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Editorial Note: This manuscript has been previously reviewed at another journal that is not 
operating a transparent peer review scheme. This document only contains reviewer comments and 
rebuttal letters for versions considered at Nature Communications . 

REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): 

In the revised version, the authors addressed many of the previous comments raised in the original 

version of the manuscript. Nevertheless, several fundamental issues remain. 

First, it is appreciated that the authors now included a new simulation study using COXMEG-sparse, in 

addition to COXMEG-score, to contrast the GATE model. The authors’ benchmark shows, however, 

that the memory usage in COXMEG-sparse is about half of that in COXMEG-score. This high memory 

usage is puzzling because sparse matrices generally require much less memory. In order the 

researchers could replicate these benchmarks, the authors should disclose all relevant information 

about the sparsity of the GRM and the commands (or script) for running COXMEG-sparse. 

The second is about SPA model in this manuscript. My apologies if the previous comment, “the 

analyses with such a small number of disease events are flawed,” was unclear. The problem is that the 

analyses of variants with small MAC and a few disease events individually (i.e., when just one variant 

is included to the model) typically have very low power, regardless of whether SPA or any other 

method controls for the type I error rate. Then, the single-variant analysis in the case of small MAC 

and rare events will inevitably lead to a higher false discovery rate. This problem becomes evident in 

the real data analysis reported in this manuscript, in which almost no novel findings were replicated, 

as mentioned in the previous comment 6.1. The fact that the vast majority of these unreplicated 

findings are rare variants concerns the practical importance of the method in the case of small MAC 

and rare events. Then, researchers encouraged to use SPA for such variants have a big chance to 

select many false associations. 

The third is the issue related to the models for time-to-event outcomes in humans. The authors 

correctly noted that most of the existing methods used in current GWA studies of time-to-event traits 

in humans employ the proportional hazards (PH) models, including the current model GATE, COXMEG, 

COXME, etc. However, as long as the researchers intend to use a PH model to analyze connections 

between genetic factors and complex (non-Mendelian) traits, they inevitably face the problems of 

proportionality of the hazards and their independence. This is because besides typical factors 

considered in the traditional GWA studies (such as those the authors emphasize, i.e., population 

structures and sample relatedness), these connections are affected by other multiple substantive 

factors inherent to non-Mendelian traits. For example, they include changes in gene functions with 

aging (i.e., senescence) and/or over time (e.g., secular trends), changes in physiological regulations 

with aging (e.g., blood pressure changes with aging) and over time (e.g., the epidemic of obesity in 

recent decades), the complexity of metabolic networks in an organism evolutionary adapted to 

increase fitness in various environments, changes in the developmental programs of an organism 

(e.g., growth cessation, menopause), epigenetic silencing and/or activation with aging and over time, 

gene-gene and gene-environment interactions, etc. Because these factors are inevitable in human 

populations and studies (including Biobank-size studies) usually include people from different birth 

cohorts and of different ages, the main problem in genetic association studies of complex traits is not 

just to have GWAS discoveries but to better understand the complex relationship between genetic 

factors and the complex traits. 

The importance of this problem is clearly seen when considering the APOE e4 allele as an illustrative 

example. This is the missense (functional) variant, which is one of the best-studied variants in humans 

and one of the major “genetic discoveries.” This allele provides the strongest contribution to the risk of 



late-onset Alzheimer’s disease as a single variant. There is no doubt that this is not a technical 

artifact, nor the result of population structure or sample relatedness bias. Nevertheless, despite nearly 

28 years of research, this missense variant is considered a risk allele but not a causal variant, and its 

role in Alzheimer’s disease remains elusive. This is the problem of the vast majority of GWAS 

discoveries for non-Mendelian traits (this problem is further complicated by smaller effect sizes than 

that for the e4 allele). This problem exists regardless of whether or not the analyses address 

population structures and sample relatedness. Increasing the sample size and computational speed in 

large-scale data just add new potential correlates of non-Mendelian traits, but does not address the 

main problem of better understanding of the complex relationship between genetic factors and these 

traits. 

In addition, although GWAS often takes care of false positives, false negatives are another severe 

issue when using PH models. This issue arises because disproportional hazards and/or their non-

independence bias the effect estimates. This means that without controlling for these two main 

constraints of the PH models, some results can be more significant compared to the logistic regression 

model, whereas the others are less significant. The issue of false negatives might be more severe than 

that of false positives because of: (i) missing promising associations due to complexity of the 

association signals with non-Mendelian traits (that, for example, contributing to the so-called “missing 

heritability” problem) and (ii) underestimation of the effect sizes (that is an essential issue for 

potential translation of genetic discoveries to health care). 

