S2. They can be pictured

as a higher-dimensional analogy of Fourier series, which form a

complete basis for the set of periodic functions of a single vari-

able (functions on a circle S1).

The development of Fourier series in 19th century, made

possible the solution of a wide variety of physical problems in

rectangular domains, such as the solution of the heat equation

or wave equation. This could be achieved by the expansion of

functions in series of trigonometric expressions. Fourier series

are indeed ideal for decomposing a periodic 2D signal in terms

of sums of sines and cosines respectively weighted by a set of

coefficients an and bn. Subsequently, to reconstruct the signal,

it is essential to determine these coefficients in front of each

term. Similarly, spherical harmonics use a set of functions de-

pending this time on the radius, latitude, and longitude instead

of abscissa and ordinate. In Fourier series, the order of each

term would define the period (or wavelength) along the x axis

while in spherical harmonics, two numbers are needed to take

into account the two directions of waves: latitude and longitude.

Whereas the trigonometric functions in a Fourier series represent

the fundamental modes of vibration in a string, the spherical har-

monics represent the fundamental modes of vibration of a

sphere in approximately the same way. Many aspects of the the-

ory of Fourier series could be generalized by taking expansions

in spherical harmonics rather than trigonometric functions (see

STAR Methods for more details).

Spherical harmonics represent therefore an ideal tool able to

provide a compact parametric representation of complex 3D

shapes (e.g., mouse limbs and hearts).
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One key step in spherical harmonics expansion is to firstmap a

surface onto a sphere. In the case of relatively simple surfaces,

one possible solution is using as mapping the geometrical dis-

tance between the surface considered and a sphere which con-

tains it. Specifically, all these distances represent a set of scalars

onto the spherewhich serve as amapping that can subsequently

be expanded in spherical harmonic. We applied this procedure

to 69 surfaces of mouse limb buds imaged using OPT of mouse

embryos previously ordered in time using the embryonic mouse

ontogenetic staging system (eMOSS) (Musy et al., 2018). Ex-

panding a function into a spherical harmonic series and recon-

structing it from the spherical harmonic coefficients are the two

essential procedures applied when operating with data on the

sphere. However, in our work, instead of using the exact coeffi-

cients’ values of the spherical harmonic series for reconstructing

the original function, we interpolated them in time. In this way,

the interpolation not only provides a spatial average estimate

in the points where there ismore than one surface, but it also pro-

duces a temporal estimate for the existent gaps due to missing

data. The results show a reconstruction describing a continuous

and smooth changing shape over space and time.
Application on simple surfaces
An arbitrary surface, which can be mapped onto a sphere, can

be expanded into a finite series of spherical harmonic terms

and reconstructed back. The precision by which the recon-

structed surface will resemble the original one depends on the

number of coefficients of the expansion, the higher the number

of coefficients the more precise the reconstruction.

As a dataset, we used a collection of mouse embryos polyg-

onal surfaces extracted from OPT scans (Sharpe et al., 2002).

All the embryos were staged, using the staging system

already described, to be correctly positioned in time. Specif-

ically, we obtained a set of 69 hind limbs from E10:09 to

E12:22 (Figure 1E).

The eMOSS (Musy et al., 2018) provides us with a reference to

align in space the limb buds. Afterward, the alignment of the

sequence of limbs was refined using the iterative closest point

(ICP) algorithm (Besl and McKay, 1992).

Since the limb is a rather simple surface, to map it onto a

sphere, we used the geometrical distance between its surface

and a sphere that circumscribes it (Figure 2A, top left). Along a

given radius rj, we measured the corresponding distance dj be-

tween a given surface v = ðx; y; zÞ and the sphere. We used

500 radii along which computing these distances creating

a set of 500 scalars d for each limb. On top on each sphere we

obtain therefore a collection of sample points (equal to the

number of radii) to which is associated a set of scalars d repre-

senting the distances between these points and the surface,

as shown by the color heatmap in Figure 2A (top right). Moreover,

the number of these sample points provides the resolution of the

spherical mapping of the considered surfaces. Given the total

number of limb surfaces N we have therefore a set of scalars

d0;.;dN which encodes the spherical mapping of each surface.

Every spherical mapping can then be expanded in spherical

harmonics.

A surface v, mapped as xðw;4Þ; yðw;4Þ; zðw;4Þ, can be repre-

sented in the form
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Figure 2. Expansion using spherical har-

monics

(A) Mapping of a limb onto a sphere using

geometrical distances (d) along the radii (r) between

its surface and the sphere that circumscribes it (top

left). Spherical mapping of a limb, the heatmap

shows the distance between the points on top of the

sphere and the surface of the limb (top right). Rep-

resentation of the limb (in an a-dimensional refer-

ence system, scale bar corresponds to the unit

length) using spherical harmonic expansion of

different degrees, lmax = 0; 1; 3; 7; 15 (bottom),

and the color map represents the distance between

the reconstruction and the original surface (see also

Figure S1C).

(B) Splining in time over the spherical har-

monics coefficients cml . Here, the degrees

l = 0; 1; 2; 3; 4 are shown (see also Figures S1A

and S1B).

(C) Comparison of four original data, out of the total

of 69 mouse limbs used, at different developmental

stages: E10:10, E11:00, E11:12, and E12:02 (top)

with the corresponding limb growth reconstruction

(bottom). The color map represents the signed dis-

tance between the reconstruction and the original

surface and the scale bar corresponds to 500 mm

(see also Figures S1D, S1E, and S2).
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vðw;4Þ =
XN
l = 0

Xl

m = � l

cm
l Y

m
l ðw;4Þ (Equation 1)

where

Ym
l ðw;4Þ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l + 1Þ
4p

ðl � mÞ!
ðl +mÞ!

s
Pm
l ðcos wÞ eim4; (Equation 2)

Pm
l are the associated Legendre polynomials and cm

l = ðcmlx ;
cmly ;c

m
lz Þ, with l = ½0;NÞ and m = ½ � l; + l�, are the coefficients

of the expansion. In particular, cm
l assume the form:

cm
l = c0

0

c� 1
1 c0

1 c1
1

c� 2
2 c� 1

2 c0
2 c1

2 c2
2

.

