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Supplementary Tables 
 

Supplementary Table 1: Projected computation time and memory usage for GATE, COXMEG-Score, and 
COXMEG-Sparse across different sample sizes. Benchmarking was performed for the genome-wide 
association study (GWAS) of lifespan based on randomly subsampled data from UK Biobank White British 
ancestry subjects. Association tests were performed on 200,000 randomly selected markers with 
imputation INFO ≥ 0.3, with the filtering criteria of minor allele count (MAC) ≥ 20. The computation times 
were projected for testing 46 million variants with INFO ≥ 0.3 and MAC ≥ 20. The reported run times are 
medians (means in parenthesis) of five runs, each with randomly sampled subjects with different 
randomization seeds. 

Sample 
Size (N) 

GATE COXMEG-Score COXMEG-Sparse 

Time (CPU-hr) Max. Memory (GB) Time (CPU-hr) Max. Memory (GB) Time (CPU-hr) Max. Memory (GB) 

5000 27 (29) 0.36 192 (187) 1.80 356 (358) 0.47 

10000 31 (31) 0.54 737 (746) 7.99 747 (748) 1.55 

20000 34 (36) 0.74 3356 (3323) 32.75 1412 (1414) 5.95 

50000 59 (57) 1.44     

100000 86 (85) 2.91     

200000 147 (151) 5.55     

408582 318 (330) 10.60     

 

  



 

Supplementary Table 2: Top genome-wide significant variants (α = 5×10-8) in different loci based on GATE 
for lifespan based on the FinnGen Study and the UK Biobank data. For any variant with p < 5×10-8, we 
extend upstream and downstream by 1Mb, then merge the overlapping regions together to define the 
locus and report the variant that has the smallest p-value in each locus. Genomic coordinates are based 
on NCBI Build 37/UCSC hg19. 

Phenotype Chromosome:

Position 

rsID Nearest 

Gene 

Function REF ALT UK Biobank Finngen Study Meta-analysis 

UK Biobank + FinnGen 

Imputat

ion 

INFO 

Allele 

frequncy 

Hazard Ratio (95% CI) p-value Imput

ation 

INFO 

Allele 

frequency 

Hazard Ratio (95% CI) p-value Hazard Ratio (95% CI) p-value 

Lifespan 

UK Biobank 
No. of 
subjects=406596, 
No. of events=16875, 
No. of 
censored=389721, 
censoring rate = 95.8% 

FinnGen study 
No. of 
subjects=218396, 
No. of events=15152, 
No. of 
censored=203244, 
censoring rate = 93.1% 

19: 45424514 rs157592*¶ APOC1; 

APOC1P

1 

intergenic A C 0.95 0.187 1.08 (1.05, 1.12) 1.87E-08    Not 

found in 

FinnGen 

NA NA 

19:45411941 rs429358* APOE missense T C 1 0.156 1.07 (1.04, 1.10) 1.92E-05 1 0.183 1.13 (1.10, 1.17) 1.01E-14 1.1(1.07-1.12) 4.04E-17 

* rs157592 and rs429358 are in LD with r2 = 0.7 in UK Biobank, rs429358 has p-value 1.83×10-6 based on SAIGE in UK Biobank. ¶rs157592 has p-

value 3.16×10-9 based on SAIGE in UK Biobank. 

  



 

Supplementary Table 3: Empirical type I error rates of GATE and GATE with no saddlepoint association 
(SPA) based on 9.4x108 association tests in 100 simulated data sets with censoring rates 50%, 75% and 
90%, respectively. Each data set contains 5,000 independent individuals and 500 families. Each family 
was simulated following the pedigree structure shown in Supplementary Figure 6.  The variance 
component parameter τ = 0.1 and 0.25. 

   Censoring Rate 

Variance 
component 
parameter τ 

 

 Alpha 50% 75% 90% 

0.1 

SPA 1.00E-06 1.21E-06 1.11E-06 1.03E-06 

  5.00E-08 7.41E-08 5.81E-08 5.22E-08 

no SPA 1.00E-06 1.27E-05 2.07E-05 5.12E-05 

  5.00E-08 4.79E-06 8.90E-06 2.81E-05 

0.25 

SPA 1.00E-06 1.21E-06 1.08E-06 9.72E-07 

  5.00E-08 6.12E-08 5.10E-08 5.53E-08 

no SPA 1.00E-06 1.20E-05 1.91E-05 4.67E-05 

  5.00E-08 4.38E-06 8.18E-06 2.50E-05 

   



Supplementary Table 4: Empirical type I error rates of GATE and GATE with no saddlepoint association 
(SPA) based on 8.3x108 association tests in 100 simulated data sets with censoring rates 50%, 75% and 
90%, respectively. Each data set contains 10,000 randomly selected individuals with white British 
ancestry from the UK Biobank. The variance component parameter τ = 0.25. 