Thus, the analyses using PH models provide just raw estimates, which should be further examined by 

testing whether or not the basic assumptions of the PH model are violated. The fact that GWA studies 

do not always perform the tests of the PH model assumptions does not imply that these tests should 

be ignored. The challenge is that these tests are time- and effort-consuming, and it is hard to apply 

them to large-scale data. Then, alternative methods can be used. For example, large-scale studies can 

prioritize variants based on, e.g., comparative analyses of the results from PH and logistic models, and 

then examine the associations with large differences between these models in more detail. In general, 

as long as there are no fast and accurate tests of the PH model assumptions and they are not ignored, 

the choice of the model(s) for the initial screening for potential associations is not of critical 

importance. This means that none of the PH models is a game-changer. 

Given these considerations, although the proposed model is interesting, it represents incremental 

improvement in genetic association studies of complex, non-Mendelian traits (even if it will be clearer 

about potential gain in the computational efficiency). 

The authors should also consider the following comments. 

1. The authors’ initiative to compare the results of the analyses using GATE (time-to-event model) and 

SAIGE (logistic model) is highly appreciated. However, Supplementary Table 3 provides just selected 

information from that comparison. Even so, this table shows the marginal decrease of p-values for 

several variants, and it does not show the effect sizes (betas). To accurately compare the results from 

these two models, the authors should present scatter plots for minus-log-base10 transformed p-

values from GATE vs. the ones from SAIGE for unbiased results (i.e., similarly, as they did when 

contrasting GATE and COXMEG in Supplementary Figure 1). A similar scatter plot contrasting the 

effect sizes (betas) should complement the scatter plots for the p-values. 

2. The authors reported that the p-value for the association of rs429358 with overall lifespan in 

FinnGen from GATE was eight orders of magnitude smaller (10-14) than that in SAIGE (10-6). The 

estimate of p-value in UK Biobank for this SNP was reported to be 10-5 (presumably, it is from GATE, 

given that Supplementary Table 4 reports hazard ratios). The authors did not report what the 

difference in p-values from GATE and SAIGE for rs429358 in UK Biobank was. Also, no such 

considerable improvements in p-values were reported for the other variants presented in 

Supplementary Table 3. Accordingly, the authors’ claim that the huge difference in p-values rs429358 

in FinnGen from GATE and SAIGE “demonstrated the significance of using frailty model to uncover 

genetic risk factors for TTE phenotypes” is not accurate because it is based just on one non-replicated 

observation in FinnGen. The observation of this huge difference is also puzzling as GATE does not fit 

the alternative model that affects the accuracy of the hazard ratio estimates. Please also see concern 

#1 above. 



3. Abbreviations and notations in the Supplementary Tables should be spelled out. 

4. Page 14, second paragraph from the top: it should be Supplementary Table 3. 

Reviewer #2 (Remarks to the Author): 

The authors have carefully and thoughtfully addressed all my previous comments. 

I would encourage another round of careful editing by the authors as I did see minor typos introduced 

in the revision process. 

Reviewer #3 (Remarks to the Author): 

The authors have made commendable effort to address the comments raised by reviewers for the 

previous version of this manuscript. In particular, I like the fact that now they have made some direct 

numerical comparison of results between logistic regression and cox model. However, I still have very 

significant concerns around this point. Below are my major comments that I would hope the authors 

can address. 

1. Throughout the paper the authors emphasized the need for TTE model because of “heavy 

censoring” in cohort studies. In fact, the disease outcomes they analyze in the UK Biobank, fit into this 

“heavy censoring” scenario where a very small percentage (less than 5%) of the individuals develop 

the disease during the follow-up of the study. Yet in simulation (Supplemental Figure 10), where they 

compare power of TTE vs logistic model, they only consider much more common events which have 

25% or 50% rates of occurrence during the follow-up. In fact, the simulations indicate as the disease 

become more rare, which means “heavier censoring”, the difference in power between logistic 

regression and TTE diminishes. I would like the authors to report results from simulation studies 

where the event rates during the follow-up of the study is similar to the disease outcomes in the UK 

Biobank example. My anticipation is that with much smaller event rates, the difference between the 

TTE and logistic model will diminish and will become fairly negligible. I am happy to be proven 

incorrect. 

2. I can see why for common outcomes, that has 50% or 25% rates, there could be significant 

difference in power between the two methods. Even if the time to disease onset indeed follows a Cox 

model, still the underlying hazard ratio (HR) parameters could be well approximated based on odds-

ratio parameters of logistic models if the disease is rare. But if the disease is common and we force a 

logistic model to the data, then the logistic OR parameters will be substantially attenuated compared 

to the underlying HR parameters ---- this could lead to substantial loss of power. There is a lot of 

classic literature on connection between logistic regression and Cox model (see e.g Prentice and 

Breslow, Biometrika, 1978 but there is much more). 

I think fitting actual TTE model has value to GWAS, but the logic the authors have is reversed. It 

might be more valuable for common outcomes than less common outcomes. 

3. If my intuition is correct that there is expected to be less of a difference in power between logistic 

and TTE models for rare outcomes, such as the diseases the authors have analyzed in the UK Biobank, 

then I still remain very surprised by the relatively larger number of findings in the UK Biobank for the 

four rare disease by the proposed method. Here logistic regression based methods identified a 

relatively small number of loci, which seems expected as the number of cases/events is not very 

large. I would like to get a better insight to what is the reason there is such large differences in 

findings across the two approaches. If the simulation studies with disease rates similar to the four 

diseases observed in the UK Biobank do show that there is expected to be major power gain, then that 



would be reassuring. Otherwise, the authors need to come up with some intuitive ways to explain the 

major differences across methods. 