(Equation 3)
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In the practical use, the coefficients cm
l

of the expansion are truncated to a spe-

cific degree l = lmax, which defines the

level of detail. Spherical harmonic expan-

sion provides a unique description of a

surface based on scalar coefficients. Us-

ing only the coefficients of the first de-

grees (i.e., lmax = 0;1) provides as a result

practically a sphere, with lmax = 3 the de-

tails of the reconstruction increase and

adding more degrees ðlmax R 7Þ, it is

possible to obtain a limb-like surface (Fig-

ure 2A, bottom). Moreover, the higher the

order of the coefficient the less informa-

tion it provides to the representation (i.e.,

in this reconstruction we are not inter-
ested in the finermorphological details). Therefore, every surface

in our dataset could be represented by a finite set of coefficients

of its corresponding spherical harmonic expansion. This means

that we have the coefficients for each surface at its correspond-

ing point in time. If we put together and represent all the coeffi-

cients of e.g., degree zero we will have a set of scalars evolving

in time (Figure 2B, left), and the same happens for the subse-

quent degrees (Figure 2B, right). Instead of reconstructing

each surface using the exact coefficients, we interpolated

through them and used the interpolated values for the recon-

struction (Figure 2C). In this way, the interpolated curve will

give an average of the coefficients in the time points in which

we have more than one surface and will fill the time gaps in the

points in which there are no data. Since the aim of this work is

to have the most precise reconstruction, fixing the degree

lmax = 50, we compared the results (in terms of mesh distances)

of using different degrees of polynomial interpolation (Fig-

ure S1A). In the same way, fixing the degree of interpolation
l 57, 2140–2150, September 12, 2022 2143
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equal to 6, we compared the results of using different values of

lmax (Figure S1B). As shown in Figures S1A and S1B, the quality

of the results reaches a plateau for an interpolation order of 6 and

lmax = 50, which we adopted for the rest of this work. Using this

approach for the coefficients of all degrees considered, it is

possible to obtain a reconstruction in space and time of the data-

set. In this reconstruction, each limb contributes the same to the

average growing shape.

As a further improvement, we used this reconstruction to

refine the alignment of the original dataset obtaining a better

andmore precise sequence of limbs (Figure 2C, top). Reapplying

the method explained above in a way analogous to a bootstrap-

ping process. With the new alignment of the data, we obtain an

improved reconstruction of a growing limb bud trajectory (Fig-

ure 2C, bottom). This allows for a quantitative, data-driven 4D

description of limb bud development across time and space

(the result can only be well appreciated from watching Video 1,

https://vedo.embl.es/fearless/#/limb).

The quality of the growing limb bud reconstruction obtained

relies on the number of experimental shapes available and on

its frequency in time. To achieve the optimal result, we used all

the data available; however, to assess the robustness of the

algorithm to temporal resolution, we performed an analysis to

determine the minimum number of input shapes that provides

a biological meaningful result. Since our set of input data is not

uniformly distributed in time, for a first test, we use the same

time course reconstruction that we obtained as ground truth.

In this way we have a set of limbs with a uniform resolution of

1 h (from E10:10 to E12:02), and, most importantly, we have a

control with which comparing the results of this test. Maintaining

the shapes at the first and last time points, we subsequently

reduced the number of input shapes by removing for each suc-

cessive test more of the intermediate time points. In this manner,

we applied our algorithm on a set of 21, 14, 11, 9, and 7 initial

shapes and compared the results with the original reconstruction

using the L2 norm (we could not use a number lower than 7 since

the order of the interpolation of the coefficients was 6). It is

possible to notice that for a number of experimental shapes of

21, 14, and 11, the algorithm still produced reliable results (in

terms of distance), whereas using 9 or 7 initial shapes decreased

its efficiency dramatically (Figure S1D). From the L2 distance be-

tween the results and the original data (Figure S1D), it is possible

to see from quality of the reconstruction that it is not reliable for

the entire time course. The result is more precise for the time

points for which the original data are present, while it is not pre-

cise for the others, as shown by the behavior of the L2 distance

(Figure S1D). We can therefore conclude that using only 7 initial

shapes, it is not enough for biologically reliable results. Addition-

ally, regardless of the number of input shapes used, the most

affected time points of the results were the initial and the final

ones (Figure S1D). In Figure S1E, where the examples of recon-

structed limbs (i.e., E10:10, E11:00, E11:12, and E12:02) are

colored according to their distance with the original ones, it is

possible to graphically see the results of the robustness of

the study. While in all cases, the shapes obtained look like the

original ones; analyzing the distances between them and the

original data, it is possible to notice that the quality decreases

by reducing the number of experimental shapes and, when using

only an initial number of 7 shapes, the result is not biologically ac-
2144 Developmental Cell 57, 2140–2150, September 12, 2022
curate, especially for the later time points where the shape of the

limb is more complex.

After testing the algorithm on the reconstructed sequence of

data, we also performed the same analysis on the original limb

data. In the same way, as explained before, we fixed the

shapes at the first and last time points, and we subsequently

reduced the number of input shapes by removing at each

step of every other shape. Since the original data cover a minor

number of time points, and they are not uniformly distributed,

we were able to apply our algorithm on a set of 37, 21, and 8

initial shapes and to compare the results with the original

reconstruction using the L2 norm. The result of this test is

similar to the one before, giving less precise reconstructions

by reducing the initial amount of data and showing that the

most affected shapes are at the beginning and at the end of

the time course (Figure S2A). An equivalent result can be

seen in Figure S2B where examples of reconstructed limbs

(i.e., E10:10, E11:00, E11:12, and E12:02) are colored accord-

ing to their distance with the original ones. Moreover, it can

be noticed that in this particular case, some shapes have

some defects and do not look like real limbs, which can be

appreciated, e.g., in the first limb (E10:10) of the first raw and

in the two limbs (E11:00, E11:12) of the last raw of Figure S2B.