 

  Censoring rate 

 Alpha 50% 75% 90% 

SPA 1.00E-06 1.20E-06 1.09E-06 8.94E-07 

 5.00E-08 7.09E-08 5.65E-08 3.85E-08 

no SPA 1.00E-06 1.12E-05 1.90E-05 6.55E-05 

 5.00E-08 4.35E-06 8.38E-06 3.99E-05 

 

 

 



Supplementary Figures 
 

Supplementary Figure 1: Comparing association p-values from GATE versus COXMEG based on 5 million 
genetic variants in simulation data sets. A. Scatter plots of association p-values from GATE versus 
COXMEG. B. Quantile-quantile plots stratified by minor allele frequency (MAF) for GATE and COXMEG. 
For each censoring rate, 100 data sets were simulated, each has 10,000 samples (5,000 independent 
samples and 500 families, each with 10 family members as shown in Supplementary Figure 6). For each 
data set, 50,000 simulated genetic markers were tested. C. Scatter plots of association p-values from 
GATE-noSPA versus COXMEG. 
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Supplementary Figure 2: Histogram of censoring rates of 871 PheCodes in the UK Biobank subjects with 
White British ancestry. The PheCodes are constructed based on the ICD9 and ICD10 codes and the 
associated diagnostic dates. Detailed description of the PheCode construction is available in the ONLINE 
METHODS section.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



Supplementary Figure 3: Disease-free probability over-age by genotypes for loci LPA and CELSR2 for 
ischemic heart disease, FGFR2 and CASC16 for female breast cancer, MYOC and TMCO1 for glaucoma, 
and APOE e4 variant for AD. The red, green and blue lines represent the disease-free probability for 
alternate allele counts zero, one and two, respectively. 

 

 



Supplementary Figure 4: Genome-wide association study of lifespan in the FinnGen Study (N 
events=15,152, N censored=203,244): A. Overall survival curve for lifespan B. GATE QQ plot (left) and 
Manhattan plot (right), C. SAIGE QQ plot (left) and Manhattan plot (right). 95% error bands around the 
nominal x=y diagonal line are also shown for each MAF category in panels B and C. 

 



 

 

Supplementary Figure 5: Genome-wide association study of lifespan in the UK Biobank (N events=16,875, 
N censored=389,721), and meta-analysis results between the UK Biobank (N events=16,875, N 
censored=389,721) and the FinnGen Study (N events=15,152, N censored=203,244):  A. GATE QQ plot (left) 
and Manhattan plot (right) in the UK Biobank, B. Meta-analysis Manhattan plot. 95% error bands around 
the nominal x=y diagonal line are also shown for each MAF category in panel A. 

 

 

 

 

 

 



 

Supplementary Figure 6: Pedigree of families, each with 10 members, in the simulation study. 

 

 

Supplementary Figure 7: Empirical type I error rates and 95% confidence intervals around the empirical 

type I error rates (horizontal bars) for GATE and GATE with no SPA estimated in simulation studies were 

plotted for censoring rates 50%. 75%, and 90%.  A. based 9.4x108 association tests. For each censoring 

rate, 100 data sets were simulated. Each data set contains 5,000 independent individuals and 500 families. 

Each family was simulated following the pedigree structure shown in Supplementary Figure 6.  The 

variance component parameter τ = 0.1 and 0.25. Numbers were presented in Supplementary Table 3.  B.  

based on 8.3x108  association tests. or each censoring rate, 100 data sets were simulated.  Each data set 

contains 10,000 randomly selected individuals with white British ancestry. The variance component 

parameter τ = 0.25. Numbers were presented in Supplementary Table 4.   



 

Supplementary Figure 8: Quantile-quantile plots stratified by minor allele frequencies (MAF) for 
randomly selected 10 million association tests from the simulation study for evaluating type I error rates 



using 10,000 randomly selected individuals with white British ancestry (Supplementary Table 4). 95% 
error bands around the nominal x=y diagonal line are also shown for each MAF category. 
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Supplementary Figure 9: Empirical power of GATE and COXMEG at the significance level α = 5×10-8, when 
the variance component parameter τ = 0.25 and the censoring rate is 50%. 

 

  

  



Supplementary Figure 10: Empirical power of GATE and SAIGE at the significance level α = 5×10-8 for TTE 
phenotypes with censoring rates 50% (A), 75% (B), and 95% (C). 

A. Time-to-event outcome with censoring rate 50% 

 

B. Time-to-event outcome with censoring rate 75% 

 

C. Time-to-event phenotype with censoring rate 95% 

 

 

 

 

 



Supplementary Figure 11: Comparison of association p-values between using GATE and SAIGE for analysing the four 
time-to-event phenotypes based on the UK Biobank data. The x-axis represents the -log10 transformed p-values 
using SAIGE, and the y-axis represents the -log10 transformed p-values using GATE. Four phenotypes (ischemic 
heart disease, female breast cancer, glaucoma, and Alzheimer’s disease) were analysed for association across 46 
million imputed genetic variants with INFO ≥ 0.3 and MAC ≥20. 

 



Supplementary Figure 12: Comparison of GATE association p-values between using different time-units for 
defining the event times of the four time-to-event phenotypes based on the UK Biobank data. Results were 
compared among the event and censoring times specified in nearest 1 month, 3 months, 6 months and 12 
months time-units. Four phenotypes (ischemic heart disease, female breast cancer, glaucoma, and 
Alzheimer’s disease) were analysed for association across 46 million imputed genetic variants with INFO ≥ 
0.3 and MAC ≥ 20. 

 

Supplementary Figure 13: Comparison of association p-values between using different number of markers 
for constructing the GRM in step 1 of GATE for analysing the four time-to-event phenotypes based on the 



UK Biobank data. Results were compared between 93511 high-quality genotyped markers used by the UK 
Biobank research group for estimating kinship, and 245745 pruned markers with MAF>1%. Four 
phenotypes (ischemic heart disease, female breast cancer, glaucoma, and Alzheimer’s disease) were 
analysed for association across 46 million imputed genetic variants with INFO ≥ 0.3 and MAC ≥20. 