4. I appreciate that the author now spells out that main technical innovation here is to show how 

iteratively weighted Poisson GLM approach can be used for fitting frailty model under the null. There is 

a fairly large literature on computationally efficient method for fitting semiparametric frailty models. 

Given that for the score-tests, one needs to fit the null semiparametric frailty model only once, how 

much of an advantage it really is to be able use the Poisson GLM approach here. It would be helpful if 

the authors can really bring out the key advantage of the proposed method for fitting frailty model 

compared to alternative existing methods. 

5. Discussion, Page 14, Second to last paragraph. The authors state “The TTE outcome is different 

from binary case-control outcome and logistic models are not appropriate for such outcomes”. This is 

not necessarily true. As I indicated earlier, even when the underlying true model is a TTE model, one 

could get valid inference for hypothesis testing by fitting logistic regression model. The type-I error is 

typically still correct as the null value of the parameter means the same thing across the two models. 

There could be power loss, however, and substantially so when the outcome is more common. So I 

would suggest the authors rephrase what they mean by logistic regression being not appropriate for 

TTE outcomes.



Point-by-point Responses to the Reviewers’ Comments 

 

Title: An efficient and accurate frailty model approach for genome-wide survival association 

analysis controlling for population structure and relatedness in large-scale biobanks 

 

Reviewer #1:  

 

• “First, it is appreciated that the authors now included a new simulation study using COXMEG-

sparse, in addition to COXMEG-score, to contrast the GATE model. The authors’ benchmark 

shows, however, that the memory usage in COXMEG-sparse is about half of that in COXMEG-

score. This high memory usage is puzzling because sparse matrices generally require much less 

memory. In order the researchers could replicate these benchmarks, the authors should disclose 

all relevant information about the sparsity of the GRM and the commands (or script) for running 

COXMEG-sparse.” 

 

Response: Thanks for the suggestion. We have included a section in the Supplementary Note (Section 

8) to describe the computational resource requirement comparison between COXMEG and GATE. 

Specifically, the commands to run different methods, and the sparsity of the sparse GRMs in 

‘dgCMatrix’ format are presented. 

 

• “The second is about SPA model in this manuscript. My apologies if the previous comment, “the 

analyses with such a small number of disease events are flawed,” was unclear. The problem is 

that the analyses of variants with small MAC and a few disease events individually (i.e., when just 

one variant is included to the model) typically have very low power, regardless of whether SPA or 

any other method controls for the type I error rate. Then, the single-variant analysis in the case of 

small MAC and rare events will inevitably lead to a higher false discovery rate. This problem 

becomes evident in the real data analysis reported in this manuscript, in which almost no novel 

findings were replicated, as mentioned in the previous comment 6.1. The fact that the vast 

majority of these unreplicated findings are rare variants concerns the practical importance of the 

method in the case of small MAC and rare events. Then, researchers encouraged to use SPA for 

such variants have a big chance to select many false associations.” 

 

Response: Thanks for the comment. Firstly, we agree that rare variants can have low power for 

phenotypes with few disease events. However, this does not mean that type I error/false discovery rate 

will be “inevitably higher”. There is no such relationship between power and type I error in the 

statistical literature. Moreover, we have shown through simulation studies that the type I error of 

GATE is well-controlled even for low MAF variants and heavily censored diseases. So, it is not true 

that type I error will be inflated regardless of the test. We hence respectfully disagree with the 

statement “Then, the single-variant analysis in the case of small MAC and rare events will inevitably 

lead to a higher false discovery rate.” Please excuse us if we have failed to understand this statement 

correctly. 

 

Second, this is a method paper. The scope of our paper is to propose a method that we justify the 

validity through theoretical derivation, extensive simulation studies, and real-world examples of 

positive control variants. Novel discovery is not within the scope of this method paper, and we do not 

claim any of the significant associations to be novel. In our GWAS analysis of the four phenotypes 

from the UK Biobank data, 18 loci were identified by GATE which were missed by SAIGE. Twelve 



out of these 18 loci have been previously found to be associated with the corresponding diseases in 

other studies, which suggests that these are positive control findings, and are not false positives. We 

do not claim the rest six to be true associations, and they could very well be false positives. No 

statistical test (except for the trivial test of always failing to reject) can guarantee that there will not be 

any false positives. However, we can quantify the chance of observing false positives through type I 

error rates, which have been shown to be well-controlled for GATE through our simulation studies. 

 

Third, we respectfully disagree with the statement “Then, researchers encouraged to use SPA for such 

variants have a big chance to select many false associations.” The type I error is defined as the chance 

to select false associations under the null. We have shown that GATE with SPA controls type I errors 

correctly. Therefore, the claim that there would be a big chance to select false associations is not true. 