These imperfections can derive from the fact that, reducing the

initial number of data, some shapes start to have more weight

on the reconstruction, and their defects, instead of being soft-

ened by the interpolation, are diffused along the reconstruction.

Reducing the number of input shapes can therefore affect the

interpolation in providing a smooth trajectory in which each

limb contributes the same to the average growing shape.

Adding the limb flank

In the previous section, we were able to recreate the growth in

space and time of a mouse limb. In reality, however, the bound-

ary between the limb and the rest of the embryo is rather arbi-

trary, and we therefore wanted to extend the analysis to include

the flank of the embryo. Specifically, we extended the limb bud

shape up to the mid-line of the mouse, as defined by the spinal

column (Figure 3A). The new shape is now much more complex

than before, displaying concavities (between the limb and the

flank) that make it not projectable anymore onto a sphere. In

particular, the key limitation of pure spherical harmonics arises

when the radii used intersect the surface more than once (Fig-

ure S1C). Mapping methods for more complex surfaces and

volumes have been extensively investigated (Brechb€uhler

et al., 1995; Shen and Makedon, 2006; Lai et al., 2009; Shen

et al., 2009; Yu et al., 2010), but nevertheless, these proposed

methods are not suitable when multiple objects need to be

consistently mapped onto the same reference since e.g., the

portion of the sphere of the first one may not represent the

same part of the second object.

To map our complex embryonic surface onto a sphere, we

chose to make the use of volumetric data. For any arbitrary sur-

face, it is possible to embed it into a volume and to compute the

signed distances (SDs) over this volume from the input mesh

(Baerentzen and Aanaes, 2005). The output is a volumetric data-

set whose voxels contain the SD from the mesh. Inscribing this

volume into a set of concentric spheres allow us to generate a

set of scalar fields (i.e., SDs) on the sphere surface (Kazhdan

et al., 2003; Skibbe et al., 2009). This allows us to expand the

https://vedo.embl.es/fearless/#/limb


Figure 3. Alignment and reconstruction us-

ing spherical harmonics

(A) Triad ð cp�!; w!; v!Þ describing the orientations of

the limb with respect to the normal N
!

to a

perpendicular plane.

(B) Variation in time of a = :ð cp�!; N
!Þ and its cor-

responding linear fitting with three representative

limbs—E10:10, E11:25, and E12:02 (top).

(C) Alignment of three limbs with flank of the same

developmental stage according to the flanks (top

left) and to the limbs (bottom left), alignment ac-

cording to the limbs and warping of the flanks

(right).

(D) Example of signed distances computed on

three different radii of a limb.

(E) Example of signed distance computed on the

same radius of two limbs at the same develop-

mental stage, their spherical mapping, coefficients

of degree l = 0; 1; 2 of the spherical harmonics

expansion, and comparison of the signed distance

reconstruction (red dots) with the original ones

(blue dots).
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scalars of each sphere into spherical harmonics. In this way, we

are able to have a spherical harmonic representation for any kind

of surfaces. It is now possible to apply this procedure on the

same dataset described before, but we can now consider not

only the limb but also the flank (i.e., part of themouse back) since

we do not have any limitation on the kind of surface to be

analyzed. Consequently, we can adopt the same concept used

before of interpolating the spherical harmonics coefficients in

time (over the developmental stages).

For a variety of reasons (external forces, natural variation, etc.)

the limb buds of two embryos of the exact same age may not

protrude from the flank at the same angle. However, a reason-

able average shape cannot be calculated from two images that

do not align. To create a reliable average trajectory of normal

development, we need to make a judgment of which angle is
Developmental Cel
the most normal, and we must then either

select images that fit this average or alter

the remaining datasets so that all limb

buds and all flank regions can be well

aligned. The first step was to measure

the correct average angle. By defining

an orthogonal triad of vectors V = ð cp�!;

w!; v!Þ, it is possible to describe themove-

ments and rotations of the limb in space.

Moreover, considering a plane perpen-

dicular to the limb, and therefore parallel

to the flank, we can compute the angles

between the triad V and a normal N
!

to

this plane (Figure 3A). Specifically,

a = :ð cp�!; N
!Þ describes the vertical

bending of the limb with respect to the

flank, and thus, we can plot the angles

for many embryos over time, which re-

veals a fairly linear decrease in this angle

from about 90� at mE10:10 to about 40�

at mE12:02 (Figure 3B). The second step

was therefore to use a linear fit of a as a
reference, and to apply a bending transform onto the shape

data using ‘‘thin plate splines’’ (Bookstein, 1989), which is a

non-linear transformation based on a physical analogy involving

the bending of a rigid material. The limbs were not affected by

this transformation, only the non-aligned flanks were bent. This

operation ensures that all datasets reflect the average bending

trajectory over time (Figure 3C).

To implement the idea mentioned above, we embedded each

surface into a volume and computed the SDs over this volume

from the input mesh (Baerentzen and Aanaes, 2005). The output

is a volumetric dataset whose voxels contain the SD from the

mesh. It is therefore possible to generate a scalar field by the

SD from a mesh. Inscribing this volume into a sphere, it is

possible to know the intensity of the SD along each chosen

radius (r0, r1, ., rn) of this sphere making this mapping method
l 57, 2140–2150, September 12, 2022 2145
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Figure 4. Analysis and quantification

(A) Comparison of four original data, out of the

total of 69 mouse limbs used, at different devel-

opmental stages: E10:10, E11:00, E11:12, and

E12:02 (top) with the corresponding limb growth

reconstructions (bottom). The color map

represents the signed distance between the

reconstruction and the original surface and the

scale bar corresponds to 500 mm.

(B) Representation of the proximodistal (PD) and

anteroposterior (AP) axes of a limb.