 

 

Supplementary Figure 14: Manhattan plots for GWAS of four binary phenotypes based the UK Biobank 
subjects with White British ancestry using GATE with A) 93,511 markers used in the GRM, and B) 245,745 
markers used in the GRM. Four phenotypes (ischemic heart disease, female breast cancer, glaucoma, and 
Alzheimer’s disease) were analysed for association across 46 million imputed genetic variants with INFO 
≥ 0.3 and MAC ≥ 20. 

 

 

 

Supplementary Figure 15: Estimated variance ratios using different number of randomly selected 
markers for four phenotypes based on the UK Biobank subjects with White British ancestry using GATE. 



For each choice of number of markers, we randomly selected the markers 50 times. The dotted lines 
represent the variance ratios with 500 randomly selected markers. 

 

 

 



Efficient and accurate frailty model approach for
genome-wide survival association analysis in large-scale

biobanks - Supplementary Note

1 Derivation of the GATE Method

1.1 Derivation of the likelihood

Consider a set of N subjects where Ei and Ci denote the failure and censoring times re-
spectively, for subject i = 1, . . . , N . Let Ti = min(Ei, Ci), and ∆i = I(Ei ≤ Ci), where I(.)
denotes the indicator function. For each subject, we have the observed event status-time
pair (Ti = ti,∆i = δi). We call ti a failure time for subject i if δi = 1, and a censor-
ing time if δi = 0. Without loss of generality, we assume tis are in increasing order, i.e,
t1 ≤ t2 ≤ . . . ≤ tN .

Let Xi denote the q × 1 vector of covariates (excluding the intercept) to adjust for, and
Gi denote the genotype (0, 1, or 2) of the variant we are testing. Throughout this paper,
quantities without a subscript is used to denote the vectors of corresponding quantities with
subscripts (eg. G = (G1, . . . , GN)), when it is clear from the context. Denote X to be
the n × q covariate matrix with i-th row as X>i . Then, in a frailty model, we denote the
conditional hazard function for subject i at time t given the random effects bis,

λi(t|b) = λ0(t) exp (ηi) ; ηi = X>i β +Giγ + bi,

and the survival function Si(t|b) = exp (−Λ0(t) exp(ηi)), where Λ0(t) =
∫ t
0
λ0(u)du is the

cumulative baseline hazard (CBH) function. Under multivariate Gaussian frailty, the ran-
dom effects b ∼ N (0, τV), where τ is the variance component, and V is the N ×N genetic
relationship matrix (GRM). We further assume that conditional on b, the censoring is inde-
pendent and non-informative of b. Then the likelihood of the observed data is,

L (λ0, β, γ, τ) =

∫ N∏
i=1

[
λi(ti|b)δiSi(ti|b)

] 1

|τV |1/2
exp

(
−1

2
b>(τV )−1b

)
db

=
1

|τV |1/2
N∏
i=1

λ0(ti)
δi

∫
exp

[
N∑
i=1

(δiηi − Λ0(ti) exp(ηi))−
1

2
b>(τV )−1b

]
db.

Let f(b) =
∑N

i=1 (δiηi − Λ0(ti) exp(ηi))− 1
2
b>(τV )−1b. Then we can approximate the inte-

gral using the Laplace approximation,∫
exp f(b)db ≈ (2π)N/2

∣∣∣−f ′′(b̃)
∣∣∣−1/2 exp(f(b̃)),

1



where b̃ = argb max f(b) is the solution to f ′(b) = 0. Therefore, the log-likelihood can be
approximated by,

`((λ0, β, γ, τ) ≈− 1

2
log |τV|+

N∑
i=1

δi log λ0(ti)−
1

2
log
∣∣∣−f ′′(b̃)

∣∣∣+ f(b̃)

=− 1

2
log |τV| − 1

2
log

∣∣∣∣∣
N∑
i=1

Λ0(ti) exp(η̃i) + (τV)−1

∣∣∣∣∣
+

N∑
i=1

[δi (log λ0(ti) + η̃i)− Λ0(ti) exp(η̃i)]−
1

2
b̃
>

(τV)−1b̃

=− 1

2
log |τV| − 1

2
log
∣∣∣W̃ + (τV)−1

∣∣∣
+

N∑
i=1

[δi (log λ0(ti) + η̃i)− µ̃i]−
1

2
b̃
>

(τV)−1b̃,

(1)

where η̃i = X>i β + Giγ + b̃i, µ̃i = Λ0(ti) exp(η̃i), and W̃ = diag(µ̃i). The log-likelihood (1)
with respect to β and τ is similar to the Poisson GLMM log-likelihood.1,2 Following Breslow
and Clayton,2 assuming the weight matrix W changes slowly as a function of the mean, we
can maximize the following penalized log-likelihood3 given τ ,

`p (λ0, β, γ, b) =
N∑
i=1

[δi (log λ0(ti) + ηi)− µi]−
1

2
b>(τV)−1b, (2)

to obtain the maximum likelihood estimators (MLEs) (λ̂0, β̂, γ̂, b̂) = (λ̂τ0, β̂
τ , γ̂τ , b̂

τ
), where

b̂
τ

= b̃(β̂τ ), and µi = Λ0(ti) exp(ηi).