That chance is set at the type I error level of the test, which is 5×10-8 genome-wide, which is very low. 

 

• “The third is the issue related to the models for time-to-event outcomes in humans. The authors 

correctly noted that most of the existing methods used in current GWA studies of time-to-event 

traits in humans employ the proportional hazards (PH) models, including the current model 

GATE, COXMEG, COXME, etc. However, as long as the researchers intend to use a PH model to 

analyze connections between genetic factors and complex (non-Mendelian) traits, they inevitably 

face the problems of proportionality of the hazards and their independence. This is because 

besides typical factors considered in the traditional GWA studies (such as those the authors 

emphasize, i.e., population structures and sample relatedness), these connections are affected by 

other multiple substantive factors inherent to non-Mendelian traits. For example, they include 

changes in gene functions with aging (i.e., senescence) and/or over time (e.g., secular trends), 

changes in physiological regulations with aging (e.g., blood pressure changes with aging) and 

over time (e.g., the epidemic of obesity in recent decades), the complexity of metabolic networks 

in an organism evolutionary adapted to increase fitness in various environments, changes in the 

developmental programs of an organism (e.g., growth cessation, menopause), epigenetic 

silencing and/or activation with aging and over time, gene-gene and gene-environment 

interactions, etc. Because these factors are inevitable in human populations and studies 

(including Biobank-size studies) usually include people from different birth cohorts and of 

different ages, the main problem in genetic association studies of complex traits is not just to have 

GWAS discoveries but to better understand the complex relationship between genetic factors and 

the complex traits. 

 

The importance of this problem is clearly seen when considering the APOE e4 allele as an 

illustrative example. This is the missense (functional) variant, which is one of the best-studied 

variants in humans and one of the major “genetic discoveries.” This allele provides the strongest 

contribution to the risk of late-onset Alzheimer’s disease as a single variant. There is no doubt 

that this is not a technical artifact, nor the result of population structure or sample relatedness 

bias. Nevertheless, despite nearly 28 years of research, this missense variant is considered a risk 

allele but not a causal variant, and its role in Alzheimer’s disease remains elusive. This is the 

problem of the vast majority of GWAS discoveries for non-Mendelian traits (this problem is 

further complicated by smaller effect sizes than that for the e4 allele). This problem exists 

regardless of whether or not the analyses address population structures and sample relatedness. 

Increasing the sample size and computational speed in large-scale data just add new potential 

correlates of non-Mendelian traits, but does not address the main problem of better 

understanding of the complex relationship between genetic factors and these traits.  

 



In addition, although GWAS often takes care of false positives, false negatives are another severe 

issue when using PH models. This issue arises because disproportional hazards and/or their non-

independence bias the effect estimates. This means that without controlling for these two main 

constraints of the PH models, some results can be more significant compared to the logistic 

regression model, whereas the others are less significant. The issue of false negatives might be 

more severe than that of false positives because of: (i) missing promising associations due to 

complexity of the association signals with non-Mendelian traits (that, for example, contributing to 

the so-called “missing heritability” problem) and (ii) underestimation of the effect sizes (that is 

an essential issue for potential translation of genetic discoveries to health care).  

 

Thus, the analyses using PH models provide just raw estimates, which should be further examined 

by testing whether or not the basic assumptions of the PH model are violated. The fact that GWA 

studies do not always perform the tests of the PH model assumptions does not imply that these 

tests should be ignored. The challenge is that these tests are time- and effort-consuming, and it is 

hard to apply them to large-scale data. Then, alternative methods can be used. For example, 

large-scale studies can prioritize variants based on, e.g., comparative analyses of the results from 

PH and logistic models, and then examine the associations with large differences between these 

models in more detail. In general, as long as there are no fast and accurate tests of the PH model 

assumptions and they are not ignored, the choice of the model(s) for the initial screening for 

potential associations is not of critical importance. This means that none of the PH models is a 

game-changer.  

 

Given these considerations, although the proposed model is interesting, it represents incremental 

improvement in genetic association studies of complex, non-Mendelian traits (even if it will be 

clearer about potential gain in the computational efficiency).” 

 

Response: Thanks for the comment. First, we agree that GWAS is not the end-all for genetic 

discovery and it is only the first step among many steps to unravel the complex genetic architecture of 

diseases. We agree that GWAS may not provide novel discoveries of causal variants. Our paper does 

not claim so either. Novel discoveries of causal variants in not within the scope of our paper. The 

purpose of GWAS is to find a set of candidate genetic markers out of millions of markers for 

potentially novel associations. These GWAS associations then need to be validated using independent 

samples. GWAS is an important first step of genetic discovery as evidenced by the extensive GWAS 

literature. To date, GWAS has identified tens of thousands of genetic variants and loci associated with 

a wide range of diseases and traits.  Many large-scale biobanks, including the UK biobank, All of Us, 

Millions of Veteran Program (MVP), have been launched in recent years to accelerate GWAS 

discoveries. 

