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Supplementary modelling 

A Cellular Potts Model (CPM)1 was used to infer the predicted distributions of 

conformations given measurements of cell adhesion from AFM, and to determine the 

roles of cortical stiffness on self-organization of ETX-embryos.  

Model objects 

Cells occupy contiguous sets of points in a square lattice of size (𝑁! × 𝑁"). Each cell 

is prescribed a unique id, recorded in matrix 𝐈 (𝑁! × 𝑁"). Further, each cell is 

prescribed a cell type (e.g. ES, TS, XEN), entailing unique, pre-defined cellular 

properties. Cell type is immutable, establishing a mapping between the cell index 𝑖 

and its cell type 𝑐# = 2. Lattice points that are unoccupied by a cell define the medium, 

given an id 𝑖 = 0 and 𝑐$ = 0. 

Energy functional 
 
The simulation evolves via a stochastic minimization of an energy function that 

accounts for both differential affinity and other physical properties of cells. The energy 

functional was defined as below: 

 

𝜆%,# describes the bulk modulus of area deformations of a cell 𝑖 from its optimum 𝐴#,$. 

𝜆',# defines its circumferential elastic modulus of the perimeter, scaling a contractility 

term (𝑃#() and the tension of interfaces between cells and the media (𝜅𝑏# where 𝑏# is 

the number of Moore neighbors of cell 𝑖 that are medium). The final term accounts for 

adhesion/tension with neighboring cells: 𝜔# is the set of lattice points 𝑥, 𝑦 that the cell 

occupies; 𝛺 is the Moore neighborhood; meaning 𝐼!)*!,")*" is the cell id of a lattice 

point that neighbors a point within the cell; 𝐽#,+!"#!,%"#% defines the strength of the 

interaction between cell 𝑖 and the neighboring cell; and 𝜆, is a scale-factor across all 

adhesion terms. 𝐉 is a symmetric matrix (𝑛- + 1 × 𝑛- + 1) of pairwise interaction 

strengths. Interactions must be between different cells, meaning 𝐽## = 0	∀𝑖. 

3.1.2 Energy functional

CPM simulations evolve by the minimization of an energy functional. This prescribes the
optimal cellular geometry and neighbourhood, reflecting cell-intrinsic properties. By performing
the simulation, we can thus ask how di↵erent local cell-intrinsic properties can achieve global
self-organization.

The energy functional contains three terms:
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�A,i describes the bulk modulus of area deformations of a cell i from its optimum Ai,0. �P,i

defines its circumferential elastic modulus of perimeter deformations from its optimum Pi,0. The
final term accounts for adhesion/tension with neighboring cells (or the medium): !i is the set
of lattice points x, y that the cell occupies; ⌦ is the Moore neighborhood; meaning Ix+dx,y+dy

is the cell id of a lattice point that neighbors a point within the cell; and Ji,Ix+dx,y+dy defines
the strength of the interaction between cell i and the neighboring cell. J is a symmetric matrix
(nc +1⇥ nc +1) of pairwise interaction strengths. Interactions must be between di↵erent cells,
meaning Jii = 0 8i. Jij < 0 if the interaction between cells i and j is adhesive, whereas Jij > 0
if the interaction is repulsive (i.e. the interface is under tension).

The matrix I defines the area and perimeters of each cell. The area Ai of cell i is defined
as the number of lattice point that cell i occupies, i.e.:

Ai =
NxX
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Likewise, the perimeter Pi of cell i is the number of lattice points that are: (i) members
of the Moore neighborhood of the lattice points of cell i (i.e. !i); but (ii) are not themselves
members of the cell i.

The values of J are prescribed from the matrix W generically describing the di↵erential
adhesion/tension between cells of each type (and with the medium). For ETX simulations with
three cell types (medium: ci = 0; E: ci = 1; T: ci = 2; X: ci = 3), the matrix W follows the
form:
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The matrix 𝐈 defines the area and perimeters of each cell. The area 𝐴# of cell 𝑖 is 

defined as the number of lattice point that cell 𝑖 occupies, i.e.: 

 

Likewise, the perimeter 𝑃# of cell 𝑖 is the number of lattice points that are: (i) members 

of the Moore neighborhood of the lattice points of cell 𝑖 (i.e. 𝜔#); but (ii) are not 

themselves members of the cell 𝑖. 

Bootstrapping procedure 

We parameterized adhesion strengths using cohesion forces between pairs of cell-

types that were directly measured by AFM. For each simulation, we sampled this 

distribution to build the 𝐉 matrix. Specifically, for a given element 𝐽#. we sample (with 

replacement) the set of AFM cohesion forces measured between cell-types 𝑐# and 𝑐. 

(e.g. ES-ES, ES-TS,…), while enforcing symmetry in the 𝐉 matrix. We set entries 

between cells and the medium (𝐽$.,	𝐽#$) to 0. Bootstrap sampling is performed around 

500 times to establish an ensemble of 𝐉 matrix samples. Each 𝐉 matrix sample is used 

to perform a CPM simulation, generating an ensemble distribution of conformations 

over time.  