1.2 Estimation of the baseline hazard, fixed effects and random
effects given the variance component

Lets denote the unique failure times to be t∗1 < t∗2 < . . . < t∗K in increasing order. Following
Breslow’s suggestion,4 we assume the baseline hazard function to remain constant between
successive event times, and according to Kalbfleisch and Prentice’s5 convention, we consider
the censored observations to be censored at the previous failure time. In section 6 we show
that the maximum likelihood estimation under these assumptions is equivalent to maximizing
a partial likelihood.6 Formally, lets denote λ0(t) = αi, for t∗i ≤ t < t∗i+1. Then the cumulative
hazard function can be written as a step function,

Λ0(t) =
i∑

j=1

αj
(
t∗j − t∗j−1

)
, t∗i ≤ t < t∗i+1,

with the convention t∗0 = t0 = 0. Then, using algebraic manipulations with the order of the
summations, we can write,

N∑
i=1

µi =
K∑
i=1

αi(t∗i − t∗i−1) ∑
j∈R(t∗i )

exp(ηj)

,
2



where R(ti) = {j : tj ≥ ti} denotes the set of subjects at risk at time ti. This definition of
the at-risk set corresponds to Breslow’s approximation when there are tied failure times.7

We can express `p as a function of (α, β, γ, b), and obtain the score functions by taking
derivatives of `p with respect to β, γ, b, and αi-s,

∂`p
∂β

=
N∑
i=1

(δi − µi)Xi

∂`p
∂γ

=
N∑
i=1

(δi − µi)Gi

∂`p
∂b

=
N∑
i=1

(δi − µi)Zi − (τV)−1b

∂`p
∂αi

=
di
αi
− (t∗i − t∗i−1)

∑
j∈R(t∗i )

exp(ηj),

(3)

where Zi is an N × 1 vector with i-th element 1 and rest 0s, and di =
∑

j:tj=t∗i
δj is the

number of failures at time t∗i . Setting ∂`p/∂αi = 0, we obtain the MLEs,

α̂i = di

(t∗i − t∗i−1)
∑

j∈R(t∗i )

exp(ηj)

−1 .
This leads to the famous Breslow’s estimator for the CBH,

Λ̂0(t) =
N∑
i=1

δiI(ti ≤ t)∑
j∈R(ti)

exp(ηj)
.

For the score test of H0 : γ = 0 vs H1 : γ 6= 0, we only estimate the MLEs (α̂, β̂, b̂) under
H0, setting γ = 0. Using similar techniques to estimate fixed effects parameters in Poisson
GLMM, we denote the working outcome vector Y = η +W−1(δ − µ), where W = diag(µi),
η = (η1, . . . , ηN), δ = (δ1, . . . , δN), and µ = (µ1, . . . , µN). Then, δ − µ = W (Y − η) =
W (Y −Xβ − Zb), and the score equations can be written as,[

X>WX X>W
WX W + (τV)−1

] [
β
b

]
=

[
X>WY

WY

]
Let Σ = W−1 + τV, then

β̂ =
(
X>Σ−1X

)−1
X>Σ−1Y

b̂ = τVΣ−1
(
Y −Xβ̂

)
.

1.2.1 Estimation of the variance component

Given α̂ = α̂(τ), β̂ = β̂(τ) estimated, from (1) the log-likelihood of the variance component
can be derived as,

`(α̂(τ), β̂(τ), γ = 0, τ) = −1

2
log|Σ| − 1

2
Y>PY,

3



where P = Σ−1 −Σ>X
(
X>Σ−1X

)−1
X>Σ−1. We maximize the corresponding restricted

maximum-likelihood (REML),

`R(α̂(τ), β̂(τ), γ = 0, τ) = −1

2
log|Σ| − 1

2
log|X>Σ−1X| − 1

2
Y>PY.

The score function with respect to τ are given by,

Uτ =
∂`R(α̂(τ), β̂(τ), γ = 0, τ)

∂τ
=

1

2

[
Y>PVPY − tr(PV)

]
.

The corresponding observed information function, and the expected information function
are given by

Jτ = −∂
2`R(α̂(τ), β̂(τ), γ = 0, τ)

∂τ 2
= −1

2
tr(PVPV) + Y>PVPVPY,

E (Jτ ) = E

[
−∂

2`R(α̂(τ), β̂(τ), γ = 0, τ)

∂τ 2

]
=

1

2
tr(PVPV),

respectively. Evaluating both observed and expected information functions involves com-
putationally expensive trace computations. To avoid the trace computations, the average
information is used in the AI-REML1,8, 9 algorithm. The average information is expressed as
the average of Jτ and E(Jτ ),

AIτ =
1

2
Y>PVPVPY.

1.2.2 Algorithm to fit the null mixed model

The null model fitting algorithm can be summarized as,

1. Fit a Poisson linear model wth τ = 0 to get initial estimates β̂(0) and working outcome
vector Y (0).

2. Calculate Breslow’s estimator Λ̂
(0)
0 (t).

3. At the i-th step, update τ̂ using τ̂ (i) = τ̂ (i−1) +
{

AIτ

∣∣∣
τ=τ̂ (i−1)

}−1 {
Uτ

∣∣∣
τ=τ̂ (i−1)

}
.