 

These GWAS discoveries need to be investigated for their biological functions to determine whether 

they are causal variants for diseases and traits. We agree that functions of many of these GWAS  

discoveries are unknown and there is a substantial need to identify causal functional variants of these 

GWAS loci. Numerous large-scale efforts have been ongoing to study the functions of the variants 

identified by GWAS, and their translational values for drug target discovery and disease diagnosis and 

treatment. Examples include the recently launched NHGRI Impact of Genomic Variation on Function 

(IGVF) Consortium, Open Targets, a large-scale  public-private partnership that uses human genetics 

and genomics data for systematic drug target identification and prioritization, and the International 

Common Disease Alliance (ICDA), which aims to improve prevention, diagnosis, and treatment of 

common diseases by accelerating discovery from genetic maps to biological mechanisms to 

https://www.genome.gov/Funded-Programs-Projects/Impact-of-Genomic-Variation-on-Function-Consortium
https://www.genome.gov/Funded-Programs-Projects/Impact-of-Genomic-Variation-on-Function-Consortium
https://www.opentargets.org/
https://www.icda.bio/
https://www.icda.bio/


physiology and medicine.  

 

The GATE method proposed in our paper improves over the existing methods and offers a 

computationally efficient and accurate method for scalable analysis of time-to-event outcomes in 

large biobanks (n=500,000 (UKB), n=1 million (AllofUs) and n=1 million (MVP) that cannot be 

handled by the existing methods. Successful analysis of such large biobanks will accelerate GWAS 

discoveries and facilitate downstream variant biological functional and translational research efforts 

of several large consortia, such as IGVF, Open Targets, and ICDA. 

 

Second, no statistical model can perfectly represent the true complexity of nature. As Dr. George Box 

said in his famous aphorism in statistics, “All models are wrong but some are useful.” The purpose of 

statistical modeling is to represent the complex reality using simple interpretable models with the help 

of practically reasonable model assumptions. The Proportional hazard (PH) assumption is by far the 

most popular modeling assumption for time-to-event outcomes as evidenced by over 57,000 citations 

to the Cox 1972 paper. It is true that in practice, diagnostics of the PH assumption is difficult and 

time-consuming, and is thus impractical to be tested for every variant in GWAS. However, the same 

holds true for the need to check the validity of logistic and linear mixed models that are widely used 

for analysis of any GWAS study. The lack of fast and accurate model assumption diagnostic methods 

does not make the method inapplicable. As a more practical alternative in GWAS, the quantile-

quantile (QQ) plot is used as a very useful diagnostic tool to capture any unexpected conservativeness 

or anti-conservativeness of the p-values that may arise from the violation of model assumptions. Thus, 

we diligently present QQ plots for all the phenotypes including simulated phenotypes in our paper. 

 

To address your comments, we have added discussions on functional and translational studies of 

GWAS discoveries to accelerate discovery from genetic maps to biological mechanisms to physiology 

and medicine, and identify and prioritize new drug targets (page 17, lines 497-505). We have also 

added discussions on model diagnostics in the Online Method Section (page 27-28, lines 700-710)  

 

• “1. The authors’ initiative to compare the results of the analyses using GATE (time-to-event 

model) and SAIGE (logistic model) is highly appreciated. However, Supplementary Table 3 

provides just selected information from that comparison. Even so, this table shows the marginal 

decrease of p-values for several variants, and it does not show the effect sizes (betas). To 

accurately compare the results from these two models, the authors should present scatter plots for 

minus-log-base10 transformed p-values from GATE vs. the ones from SAIGE for unbiased results 

(i.e., similarly, as they did when contrasting GATE and COXMEG in Supplementary Figure 1). A 

similar scatter plot contrasting the effect sizes (betas) should complement the scatter plots for the 

p-values.” 

 

Response: Thanks for the suggestions. We have now included scatter plots for -log10(p-values) 

between GATE and SAIGE for the four example phenotypes in Supplementary Figure 11, and 

discussed the comparison in the Discussion Section (Page 14, lines 407-411). However, the meaning 

and interpretation of the effect sizes are very different between a frailty model and a logistic model. 

Hazard ratios and Odds ratios are different parameters, and only under very specific situations their 

interpretations become approximately similar. Specifically, for common events, regression 

coefficients in logistic regression models are attenuated compared to frailty models  (Prentice and 

Breslow, Biometrika, 1978). These attenuated regression coefficients also result in power loss using 

logistic regression compared to survival analysis.  Therefore, a direct comparison of the regression 

coefficient estimates of these two different models (Cox PH model and logistic mixed model) would 



be inappropriate, and we refrain from presenting such a scatter plot. 

 

• “2. The authors reported that the p-value for the association of rs429358 with overall lifespan in 

FinnGen from GATE was eight orders of magnitude smaller (10-14) than that in SAIGE (10-6). 