(C) Volume growth comparison between original

data (blue dots) and reconstructed shapes (orange

dots).

(D) PD growth comparison between original data

(blue dots) and reconstructed shapes (orange

dots).

(E) AP growth comparison between original data

(blue dots) and reconstructed shapes (orangedots).
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theoretically applicable to any arbitrary surface (Figure 3D).

Since each radius is discretized in m = 50 points, we have a

set of m concentric spheres on which the SDs are grouped ac-

cording to their position along each radius. This represent a suit-

able condition that allows us to expand the scalars of each

sphere into spherical harmonics.

With this mappingmethod, we obtained the cm
l coefficients for

each concentric spheres of every limb. Similar to that in the pre-

vious section, instead of reconstructing each volume using the

exact coefficients cm
l , we first interpolated them over time. Sub-

sequently, we used for the reconstruction the values of the inter-

polation, obtaining in this way one new limb for every time point

(Figure 3E).

Every new limb is a volume object in which each voxel contains

a scalar representing the reconstructed SD. Starting from this

volume object, it is possible to additionally extract a correspond-

ing surface. Using this method, we were able to create a time
2146 Developmental Cell 57, 2140–2150, September 12, 2022
course reconstruction of a more complex

object such as a mouse limb with its cor-

responding flank (Figure 4A).

The reconstruction in space and time

of the growing limb consists of a smooth

trajectory in developmental stages start-

ing from E10:09 up to E12:02 (Figure 4A;

Video 2, https://vedo.embl.es/fearless/

#/limbflank). In order to know how accu-

rately the result reproduces the 4D

growth of a mouse limb, we directly

compared it with the real data. To do

so, we compared three distinctive char-

acteristics of a mouse limb. Specifically,

the total growth in the volume of the

limb, its elongation along the proximo-

distal (PD) axis, and its widening along

the anteroposterior (AP) axis (Figure 4B).

For each reconstructed shape of a limb

with its flank, the total volume was

computed and compared with the vol-

ume of the original data at the same
developmental stage (Figure 4C). In order to compare the

limb elongation along the PD axis, we computed the geomet-

rical distance between a fixed point (i.e., ½0; 0;0�) and the

most distal point of the limb (Figure 4B), and we compared

this value in the reconstructed and original data (Figure 4D).

For confronting the enlargement of the limb along the AP axis

the geometrical distance between the two furthest points

in the AP plane of the limb ‘‘paddle’’ was determined and

compared (Figure 4E).

The result represents the 4D growth of an ‘‘ideal’’ limb, which

averages the common characteristics and features of all the

limbs in the dataset. In particular, we are recreating the growing

process starting from when the limb bud is just a small bump of

tissue (E10:09) and finishing when it already shows a distinctive

‘‘paddle’’ shape of the autopod (E12:02). Additionally, the

reconstruction is able to capture the correct biological scaling

of a growing limb by accurately reproducing the volume growth

shown in the data and its PD and AP axes evolution.

https://vedo.embl.es/fearless/#/limbflank
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OPT scanned digitalised & cleaned up

Figure 5. Volumetric expansion and recon-

struction using spherical harmonics

(A) Representation of the data acquisition proced-

ure: OPT scans of molecular marked mouse em-

bryos, digitalization and cleaning of the data.

(B) Examples of heart volumetric data at different

developmental stages (i.e., 10, 14, 18–19, 21–22,

24–25, and 28–29 somites), from the 27 used.

(C) Examples of scalar values of an 18–19 heart on

one specific radius shell. Colors represent voxel

intensities.

(D) The heart reconstruction at different develop-

mental time points (see also Figure S2) .
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Application to the heart development
In order to determine the robustness of the method, we applied it

on a completely different set of data, specifically volumetric

mouse heart data. We used a total of 26 OPT scans of mouse

embryos where the heart is distinguished from the rest of the

embryonic tissue by means of a molecular marker (myosin heavy

chain [MHC], as detected by antibody staining). The embryos

were scanned by OPT and then processed to create surfaces

representing only the MHC-expressing part of the heart (Fig-

ure 5A). We obtained mouse heart data at six different develop-

mental stages, i.e., 10, 14, 18–19, 21–22, 24–25, and 28–29 so-

mites (Figure 5B).

In this specific case, we considered the heart as a whole organ

without the necessity of bending its surface. Therefore, differ-

ently from the previous section, it was possible to apply the

method previously described directly on the volumetric data
Developmental Cel
without the requirement of first converting

them to surfaces and then using the SD.

As a first step, all the data were manu-

ally aligned using a 43 4 linear rigid trans-

formation. Specifically, the registration

was done using Vedo (Musy et al., 2022),

which allows to interactively move and

rotate the selected shapes, being in con-

trol of the displacements and distances

in quantitative terms, and automatically

save the aligned one and the matrix con-

taining its registration. Afterward, similarly

to the previous section, each heart was

embedded into a sphere centered at the

geometric center of the object, and the

scalars, representing the voxel intensities,

were computed along the radii of the

sphere. The result is a set of intensities

mapped on every concentric sphere

from the radius discretization (Figure 5C).

The scalar values mapped on these

spheres were expanded into spherical

harmonics. The coefficients cm
l of the

spherical harmonics were then interpo-

lated over the developmental stages,

and these interpolated values were used

to reconstruct the heart trajectory.

The result, as in the case of the mouse

limbs, is a smooth trajectory of a growing
heart in space and time that takes into account the common

characteristics and properties of all the samples in the dataset

(Figures 5D and S3; Video 3—https://vedo.embl.es/fearless/

#/heart). Thus, in spite of the fact that mouse limbs and mouse

hearts are markedly different in shape, our algorithm demon-

strates to be robust and produce a reliable reconstruction of

the evolution in space and time of the original data in both cases.

Moreover, this approach not only provides a quantitative basis

for validating predictive models, but it also increases our under-

standing of morphogenetic processes from a purely geometrical

point of view.