4. Update β̂, b̂, α̂ using Y and τ̂ (i).

5. Update Y and Λ̂0(t) using β̂(i), b̂(i), α̂(i), τ̂ (i).

6. Repeat steps 2–5, until max

{
|β̂(i)−β̂(i−1)|
|β̂(i)|+|β̂(i−1)| ,

|τ̂ (i)−τ̂ (i−1)|
|τ̂ (i)|+|τ̂ (i−1)|

}
≤ tolerance.

4



1.3 Score test

The score test statistic under the null hypothesis is given by,

T =
∂l

∂γ

∣∣∣
(β̂,b̂,γ=0,α̂,τ̂)

= G>(δ − µ̂) = G̃>(δ − µ̂),

where G̃ = G− X̃
(
X̃>ŴX̃

)−1
X̃>ŴG is the covariate-and-intercept adjusted genotype

vector, and X̃ =
[
1 X

]
is the intercept-augmented covariate matrix. The information ma-

trix corresponding to the score equations in (3) is given by,

I(β, γ, b, α) =


X>WX X>WG X>W B(X)>
G>WX G>WG G>W B(G)>

WX Z>WG W + (τV)−1 B(Z)>
B(X) B(G) B(Z) B(λ)

 ,
where,

B(λ) = diag

(
−∂

2`p
∂αi

)
= diag

(
di/α

2
i

)
B

(X)>
•i = − ∂2`p

∂αi∂β>
= (t∗i − t∗i−1)

∑
j∈R(t∗i )

exp(ηj)Xj

B
(G)>
•i = − ∂2`p

∂αi∂γ>
= (t∗i − t∗i−1)

∑
j∈R(t∗i )

exp(ηj)Gj

B
(Z)>
•i = − ∂2`p

∂αi∂b>
= (t∗i − t∗i−1)

∑
j∈R(t∗i )

exp(ηj)Zj.

Aij and A•i denote the (i, j)-th element and i-th column of a matrix A, respectively. Then,
the variance of the score statistic under H0 is given by,

V arH0(T ) =
(
I(β̂, b̂, γ = 0, α̂)−1

)
22

= G>Q̂G = G̃>Q̂G̃,

where Q̂ = Ŝ−1 − Ŝ−1X
(
X>S−1X

)−1
X>Ŝ−1, Ŝ = (Ŵ − Û)−1 + τ̂V. The matrix Û is de-

fined as,

Û =
K∑
i=1

di
(v>i 1)2

viv
>
i = ΓR>DRΓ,

D = diag

 di(∑
j∈R(t∗i )

exp(η̂j)
)2

K

i=1

, Γ = diag {exp(η̂i)}Ni=1 ,

Rij =

{
0, if j /∈ R(t∗i )

1, if j ∈ R(t∗i )
, for i = 1, . . . , K, j = 1, . . . , N,

where vi is an n-dimensional vector with elements vij = 0 if j /∈ R(t∗i ), and vij = exp(η̂j) if
j ∈ R(t∗i ).
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2 Approaches to reduce computation and memory cost

To obtain V arH0(T ) = G̃>Q̂G̃, we need to compute quantities of the form Ŝ−1a, where a is
a vector. The standard computation technique of inverting Ŝ (computation cost O(N3)) and
multiplying Ŝ−1 with a can be extremely time consuming when N is large. On top of that, it
will require the storage of Ŝ−1 (memory cost O(N2)) which can have extremely high memory
requirement. In order to reduce the computation and memory cost, we implemented several
strategies similar to BOLT-LMM10 and SAIGE.9 Firstly, instead of storing the N ×N GRM
which can cost 4N(N + 1) bytes if stored using double precision floating point numbers, we
only store the raw genotypes as binary vectors which only costs NM/4 bytes, where M is
the number of markers used to calculate the GRM. We calculate the elements of the GRM
from the raw genotype vectors only when they are needed. Secondly, to compute quantities
of the form Ŝ−1a, we implemented the pre-conditioned conjugate gradient11 (PCG) method,
which computes Ŝ−1a = b by solving the linear system of equations Ŝb = a. Thirdly, since
U = ΓR>DRΓ has a low rank decomposition with rank(U) = K, the number of unique
failure times, to calculate (W −U)−1G in the PCG steps, we leverage the Woodbury identity
decomposition

(W −U)−1G = W−1G−W−1ΓRT(−D−1 + RΓW−1ΓRT)−1RΓW−1G.

The matrix (−D−1 + RΓW−1ΓRT) is a K×K matrix which can be inverted easily when K
is small, or whenK is also larger, PCG can be used to obtain (−D−1 + RΓW−1ΓRT)−1RΓW−1G.

Similar to SAIGE, we further implemented the Hutchinson’s randomized trace estima-
tion12,13 for calculating tr(PV). We also implemented multithreaded parallel computation
for the matrix-vector multiplications in the PCG steps using Intel Threading Building Block
(TBB) from the RcppParallel14 package.

3 Variance ratio approximation

Computation of the variance of the score statistic V arH0(T ) = G̃>Q̂G̃ requires calculating
Q̂G̃ repeatedly for all markers, which is computationally expensive. To avoid calculating
Q̂G̃ for all the markers, we estimate the variance ratio r̂ = G̃>Q̂G̃/G̃>ŴG̃ using a small
set of markers, and then approximate the variance of the score statistic for all markers by
r̂G̃>ŴG̃ in step 2. This saves substantial computation time since Ŵ is a diagonal matrix.
Such variance ratio approximation approaches were previously used in various linear10,15,16

and logistic mixed effects models9 to speed up computation. Here, we provide a theoretical
justification for why such an approximation works.