The estimate of p-value in UK Biobank for this SNP was reported to be 10-5 (presumably, it is 

from GATE, given that Supplementary Table 4 reports hazard ratios). The authors did not report 

what the difference in p-values from GATE and SAIGE for rs429358 in UK Biobank was. Also, no 

such considerable improvements in p-values were reported for the other variants presented in 

Supplementary Table 3. Accordingly, the authors’ claim that the huge difference in p-values 

rs429358 in FinnGen from GATE and SAIGE “demonstrated the significance of using frailty 

model to uncover genetic risk factors for TTE phenotypes” is not accurate because it is based just 

on one non-replicated observation in FinnGen. The observation of this huge difference is also 

puzzling as GATE does not fit the alternative model that affects the accuracy of the hazard ratio 

estimates. Please also see concern #1 above.” 

 

Response: Thanks for the comment. First, we agree that a single variant data analysis example cannot 

be used to claim GATE outperforms SAIGE.  That is why we performed extensive simulation studies 

to compare the performance of GATE and SAIGE. Our extensive simulation study results showed the 

potential improvement in power in GATE compared to SAIGE. The example of rs429358 in the 

GWAS of lifespan on FinnGen is an additional real-world example to support the observations 

already made through our simulation studies. It is not to be interpreted as the only evidence behind 

our claim. This example serves as a well-known positive control to show that GATE can identify loci 

that may be missed from a logistic model. To clarify the confusion, we have rephrased the sentence to 

“This example suggests that applying frailty models can be useful for uncovering genetic risk factors, 

as further evidenced through simulation studies (see ONLINE METHODS).” We have also included 

the p-value of rs429358 for lifespan on UK Biobank using SAIGE in Supplementary Table 4. Second, 

GATE is a score statistic-based test, and such tests are not impacted by the alternative model or 

accuracy of hazard ratio estimates. Score statistic-based tests such as GATE, do not require fitting an 

alternative model to correctly estimate the p-values.” 

 

 

• “3. Abbreviations and notations in the Supplementary Tables should be spelled out.” 

 

Response: Thanks for the suggestion. We have edited the supplementary tables accordingly. 

 

  

• “4. Page 14, second paragraph from the top: it should be Supplementary Table 3.” 

 

Response: Thanks for carefully pointing this out. We have corrected it now. 

 

 

 

 

Reviewer #2: 

 

“The authors have carefully and thoughtfully addressed all my previous comments.  

I would encourage another round of careful editing by the authors as I did see minor typos introduced 



in the revision process.” 

 

- Thanks for the encouraging remarks. We have carefully gone through the manuscript to correct the 

typos. 

 

Reviewer #3:  

 

“The authors have made commendable effort to address the comments raised by reviewers for the 

previous version of this manuscript. In particular, I like the fact that now they have made some direct 

numerical comparison of results between logistic regression and cox model. However, I still have 

very significant concerns around this point. Below are my major comments that I would hope the 

authors can address.” 

 

 

- We thank the reviewer for the overall positive feedback.  

 

 

1. Throughout the paper the authors emphasized the need for TTE model because of “heavy 

censoring” in cohort studies. In fact, the disease outcomes they analyze in the UK Biobank, fit into 

this “heavy censoring” scenario where a very small percentage (less than 5%) of the individuals 

develop the disease during the follow-up of the study. Yet in simulation (Supplemental Figure 10), 

where they compare power of TTE vs logistic model, they only consider much more common events 

which have 25% or 50% rates of occurrence during the follow-up. In fact, the simulations indicate as 

the disease become more rare, which means “heavier censoring”, the difference in power between 

logistic regression and TTE diminishes. I would like the authors to report results from simulation 

studies where the event rates during the follow-up of the study is similar to the disease outcomes in 

the UK Biobank example. My anticipation is that with much smaller event rates, the difference 

between the TTE and logistic model will diminish and will become fairly negligible. I am happy to be 

proven incorrect.” 

 

Response: Thanks for the comment. First, we now have included a simulation study with 5% event 

rate for power comparison between GATE and SAIGE, and even though the power difference 

becomes smaller compared to the 25% and 50% scenarios, it is still non-ignorable. For instance, there 

is a ~5-6% power improvement in GATE compared to SAIGE at hazard ratio range ~2-3 for MAF 

0.05, and at hazard ratio range ~1.5-1.8 for MAF 0.2. However, the more important thing is that 

GATE is not limited to be applied on rare diseases, it is perfectly valid to be applied to common 

diseases too, as shown in simulation studies. Providing valid inference in rare diseases is an added 

feature of GATE, and not the only feature. Rare diseases are overwhelmingly present in biobanks (see 

Supplementary Figure 2) and no survival analysis method exists to accurately analyze them. That is 

why we proposed a method that can analyze TTE phenotypes regardless of whether the phenotype is 

common or rare.  

 

Furthermore, although the powers for more rare diseases are lower compared to common diseases, 

GATE provides accurate summary statistics for TTE phenotypes for individual biobanks, which can 

be input into meta-analysis of multiple biobanks to improve the power. In addition, given the UK 

biobank is a follow-up study, the participants have been followed over time, more events will be 

observed and the power will increase as the follow-up continues. 