Simulation algorithm 

The CPM evolves via a stochastic minimization. In each Markov Chain Step (MCS), a 

random lattice site is selected. One of the four sites in the Von Neumann neighborhood 

is then selected and the state of the chosen site is putatively reassigned to that of its 

neighbor. The energy functional is then evaluated before and after the swap, defining 

𝛥𝐸. The swap is then accepted only if: 

 

As with the lattice model, 𝑇 defines the effective temperature of the system, modulating 

the propensity to perform energetically unfavorable swaps. In traditional CPM 

simulations, cell Moore contiguity breaks down at high 𝑇 given swapping rules are 
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Here, absolute di↵erences in adhesion are phrased with respect to the interactions with the
medium (WMM = WME = WMT = WMX = 0) and the relative di↵erences are phrased with
respect to the interaction between ES cells (WEE). �T sets the scale of adhesion with respect
to area and perimeter deformations (i.e. with respect to �A and �P ). Further, cells display
generic adhesion to each other (with respect to the medium) provided all values of ↵ < 1. This
phrasing allows us to readily apply the rules of di↵erential adhesion inferred from our lattice
model. Specifically, we predict to observe the ETX conformation if:

ET forms two compartments

(
↵ET > 0

↵ET > ↵TT
(12)

X envelopes E
n
↵XX > ↵EX > 0 (13)

X envelopes T
n
↵XX > ↵TX > 0 (14)

X envelopes ET

(
↵ET > ↵EX

↵ET > ↵TX
(15)

Values of J are then prescribed by:

Ji,j = Wci,cj (16)

3.1.3 Simulation algorithm

Like with the lattice model, the CPM evolves via a stochastic minimization. In each sim-
ulation step, a random lattice site is selected. One of the four sites in the Von Neumann
neighborhood is then selected and the state of the chosen site is putatively reassigned to that of
its neighbor. The energy functional is then evaluated before and after the swap, defining �E.
The swap is then accepted only if:

�E = min(1, exp(
��E

T
)) (17)

As with the lattice model, T defines the e↵ective temperature or activity of the system,
modulating the propensity to perform energetically unfavorable swaps. The magnitude of T
defines the extent to which the system is pushed out of local equilibrium and can be thought
of as mapping to the extent of cell motility.

Each Markov Chain Step (MCS) performs the above algorithm NxNy times. In practice,
most of the possible swaps are degenerate, swapping identical site states. So instead for each
step, we consider only sites that are found at boundaries between two cell states. Here, each
MCS is rephrased as performing this revised algorithm for the number of boundary sites.

In traditional CPM simulations, cell (Moore) contiguity breaks down at high T as swapping
rules are purely local. Consequently, we follow [28] and universally reject potential state changes
that compromise local (Moore) contiguity, thus ensuring global (Moore) contiguity a priori (see
Appendix IV).

10

(eq. 2) 

(eq. 3) 



local. Consequently, we universally reject potential state changes that compromise 

contiguity 2. 

Automated scoring of conformations 

To determine the conformation of a simulated structure at a given time-point, we 

established an automated scoring procedure. Firstly, we remove cells that have 

detached from the main aggregate by calculating the adjacency matrix between cells 

(Moore neighborhood) and removing all clusters besides the one with the largest 

number of connected components. Secondly, we score each cell-type for 

envelopment. A cell-type is defined to be enveloping if its center of mass lies within a 

different cell-type, rather than that of its own. Thirdly, we score cell-type contiguity by 

calculating the subgraph of the connectivity matrix that contains only cells of a given 

type, then determining whether the number of connected components is 1 (i.e. 

contiguous). With three cell-types, there are 16 possible completely sorted 

conformations. These conformations can be divided into 4 categories.  

In category (1) conformations, two cell types sequentially envelope a third. The order 

of envelopment is determined via adjacency among cell-types. For example, when E 

envelopes X which envelopes T: at least one X must contact T; at least one E must 

contact the medium; at least one E must contact X; and no E should contact T. Further, 

the inner most cell-type must be contiguous.  

In category (2), one cell type envelopes another, with a third attached peripherally; 

whereas in category (3) one cell type envelopes the other two (as in ETX embryos). 

Both categories must contain two contiguous cell-types and a third enveloping cell-

type. If all cells of the enveloping cell-type contact the medium, the conformation is 

scored to category (3). If any of the cells that do not contact the medium are instead 

surrounded by a single cell-type, the conformation is scored as ‘unsorted’. 

Alternatively, if any of these cells contact exactly two other cell-types, then the 

conformation falls in category (2). Which variant within category (2) is determined by 

counting the number of contacts (e.g. X envelopes E rather than T if X and E share 

more contacts than X and T). Otherwise, the conformation is assigned category (3).  



Category (4) is assigned when all three cell-types are non-enveloping and are 

contiguous. If a given structure does not fall within any of these categories, it is classed 

as ‘unsorted’.  

Additionally, we define cell externalization: if all cells of that type either contact the 

medium directly, or are connected to cells that are connected to the medium. Strictly, 

we define the subgraph of the adjacency matrix containing the rows and columns of a 

given cell-type plus the medium; if this subgraph has a single connected component, 

then the cell-type is externalized.  

Lower stiffness in XEN cells improves the speed and fidelity of their 
externalization 

We used the CPM to determine whether reduced stiffness in XEN cells can explain 

the robustness of their externalization in silico. We systematically altered the stiffness 

of XEN cells by varying the circumferential elastic modulus of XEN cells 𝜆'/01 between 

0.04 and 0.20 (9 values simulated). This parameter ascribes the extent of the 

circumferential energy penalty, meaning a cell with a higher values of 𝜆'/01 resists 

deformations to its perimeter more i.e. is stiffer.  
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