Let PX̃ = X̃(X̃>ŴX̃)−1X̃>Ŵ be the weighted projection matrix for the intercept-augmented

covariate matrix X̃. Let E(Gi) = µg and the covariance matrix of G is given by σ2
gΨ, where

Ψ is the correlation matrix of G. When the elements of G follows the Bin(2, pg) distribution,
then µg = 2pg, and σ2

g =
√

2pg(1− pg). The matrix Ψ represents the kinship matrix, however

exact characterization of Ψ is not needed for this proof. Then, E(G̃) = µg(I−PX̃)1 = 0,
and Cov(G) = σ2

g(I−PX̃)Ψ(I−PX̃)>, where 1 is the N ×N vector of all element equal to
unity. We scale both the numerator and denominator of the variance ratio by N−1 so that
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they don’t blow to infinity when looked at individually. Then, for the numerator,

E(N−1G̃>Q̂G̃) =
σ2
g

N
tr
[
Q̂(I − PX̃)Ψ(I − PX̃)>

]
=
σ2
g

N
tr(Q̂Ψ),

since (I − PX̃)>Q̂(I − PX̃) = Q̂. Similarly, for the denominator,

E(N−1G̃>ŴG̃) =
σ2
g

N
tr
[
Ŵ(I−PX̃)Ψ(I−PX̃)>

]
=
σ2
g

N
tr
[
Ŵ(I−PX̃)Ψ

]
,

since (I−PX̃)>Ŵ(I−PX̃) = Ŵ(I−PX̃). Therefore, as the eigenvalues of Q̂,Ŵ,Ψ are
bounded, and the distribution of G has bounded support, the variances of the numerator
and the denominator terms are both O(N−1), and the variance ratio converges to,

r̂ =
G̃>Q̂G̃

G̃>ŴG̃

p−→
limN→∞

{
N−1tr(Q̂Ψ)

}
limN→∞

{
N−1tr

[
Ŵ(I−PX̃)Ψ

]} .
The ratio on the right-hand side is constant across all markers as the individual limits in the
numerator and denominator exist and are bounded away from zero.

Our software first estimates the variance ratio using 30 randomly selected markers, and
then adds more markers with increments of ten until the coefficient of variation (CV) is
smaller than 0.001. We performed a sensitivity analysis on the number of markers used to
calculate the variance ratio using the UK Biobank data on white British subjects. For the
analysis of the four exemplary phenotypes described in this paper, we used different number
of markers (N = 5, 15, 30, 50, 100, 200) to estimate the variance ratios. For each choice
of number of markers, we selected the markers randomly 50 times and the variance ratio
estimates are presented in Supplementary Figure 15. The results show that the variance
ratio estimates remain overall very stable when ≥ 30 markers are used, and the variation
decreases with increasing number of markers.

4 Using saddlepoint approximation17 (SPA) for the null

distribution of the score statistic

In traditional score tests, the distribution of the score statistic under H0 is approximated by
a Normal distribution, which uses the first two moments, mean and variance. This approach
can perform poorly in the tail regions, especially if the underlying distribution is highly
skewed when the studying event is very rare or the testing genetic variant has a very low
minor allele count (MAC). Here, similar to what has been applied in the logistic mixed
models9,18–20 previously, we use the SPA to approximate the null distribution of the score
statistic to obtain accurate p-values. Based on the likelihood (1), we derive the SPA of

Tadj = G̃>(δ − µ̂)/
√
r̂G̃>ŴG̃ as a weighted sum of independent Poisson random variables

given b. The approximated cumulant generating function (CGF) of Tadj and it’s derivatives
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are given by,

K(ξ; µ̂) =
N∑
i=1

µ̂i(e
G̃icξ − G̃icξ − 1),

K ′(ξ; µ̂) =
N∑
i=1

µ̂iG̃ic(e
G̃icξ − 1),

K ′′(ξ; µ̂) =
N∑
i=1

µ̂iG̃
2
i c

2eG̃icξ,

where c = (G̃>WG̃)−1/2. To calculate the probability that Tadj < s, where s is the observed
test statistic, we use the following formula

Pr(T < s) = Φ

{
w +

1

w
log
( v
w

)}
,

where w = sign(ξ̂)[2{ξ̂s −K(ξ̂)}] 12 , v = ξ̂[K ′′(ξ̂)]
1
2 , ξ̂ is the solution of K ′(ξ̂) = s, and Φ is

the standard normal distribution function.

5 Effect size estimation

Since our method only fits the model under the null hypothesis of no association, it cannot
provide the effect size estimates as part of the model fitting process. Instead, to rapidly
estimate the effect sizes, we follow a similar approach used in EMMAX,21 GRAMMAR-
Gamma,15 and SAIGE9 using the parameter estimates from the null model. Our genetic

effect size estimate is given by γ̂ =
(
G̃>Q̂G̃

)−1
G̃>Q̂(δ − µ̂). Notice that this estimate can

also be expressed as γ̂ = T/V arH0(T ) where T is the score test statistic, and derived assuming
the standardized Wald test statistic to be equal to the standardized score test statistic. In
section 3, we showed that V arH0(T ) = G̃>Q̂G̃ ≈ r̂G̃>ŴG̃. Therefore, γ̂ = T/r̂G̃>ŴG̃,
which can be estimated using the already estimated quantities T ,r̂, and G̃>ŴG̃. The
standard errors can be estimated by inverting the p-values. The standard error of γ̂, SE(γ̂) =
|γ̂/z|, where z is the Z-score corresponding to the two-sided association p-value.