 



 

“2. I can see why for common outcomes, that has 50% or 25% rates, there could be significant 

difference in power between the two methods. Even if the time to disease onset indeed follows a Cox 

model, still the underlying hazard ratio (HR) parameters could be well approximated based on odds-

ratio parameters of logistic models if the disease is rare. But if the disease is common and we force a 

logistic model to the data, then the logistic OR parameters will be substantially attenuated compared 

to the underlying HR parameters ---- this could lead to substantial loss of power. There is a lot of 

classic literature on connection between logistic regression and Cox model (see e.g Prentice and 

Breslow, Biometrika, 1978 but there is much more).  

 

I think fitting actual TTE model has value to GWAS, but the logic the authors have is reversed. It 

might be more valuable for common outcomes than less common outcomes.” 

 

Response: Thanks for the insightful and thoughtful remark. We apologize for the confusion, and 

completely agree with your assessment that the power gain using survival analysis over logistic 

regression will be more for common diseases than for rare diseases. Given the UK biobank 

participants will be followed over time, more events will be observed. We will observe more power 

gain using survival analysis compared to logistic regression as the followup continues. We have 

revised the manuscript to highlight this aspect (See page 3, line 50 and page 14-15, lines 413-418).    

 

As shown in simulation studies, GATE provides valid inference for both common and rare outcomes. 

For 871 TTE phenotypes that have at least 500 events (cases) in the UKB data, 811 phenotypes have 

censoring rate more than 95%, and the lowest censoring rate among the 871 TTE phenotypes in the 

UK Biobank was ~77.4%.  In view of a large number of TTE phenotypes in UKB are subject to heavy 

censoring, it is important that the proposed method can handle heaving censoring by properly 

controlling for type I error rate. We hence provided in the paper the UKB examples of heavily 

censored phenotypes, with the intention to highlight the need of the use of SPA in analyzing rarer 

phenotypes to control for type I error rate. We would like to note that even though the censoring rates 

are high for many TTE phenotypes, the numbers of disease events can be large because of the large 

sample sizes of biobanks. Furthermore, as the participants will be followed over time in biobanks, we 

will observe more events and TTE phentoypes will be more common, and the power gain of survival 

analysis over logistic models will be more, suggesting more benefits of using GATE over SAIGE for 

analysis of TTE phenotypes. 

 

 

“3. If my intuition is correct that there is expected to be less of a difference in power between logistic 

and TTE models for rare outcomes, such as the diseases the authors have analyzed in the UK 

Biobank, then I still remain very surprised by the relatively larger number of findings in the UK 

Biobank for the four rare disease by the proposed method. Here logistic regression based methods 

identified a relatively small number of loci, which seems expected as the number of cases/events is not 

very large. I would like to get a better insight to what is the reason there is such large differences in 

findings across the two approaches. If the simulation studies with disease rates similar to the four 

diseases observed in the UK Biobank do show that there is expected to be major power gain, then that 

would be reassuring. Otherwise, the authors need to come up with some intuitive ways to explain the 

major differences across methods.” 

 

Response: Thank you for the comment. In our analyses of the four example rare disease phenotypes, 

114 loci were identified by GATE, out of which 18 loci (~16%) were not identified by SAIGE. We 



would like to point out that 16% is not substantially larger than what we observe in the simulation 

studies. For instance, the empirical powers of GATE and SAIGE were 53.6% and 48.1% respectively 

for MAF 0.2 at the hazard ratio 1.6 with censoring rate 95%. This means, compared to GATE, SAIGE 

had ~10% less empirical power. As another instance, the empirical powers of GATE and SAIGE were 

87.7% and 56.2% respectively for MAF 0.2 at hazard ratio 1.3 with censoring rate 75%. This means, 

compared to GATE, SAIGE had ~36% less empirical power. Therefore, failing to identify 16% of the 

SNPs by SAIGE that GATE identified in real data is not surprisingly different from the empirical 

observations based on the simulated data, especially considering that 11 out of the 18 loci were from 

the analysis of ischemic heart disease, which had a censoring rate of ~90.9%, in between 75% and 

95%. 

 

 

 

“4. I appreciate that the author now spells out that main technical innovation here is to show how 

iteratively weighted Poisson GLM approach can be used for fitting frailty model under the null. There 

is a fairly large literature on computationally efficient method for fitting semiparametric frailty 

models. Given that for the score-tests, one needs to fit the null semiparametric frailty model only 

once, how much of an advantage it really is to be able use the Poisson GLM approach here. It would 

be helpful if the authors can really bring out the key advantage of the proposed method for fitting 

frailty model compared to alternative existing methods.” 

 

Response: Thank you for the comment. As discussed in the Introduction Section (2nd paragraph), 

most of the literature extensively studies the shared frailty model with a scalar random effect. 

However, the shared frailty model is extremely limited in scope to model complicated dependency 

structures such as family and cryptic relatedness among humans. Shared frailty models assume that 

the frailty (or the random effect) is the same for everyone in a cluster, which can only be true if 

subjects are genetically identical siblings (twins, triplets etc.). Bivariate extensions to the shared 

frailty model such as the correlated Gamma or correlated compound Poisson frailty model allow the 

frailties to be correlated among two subjects. However, these models are also too restrictive because 

they model the correlations using one parameter, and effectively, they are more appropriate for twin 

studies, and cannot model arbitrarily complex relationship structures.  