DISCUSSION

Our understanding of limb development (and other examples of

organogenesis) has been driven by a strong focus on molecular
l 57, 2140–2150, September 12, 2022 2147
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and cellular activities. While modern biology has striven to make

measurements of molecular data increasingly quantitative and

complete (such as transcriptomics and single-cell approaches),

surprisingly, an accurate quantitative description of the continu-

ously changing morphology of the limb has not been created.

Precision in such a description has perhaps not previously

been required for a basic appreciation of mutant phenotypes,

but as biology becomes more predictive and quantitative, accu-

rate measurements of dynamic morphology will be essential. For

example, the value of quantification for static 3D limb bud shape

has already been shown to increase sensitivity in phenotyping

studies (Martı́nez-Abadı́as et al., 2018), as well as enabling the

detection of subtle but real alterations in gene expression pat-

terns. Quantifying dynamic shape changes will also become

important for mechanistic and predictive models of morphogen-

esis. For example, we previously used data-driven finite element

modeling (FEM) to rule out a popular hypothesis about limb bud

elongation (Boehm et al., 2010). By combing quantification of the

changing 3D shapewith accuratemeasurements of proliferation,

we were able show that the proliferation gradient hypothesis

cannot be correct because the model’s predictions do not fit

the true morphology.

While for some model species a 4D quantitative trajectory

can be captured by direct time-lapse imaging, this is not

true for mammalian organs. In utero imaging cannot provide

high spatial resolution, and in vitro culture techniques do not

support normal organogenesis. We are therefore left with

the challenge of reconstructing a 4D dynamic process, from

static snapshots. Here, we have developed and demonstrated

a method to perform this task. It is based on the mathematical

technique of spherical harmonics, which is a convenient

method for dimensionality reduction of the data that can be

spatially distributed on a sphere. We were able to use the co-

efficients of the spherical harmonics from 69 different limb

buds, spanning an age range of mE10:09 to mE12:02 and

spline through these values to create a smooth continuous

4D trajectory of normal mouse limb development. A simple,

direct spherical harmonics method worked well on images

just containing the limb bud itself, while a more complex volu-

metric version was required to interpolate a larger region of

tissue that contained concavities (images which included a

significant portion of the embryo trunk as well). A challenge

for traditional landmark-based approaches, such as geomet-

ric morphometrics, is that the shape complexity dramatically

increases from the beginning to the end of the trajectory, in

other words, presenting a changing amount of useful shape

information. The spherical harmonics approach we present

here copes well with this challenge because of the intrinsic

feature that coefficients of different degrees (different levels

of detail) contribute independently to the overall shape

description.

In conclusion, we have applied this method to both limb devel-

opment and a sub-set of heart development (the MHC-express-

ing tissues) for the mouse embryo. It produces a smooth, contin-

uous, and quantitative 4D description of their morphogenesis,

including predictions for the gradual changes in lengths and vol-

umes of the tissue. We believe it can be applied to many other

developing organs and will be increasingly important as devel-

opmental biology becomes a more quantitative science and
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moves toward predictive mechanistic computer modeling of

morphogenesis.
Limitations of the study
In order to produce an accurate reconstruction, the original data

need to be aligned in space before applying this method, either

manually or automatically. Therefore, a poor initial alignment of

the data will provide unreliable results. Additionally, in the case

of the mouse limbs and hearts, it is possible to obtain a contin-

uous and quantitative result with a reasonable small amount of

spherical harmonics coefficients, more complex organs could

require an higher amount of coefficients, affecting the speed of

the code.
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Giovanni

Dalmasso (giovanni.dalmasso@embl.es)

Materials availability
This study did not generate new unique reagents.

Data and code availability
d All the original data (mouse limbs and hearts) used in this study, and all themouse embryos data used in Figures 1A and 1D have

been deposited in the BioStudies database (Sarkans et al., 2018)/ https://www.ebi.ac.uk/biostudies/studies/S-BIAD441 and

are publicly available as of the date of publication. Accession numbers are listed in the key resources table.

d All original code, publicly available as of the date of publication, has been deposited in a GitHub repository and can be found

at / https://doi.org/10.5281/zenodo.6962145 (Dalmasso, 2022). DOIs are listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon

request.

Optical projection tomography (OPT) imaging Sharpe et al., 2002 N/A
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals
All animal work was performed according to the guidelines of the Committees on Ethics and AnimalWelfare established at PRBB and

CNIC, in accordance to Spanish and European laws. C57Bl6/J mouse embryos were collected at the indicated gestational stages.

For a precise staging of limb buds, the eMOSS staging system was used (Musy et al., 2018), and for hearts, pairs of somites were

counted. Embryos were dissected in cold PBS and fixed overnight in 4% PFA at 4� C.
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Husbandry conditions of experimental animals
The animal facility from the PRBB is fully accredited by the International Association for Assessment and Accreditation of Laboratory

Animal Care (AAALAC).

Housing conditions of experimental animals
At the Barcelona Biomedical Research Park (PRBB) animal facility, accredited by AAALAC (The Association for Assessment

and Accreditation of Laboratory Animal Care International), animals were regularly monitored for any health concerns. Mice

were kept in individually ventilated cages (IVCs; Tecniplast, Italy) at a temperature of 20� C to 24� C, humidity of 40% to 60%

and a 12/12-hour light/dark cycle with the lights on at 7:30 AM. Cages contained bedding of large fibrous particles (Souralit

1035, Bobadeb S.L, Spain) and tissue papers and cardboard tubes as cage enrichment. Animals had free access to water and

irradiated RM3 diet (Special Diet Services, England. All materials, including IVCs, lids, feeders, bottles, bedding, and water

were autoclaved before use.

At Centro Nacional de Investigaciones Cardiovasculares (CNIC) mice were housed in a specific pathogen-free facility under a 12h

light/12h dark cycle, at 20�-24� C temperature and relative humidity 60%, with water and food available ad libitum. Animals were

monitored daily for well-being.