6 Equivalence of penalized full and partial likelihood-

based estimates

For unrelated samples, the equivalence between maximizing the partial likelihood, and max-
imizing the full likelihood with Breslow’s estimator plugged in as the estimate of the CBH
function has been shown by Breslow4 in the proportional hazard model. Here, we show that
given the variance component τ , maximizing `p (see (2)) assuming that the baseline hazard
to be constant between any two consecutive failure times, i.e., estimating the CBH function
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using Breslow’s estimator, is equivalent to maximizing the penalized partial log-likelihood
as described in Ripati et al.,6

`pp (β, γ, b) =
N∑
i=1

δi

ηi − log
∑

j∈R(ti)

exp(ηj)

− 1

2
b>(τV)−1b. (4)

Plugging in Λ̂0(t) into the score equations corresponding to β, γ in (3), and using algebraic
manipulations with the ordering of the summations, we get,

∂`p
∂β

=
n∑
i=1

δi

(
Xi −

∑
j∈R(ti)

exp(ηj)Xj∑
j∈R(ti)

exp(ηj)

)
,

∂`p
∂γ

=
n∑
i=1

δi

(
Gi −

∑
j∈R(ti)

exp(ηj)Gj∑
j∈R(ti)

exp(ηj)

)
.

We observe that the expressions of the score functions are the same as the score functions
from the partial likelihood ∂`pp/∂β,∂`pp/∂γ. Equivalence of the information matrices can
also be shown similarly.

7 Sensitivity analysis on the number of markers used

to construct the GRM

We performed a sensitivity analysis on the number of markers used to construct the GRM
in step 1 of GATE. We compared association results between using 93511 high-quality geno-
typed markers that were used by the UK Biobank research group to calculate kinship,22 and
245745 pruned (500kb window, sliding step-size 50 markers, r2 < 0.2) genotyped markers
with MAF ≥ 0.01. We compared the association results between these two marker-sets for
the analysis of four example phenotypes in the UK Biobank data on 46 million imputed
variants. Manhattan plots (Supplementary Figure 14) were similar between the two marker-
sets, and the scatter plots of the p-values (Supplementary Figure 13) show highly correlated
association p-values. P-values using 245745 markers were generally slightly smaller than the
p-values using 93511 markers, especially for ischemic heart disease. Similar observation was
also made for the analysis of the binary disease status for this phenotype.9

8 Benchmarking GATE and COXMEG

To compare the computational performances of GATE, COXMEG-Score, and COXMEG-
Sparse, we applied these methods on randomly sampled subsets of different sample sizes from
408,582 UK Biobank subjects with White British ancestry. Top four principal components,
birth year and sex were adjusted for in the analysis, and 200,000 randomly selected variants
out of 46 million genetic variants (imputation info ≥ 0.3 and MAC ≥ 20) were tested for
association with overall lifespan (16,375 events, 389,721 censored). COXMEG version 1.0.11
and GATE version 0.40.1 were used for this comparison.
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8.1 Commands for running GATE

To set up the time-unit and sample-size:

eventTimeBinSize=1 #for 1 year as time-unit

N=200000 #Number of subjects

i=1 #Replication ID. We used i=1,...,5

The arguments to run GATE step 1 were:

--eventTimeBinSize=$eventTimeBinSize

--phenoFile=pheno/pheno.365.$N.$i.txt

--outputPrefix=output/pheno.365.$N.$i

--nThreads=30

--plinkFile=geno/ukb_auto_v2_WB_inRelatedness

--phenoCol=casecontrol

--covarColList=PC1,PC2,PC3,PC4,birthYear,sex

--eventTimeCol=survtime

--sampleIDColinphenoFile=IID

--traitType=survival

The arguments to run GATE step 2 were:

--GMMATmodelFile=output/pheno.365.$N.$i.rda

--varianceRatioFile=output/pheno.365.$N.$i.varianceRatio.txt

--bgenFile=geno/ukb_imp_chr21_v3_365.$N.$i.bgen

--bgenFileIndex=geno/ukb_imp_chr21_v3_365.$N.$i.bgen.bgi

--sampleFile=geno/bgensamples_365.$N.$i.txt

Here, the bgenFile was created by randomly selecting 200,000 SNPs with imputation info
≥ 0.3 and MAC ≥ 20.

8.2 Commands for creating the dense and sparse GRM from the
genotypes

#Read the phenotype file

pheno<-read.table(paste0("pheno/pheno.365.",N,".",rep,".txt"),header=T)

#Read the genotypes using the BEDMatrix package

mat<-BEDMatrix("geno/ukb_auto_v2_WB_inRelatedness")[paste0(pheno$IID,

"_",pheno$IID),]

#Impute missing genotypes using mean imputation

freq<-colMeans(mat,na.rm=T)/2

ina <- which(is.na(mat))

if ( length(ina) > 0 ) mat[ina] <- 2*freq[(ina-1)%/%nrow(mat)+1]

#Scaling and centering the genotype matrix

mat<-(t(mat)-2*freq)/sqrt(2*freq*(1-freq))

#Calculating the dense GRM
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GRM<-t(mat)%*%mat/nrow(mat)

#Calculating the sparse GRM

sparseGRM<-GRM

sparseGRM[which(sparseGRM<0.05)]<-0

sparseGRM<-as(sparseGRM,"dgCMatrix")

#Save the dense and sparse GRMs as RData files

save(GRM,file=paste0("pheno_coxmeg/GRM.",N,".",rep,".RData"))

save(sparseGRM,file=paste0("pheno_coxmeg/sparseGRM.",N,".",rep,".RData"))

The sparse GRM is stored in the sparse dgCMatrix format. The sizes of the dense and sparse
GRMs in terms of hard disk storage space (megabytes - MB) and sparsity rates are as below.
The median values of the corresponding metric out of five replications are reported.

Number of subjects Dense storage (MB) Sparse storage (MB) Sparsity Rate
5000 182 0.117 5042/2.5× 107 = 0.02%
10000 730 0.245 10172/108 = 0.01%
20000 2922 0.494 20694/4× 108 = 0.005%

8.3 Commands for running COXMEG-Score

#Load the dense GRM

load(paste0("pheno_coxmeg/GRM.",N,".",rep,".RData"))

#Run the null model

re=coxmeg_plink(

pheno=paste0("pheno_coxmeg/pheno.365.",N,".",rep,".txt"),

corr=GRM,

spd=FALSE,

type=’dense’,

cov_file=paste0("pheno_coxmeg/cov.365.",N,".",rep,".txt"),

verbose=TRUE

)

#Run the association test

coxmeg_plink(

pheno=paste0("pheno_coxmeg/pheno.365.",N,".",rep,".txt"),

bed=paste0("geno/ukb_imp_chr21_v3_365.",N,".",rep),

tmp_dir="coxmeg_temp",

corr=GRM,

spd=FALSE,

type=’dense’,

cov_file=paste0("pheno_coxmeg/cov.365.",N,".",rep,".txt"),

tau=re$tau,

score=TRUE,

verbose=TRUE

)
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8.4 Commands for running COXMEG-Sparse

#Load the dense GRM

load(paste0("pheno_coxmeg/sparseGRM.",N,".",rep,".RData"))

#Run the null model

re=coxmeg_plink(

pheno=paste0("pheno_coxmeg/pheno.365.",N,".",rep,".txt"),

corr=sparseGRM,

spd=FALSE,

type=’sparse’,

cov_file=paste0("pheno_coxmeg/cov.365.",N,".",rep,".txt"),

verbose=TRUE

)

#Run the association test

coxmeg_plink(

pheno=paste0("pheno_coxmeg/pheno.365.",N,".",rep,".txt"),

bed=paste0("geno/ukb_imp_chr21_v3_365.",N,".",rep),

tmp_dir="coxmeg_temp",

corr=sparseGRM,

spd=FALSE,

type=’sparse’,

cov_file=paste0("pheno_coxmeg/cov.365.",N,".",rep,".txt"),

tau=re$tau,

score=FALSE,

verbose=TRUE

)

8.5 Computational resource requirements for steps 1 and 2

The computation time and memory requirements for the null model fitting (step 1) and
association test (step 2) are as below. In addition to the sample size, the computation time
for GATE in step 1 depends on other factors such as the number of steps required for the pre-
conditioned conjugate gradient (PCG) method to converge and estimation of the variance
component, especially when the sample-size is small. This explains the non-monotonic nature
of the median computation time for GATE step 1 as the sample size increases in the low
sample size regime, however, the mean computation times are still monotonically increasing
with sample size.
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Table 1: Projected computation time and memory usage for GATE, COXMEG-Score,
and COXMEG-Sparse across different sample sizes. Benchmarking was performed for the
genome-wide association study (GWAS) of lifespan based on randomly subsampled data from
UK Biobank White British ancestry subjects. Association tests (step 2) were performed on
200,000 randomly selected markers with imputation INFO ≥ 0.3, with the filtering criteria
of minor allele count (MAC) ≥ 20, and the computation times were projected for testing
46 million variants. The reported run times are medians (means inside parentheses) of five
runs, each with randomly sampled subjects with different randomization seeds.

Number of Step 1 Step 2
Method subjects Time (hours) Memory (GB) Time (hours) Memory (GB)

5000 0.114 (0.189) 0.36 26.635 (29.177) 0.25
10000 0.707 (0.512) 0.54 30.730 (30.080) 0.24
20000 0.488 (0.634) 0.74 33.794 (35.374) 0.24

GATE 50000 1.190 (1.444) 1.44 57.579 (55.465) 0.28
100000 6.081 (4.639) 2.91 80.059 (79.927) 0.34
200000 11.592 (12.570) 5.55 135.217 (138.504) 0.46
408582 31.285 (31.907) 10.60 287.135 (298.015) 0.87
5000 0.029 (0.029) 1.80 191.625 (187.138) 1.70

COXMEG-Score 10000 0.118 (0.118) 7.99 737.053 (745.665) 6.02
20000 0.555 (0.555) 32.75 3355.525 (3322.719) 23.58
5000 0.002 (0.002) 0.44 356.429 (358.061) 0.47

COXMEG-Sparse 10000 0.005 (0.005) 1.55 746.870 (747.809) 1.08
20000 0.022 (0.021) 5.95 1412.454 (1414.219) 5.88
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