METHOD DETAILS

Spherical Harmonics
Spherical harmonics are a set of functions that form a basis that can be used to represent functions on the surface of the sphere

S2. They can be considered as a higher-dimensional analogy to Fourier series, which constitute a complete basis for the set of a

single variable, i.e. functions on the circle S1. While Fourier series are a suitable decomposition for functions in cartesian co-

ordinates, spherical harmonics allow to represent any function, defined either in spherical coordinates, as a sum of a set of ba-

sis functions.

Since spherical harmonics are defined as the eigenfunctions of the angular part of the Laplacian (V,V; V2 or D) in three dimen-

sions, they are particularly suitable in representing solutions to partial differential equation (PDE) in which the Laplacian appears.

The Laplacian is a central part of significant physical equations, such as the heat equation, Schrödinger equation, wave equation,

Poisson equation, and Laplace equation, which are ubiquitous in gravity, electromagnetism/radiation, and quantum mechanics.

Therefore, spherical harmonics are fundamental for representing physical quantities of interest in these domains, most notably

the orbitals of the hydrogen atom in quantum mechanics (Griffith, 2006). Additionally, spherical harmonics have recently been

used in the field of machine learning (Poulenard et al., 2019).

Brief history

Spherical harmonics were first explored in relation with the Newtonian potential of Newton’s law of universal gravitation in three

dimension. Pierre-Simon de Laplace determined in his Mécanique Céleste (1782) that the gravitational potential R3 / R at a point

x associated to a set of point masses mj locate at points xj was given by

VðxÞ =
X
j

mj��xj � x
��: (Equation 4)

Each term in Equation 4 is an individual Newtonian potential for a point mass. Prior to that, Adrien-Marie Legendre analysed the

expansion of the Newtonian potential in powers of r = jxj and r1 = jx1j. He then discovered that if r% r1 then

1��xj � x
�� = P0 cosðgÞ 1

r1
+P1 cosðgÞ r

r21
+P2 cosðgÞ r

2

r31
+. (Equation 5)

where g is the angle between the vectors x and x1 and the functions Pj: [�1, 1]/ R are denoted as Legendre polynomials. After-

wards, Laplace investigated (in his 1782 memoir) these coefficients using spherical coordinates to represent the angle g between x1
and x.

The name of ‘‘spherical harmonics’’ was first introduced in 1867 byWilliam Thomson (Lord Kelvin) and Peter Guthrie Tait when they

used solid spherical harmonics for these functions in their Treatise on Natural Philosophy. The solid harmonics were homogeneous

polynomial solutions R3 / R of Laplace’s equation

v2u

vx2
+
v2u

vy2
+
v2u

vz2
= 0: (Equation 6)

Thomson and Tait derived Laplace’s spherical harmonics by examining Laplace’s equation in spherical coordinates. The term

‘‘Laplace’s coefficients’’ was used by William Whewell to describe the particular system of solutions introduced along these lines,

whereas others reserved this designation for the zonal spherical harmonics that had properly been introduced by Laplace and

Legendre.
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Analogy with Fourier series

Any periodic function fðwÞ with a period of 2p can be view, in an equivalent way, as a function defined on a circle with radius 1 and

circumference 2p. These functions, assume the same values every 2p, therefore, they can be projected onto the unit circle

(Figure S4A).

Additionally, any periodic function can be represented as Fourier series, a weighted sum of sines and cosines of

different frequencies. Indeed, for any 2p periodic function fðwÞ, it is possible to find a set of constants (weights) an and bn

such that:

fðwÞ =
a0
2
+
XN
n = 1

ancosðnwÞ+bn sinðnwÞ: (Equation 7)

The study of Fourier series. i.e. the study of the way general functions may be represented or approximated by sums of simpler

trigonometric functions (‘‘basis functions’’), is named Fourier analysis (Figure S4B).

Any function can then be approximated in terms of sines and cosines and its precision is given by the number of weights (an, bn),

and therefore basis function, used. This representation is exact only if an infinite numbers of basis functions is used (Kong et al.,

2020). Since the basis function are sum of sines and cosines, and therefore periodic, they can also be represented as functions

defined on a circle (as explained before).

In the case of spherical harmonics the concept is analogous. However, instead of having basis functions defined on a circle, spher-

ical harmonic functions are defined on a sphere (i.e. they froma basis for L2ðS2Þ). In the sameway a periodic function can be projected

on a circle (Figure S4A) it can also be projected on a sphere.With the Fourier analysis it is possible to convert any function defined on a

circle into a weighted sum of sines and cosines of different frequencies. Similarly, any function defined on a sphere can be expressed

as the weighted sum of the spherical harmonic functions Ym
l . Specifically, given a function fðw;4Þ, it is possible to find a series of

coefficients cm
l = ðcmlx ;cmly ;cmlz Þ, such as:

fðw;4Þ =
XN
l = 0

Xl

m = � l

cm
l Y

m
l ðw;4Þ (Equation 8)

where:

Ym
l ðw;4Þ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l + 1Þ
4p

ðl � mÞ!
ðl +mÞ!

s
Pm
l ðcos wÞ eim4; (Equation 9)

and Pm
l are the associated Legendre polynomials. In particular, cm

l assume the form:

cm
l = c0

0

c� 1
1 c0

1 c1
1

c� 2
2 c� 1

2 c0
2 c1

2 c2
2

.

(Equation 10)

An example of the spherical harmonic Y0
1 (degree l = 1 and order m = 0) is represented in Figure S4C. Often, however, spher-

ical harmonics are not represented directly on the sphere but in the more common form depicted in Figure S4C (right). The two

representations are fully equivalent, in Figure S4C (left) Ym
l is shown as a surface through all points on the sphere such

as fxjkxk2 = 1g while in Figure S4C (right) it is represented as a surface through all points on the sphere such as

fxjfðxÞjjkxk2 = 1g.
While the Fourier series has only one sum (Equation 7), in the case of spherical harmonics there are two (Equation 8). The index l of

the first one represents the ‘‘degree’’ of the function, and it can be seen as the equivalent of the frequency of the Fourier series. The

indexm of the second sum constitutes the ‘‘order’’ and it represents the fact that for every degree l there are 2l + 1 functions (differ-

ently from the Fourier series where there are 2 functions for every frequency n). Similarly to the constant term a0
2 of the Fourier series,

the spherical harmonics have, for l = 0 and m = 0, the constant term c00Y
0
0 which is a function that assumes the same value

throughout the sphere.

Differently from the Fourier series, where each of the nth terms assume always the same form of sum of sinðnwÞ and cosðnwÞ,
the spherical harmonics are a more complex set of functions. The efficient calculation of the different values are indeed non-

trivial to derive since they involve several functions which are themselves made of the derivatives of Legendre polynomials

of varying degrees (see Arfken et al. [2013] for the complete derivation). As an informative example, we list here the first spher-

ical harmonic functions, specifically for l = 0;1;2 and non-negative values of m (see Arfken et al. [2013] for a more exhaus-

tive table):
Developmental Cell 57, 2140–2150.e1–e5, September 12, 2022 e3
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l = 0; Y0
0 ðw;4Þ =

1

2

1ffiffiffi
p

p

l = 1;

8>>>><
>>>>:

Y1
1 ðw;4Þ = � 1

2

ffiffiffiffiffiffi
3

2p

r
sin w ei4

Y0
1 ðw;4Þ =

1

2

ffiffiffi
3

p

r
cos w

l = 2;

8>>>>>>>>>>><
>>>>>>>>>>>:

Y2
2 ðw;4Þ =

1

4

ffiffiffiffiffiffi
15

2p

r
sin 2 w e2i4

Y1
2 ðw;4Þ = � 1

2

ffiffiffiffiffiffi
15

2p

r
sin w cos w ei4

Y0
2 ðw;4Þ =

1

4

ffiffiffi
5

p

r �
3cos 2 w � 1

�

(Equation 11)

In Figure S5 is shown the representation of the spherical harmonic functions for l = 0; 1;2;3 (Hill, 2020). For more information see

Shafkat, 2021.

Implementation
The method is written in Python 3 and depends on standard python packages (Harris et al., 2020).

All the mouse embryos were staged using the embryonic Mouse Ontogenetic Staging System (eMOSS) (Musy et al., 2018).

Surfaces of the data were extracted from the OPT scans using the marching cubes algorithm (Lorensen and Cline, 1987).

The alignment in space of the mouse limbs was done using the reference provided by eMOSS (Musy et al., 2018) and refined with

the iterative closest point (ICP) algorithm (Besl and McKay, 1992).

Spherical harmonics transforms were made through the SHTools library (Wieczorek and Meschede, 2018). Specifically, we used

the Python package pyshtoolswhich intrinsically access to the Fortran-95 SHTOOLS library by use of Python wrapper functions. This

package uses the fast Fourier transform (FFT) over latitude bands and exploits symmetry relations about the equator when calcu-

lating the associated Legendre functions which significantly decrease the computational time. It is therefore able to provide fast

and accurate transforms up to spherical harmonic degree 2800. Here below, we briefly summarise how the spherical harmonic trans-

formation and reconstruction are implemented in the package.

In order to obtain the spherical harmonic coefficients of a function, it is possible to show that, multiplying Equation 1 by Ym0
l0 and

integrating over space, they can be calculated by:

cm
l =

1

4p

Z
U

fðw;4ÞYm
l ðw;4Þ dU (Equation 12)

For calculating the spherical harmonic transform of a function, it is necessary to notice that Equation 12 can be written in a two-

component vector notation where the two elements are for the cosine and sine spherical harmonic coefficient:

�
Cm

l ;S
m
l

�
=

1

4p

Z 2p

0

Z p

0

fðw;4ÞPm

l ðcosðm4Þ; sinðm4ÞÞsin 4 dwd4: (Equation 13)

Defining �
cmðjÞ
l ; sm

ðjÞ
l

�
=

Z 2p

0

fðwi;4Þðcosðm4Þ; sinðm4ÞÞ d4 (Equation 14)

as intermediate variables, for a given co-latitude wj and degree l, all the angular order can be simultaneously calculated using a FFT

of the function f. The spherical harmonic coefficients can therefore be calculated by replacing the integral over latitude in Equation 13

with a numerical quadrature rule as

�
Cm

l ;S
m
l

�
=

1

4p

XN
j = 1

wjP
m

l cos wj

�
cmðjÞ
l ; sm

ðjÞ
l

�
(Equation 15)

where w is the latitudinal weight and N is the number of latitudinal points over which the integration is performed. It is possible to

choose find weightswj and locations of the latitudinal sampling points wj to have an exact quadrature in Equation 15. In the SHTools

package are implemented two quadrature rules: Gauss-Legendre and one based on the sampling theorem of Driscoll and Healy (see

Wieczorek andMeschede [2018] for more information). In both cases the quadrature is exact only if the spherical harmonic degree is

fixed to a maximum, i.e. l = lmax.

To reconstruct a function from its spherical harmonic coefficients, the implementation starts by using the separate variables Cm
l

and Sm
l for rewriting Equation 1 as
e4 Developmental Cell 57, 2140–2150.e1–e5, September 12, 2022
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fðw;4Þ =
XL

m = 0

ðamðwÞcosðm4Þ + bmðwÞsinðm4ÞÞ (Equation 16)

where

ðamðwÞ;bmðwÞÞ =
XL

l = m

�
Cm

l ;S
m
l

�
P
m

l cos w (Equation 17)

and L = lmax. For increasing the speed of calculation, SHTools evaluates the function f on a series of grid nodes all at the same time

using an inverse FFT (seeWieczorek andMeschede [2018] for the details of the FFT calculation). The slowest part of the process is the

calculation of the coefficients am and bm which depend on the associated Legendre functions. They are calculated using using stan-

dard three-term recursion relations over adjacent spherical harmonic degrees, specifically, for a given co-latitude, the sectoral term

Pmm is first calculated using an analytic equation, and then Plm is calculated for all values of l >m (see Wieczorek and Meschede

[2018] for more details).

Whole-mount antibody staining
Embryos were dehydrated with methanol and left overnight at -20� C. Whole-mount immunochemistry was performed according to

standard protocols. Embryos were rehydrated, permeabilized in PBS plus 0.5% Triton X-100 (Sigma), left 2h in blocking solution

(90% PBST (0.1% Triton X-100 in PBS)/10% normal goat serum) and incubated overnight at 4� C with anti-Myosin heavy chain,

sarcomere (MHC) antibody (Developmental Studies Hybridoma Bank, MF20; 1:10). Embryos were washed in PBST four times for

4 hours and incubated overnight with biotin goat anti-mouse IgG (Jackson ImmunoResearch ref. 115-066-071; 1:500) and then

with streptavidin-Cy3 (Jackson ImmunoResearch ref. 016-160-084; 1:500). After washing in PBST four times for four hours, embryos

were stored in PBST 0.01% sodium azide and subjected to OPT scanning to obtain images.

Optical projection tomography
Optical projection tomography (OPT) imaging (Sharpe et al., 2002) was used to acquire 2D images and obtain 3D reconstructions.

MF20 immunostained samples were embedded in 1% lowmelting point agarose (Sigma), dehydrated in 100%methanol and cleared

in BABB (1 volume benzyl alcohol : 2 volumes benzyl benzoate). Samples were scanned at intermediate resolution (512x512 pixels) in

the Bioptonics OPT scanner using Skyscan software (Bioptonics, MRC Technology). The GFP filter (425/40nm, 475nm LP) was used

to scan whole embryo anatomy, while the Cy3 filter (545/30nm, 610/75nm) was used to image the heart. OPT scans were recon-

structed using NRecon software (SkyScan) and analyzed using the Bioptonics Viewer software.

QUANTIFICATION AND STATISTICAL ANALYSIS

The comparison between the reconstructed limbs and the original data shown in Figures 2C and 4A were computed applying the

signed distance using the angle weighted pseudonormal (Baerentzen and Aanaes, 2005) implemented in Vedo Musy et al., 2022).

The bending of the flanks to make them match with the reference limbs shown in Figure 3C was done by using a linear fit of a as a

reference, and to apply a bending transform onto the shape data using thin plate splines (Bookstein, 1989) (implemented in Vedo

(Musy et al., 2022)), which is a non-linear transformation based on a physical analogy involving the bending of a rigid material.

The limbs were not affected by this transformation, only the non aligned flanks were bent.

The alignment in space of the mouse hearts was done manually applying a 4x4 linear rigid transformation using the interactive

capabilities of Vedo (Musy et al., 2022).

All the visualisations and animations were produced using Vedo (Musy et al., 2022).

ADDITIONAL RESOURCES

In order to better-appreciate the results of this study, additional movies, 3D interactive views and further information can be found in

the project’s web-page / https://vedo.embl.es/fearless.
Developmental Cell 57, 2140–2150.e1–e5, September 12, 2022 e5
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Figure S1: Assessing the degree of spherical harmonics expansion, related to Figure 1.
A - Comparison of different reconstructions according to mesh distances fixing the value of lmax = 50 and varying the
degree of the spline (from 1 to 6) interpolating the spherical harmonics coefficients.
B - Comparison of different reconstructions according to mesh distances fixing the degree’s value of the spline
interpolating the spherical harmonics coefficients and the value of lmax (5, 7, 10, 15, 20, 25, 30, 35, 40, 45, 50).
C - Representative example of a surface intersected three times (red dots) by a radius of a sphere which circumscribes it.
D - L2 distance between sets of reconstructed and original surfaces reducing the total number of the initial set of data
(i.e: 21, 14, 11, 9, 7).
E - Sets of reconstructed surfaces reducing the total number of the initial set of data (i.e: 21, 14, 11, 9, 7) at four
different developmental stages (i.e: E10:10, E11:01, E11:12, E12:10). The color map shows the distance between the
reconstructed meshes and the original data.
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Figure S2: Assessing the degree of spherical harmonics expansion, related to Figure 1.
A - L2 distance between sets of reconstructed and original surfaces reducing the total number of the initial set of data
(i.e: 37, 21, 8).
B - Sets of reconstructed surfaces reducing the total number of the initial set of data (i.e: 37, 21, 8) at four different de-
velopmental stages (i.e: E10:10, E11:01, E11:12, E12:10). The color map shows the distance between the reconstructed
meshes and the original data.
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Figure S3: Precision of the reconstruction, related to Figure 5.
The heart reconstruction at representative developmental time points color map representing the signed distance between
the reconstruction and the original surface.
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Figure S4: Spherical harmonics and Fourier expansion, related to STAR Methods.
A Representation of the function sin# and its projection onto the unit circle.
B Schematic representation of a function f(t) in the time domain, its expression given by the sum of basis functions
and its Fourier transform f(!) in the frequency domain (modified from Gendler (2017)).
C Two equivalent representations of the spherical harmonic Y 0

1 of degree l = 1 and order m = 0.



Figure S5: Hierarchical tree of spherical harmonics expansion, related to STAR Methods.
Representations of spherical harmonic functions for l = 0, 1, 2, 3.


	DEVCEL5502_proof_v57i17.pdf
	4D reconstruction of murine developmental trajectories using spherical harmonics
	Introduction
	Design
	Results
	Application on simple surfaces
	Adding the limb flank

	Application to the heart development

	Discussion
	Limitations of the study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental model and subject details
	Animals
	Husbandry conditions of experimental animals
	Housing conditions of experimental animals

	Method details
	Spherical Harmonics
	Brief history
	Analogy with Fourier series

	Implementation
	Whole-mount antibody staining
	Optical projection tomography

	Quantification and statistical analysis
	Additional resources