 

The multivariate frailty model with Gaussian frailty is the only frailty model proposed in the 

literature, to the best of our knowledge, which can model complex relationship structures. COXME 

and COXMEG provides the commonly used approach to fit such a multivariate frailty model through 

the use of partial likelihood, similar to the approach of fitting Cox’s partial likelihood model. They are 

the most computationally efficient existing packages for fitting multivariate frailty models. We have 

shown that these two packages are not scalable for biobank-size data, and have compared GATE with 

these two procedures. GATE provides an alternative approach using a modified Poisson likelihood 

with a Breslow-type estimator used for the baseline hazards, similar to the approach that Breslow 

presented in the discussion of Cox 1972. Using modified Poisson GLMM approach allows us to use 

some efficient matrix operation techniques that were previously developed for GLMM fitting to make 

frailty model fitting scalable for biobank-size data, and also allows the application of the saddlepoint 

approximation to correct for the type I error inflation in the presence of heavy censoring. 

 

In summary, the only existing methods that allows us to model arbitrarily complex relationship 

structures are COXME, COXMEG and GATE, and we have shown that GATE outperforms 

COXMEG (COXMEG outperforming COXME has been shown in He and Kulminski, 2020). We 



would be happy to be suggested of any other frailty model which allows arbitrary covariance 

structures.  

 

To respond to your comments, we have edited our literature review to add a short description of the 

existing correlated frailty models (and the relevant references are added in the paper) (See pages 3-4, 

lines 74-81). 

 

 

“5. Discussion, Page 14, Second to last paragraph. The authors state “The TTE outcome is different 

from binary case-control outcome and logistic models are not appropriate for such outcomes”. This is 

not necessarily true. As I indicated earlier, even when the underlying true model is a TTE model, one 

could get valid inference for hypothesis testing by fitting logistic regression model. The type-I error is 

typically still correct as the null value of the parameter means the same thing across the two models. 

There could be power loss, however, and substantially so when the outcome is more common. So I 

would suggest the authors rephrase what they mean by logistic regression being not appropriate for 

TTE outcomes.” 

 

Response: Thanks for the suggestion. We have rephrased the statement to, “The TTE outcome is 

different from binary case-control outcome and logistic models can result in loss of power for such 

outcomes.” 

 

 

 



REVIEWER COMMENTS

Reviewer #2 (Remarks to the Author): 

My comments are in the attached file. 



Unfortunately, the revised version of this manuscript is not satisfactory because there are still 
concerns about two fundamental issues which the authors consider as the major advances of 
this manuscript.  

 

The first issue is about the authors' claim about the efficiency of the GATE package, which the 
authors contrast to the COXMEG package.  

First of all, I would like to thank the authors for including “a section in the Supplementary Note 
(Section 8) to describe the computational resource requirement comparison between COXMEG 
and GATE.” Although the authors claim that they used COXMEG-sparse in their comparative 
analysis as a benchmark, this new section shows that they incorrectly used COXMEG R 
package. Specifically, the second step with COXMEG-sparse still uses COXMEG-score rather 
than COXMEG-sparse because there is a line 'score=TRUE' in the code, as highlighted below.  

 

This error explains why there is a trivial difference in the benchmark of Step 2, while a big 
difference is seen in Step 1 in Table 1, as highlighted below. This table confirms that the score 
test is implemented only for the dense matrix in COXMEG. However, the 'score=TRUE' 



command will treat the GRM as a dense matrix. To implement the COXMEG package correctly 
for COXMEG-sparse, the authors should use 'score=FALSE' in Step 2, or exclude the 
'score=TRUE' line from the code. 

 

 

The second issue is the same as in our previous version, i.e., about the analyses of variants 
with small minor allele count (MAC) and a few disease events individually, i.e., when just one 
variant is included in the model. The authors claim that they disagree with this comment, and 
they emphasize the type I error rate in their response.  

Let’s clarify that this issue is about the false discovery rate (FDR) but not the type I error rate 
(FPR). It is clear that SPA improves control of the FPR, but controlling FPR per se is not enough 
for the authors’ claim that rare variants in rare diseases (or with few cases in the data) can be 
included in a single-variant analysis, even with improved control of FPR in the SPA. As the 
authors agree, rare variants in rare diseases/events have two problems, i.e., inflated FPR and 
low power. The SPA can handle the first issue only. This is, however, not sufficient for the 
validity of including such variants in the single-variant analysis because the second issue (which 
is not controlled by SPA) would lead to a large number of false discoveries. The problem that 
low power leads to a much higher FDR is well known. It is a bit surprising that the authors seem 
to be using FDR and FPR interchangeably (“type I error/false discovery rate”).  

To illustrate the problem, let’s consider a toy example in which we test 100 SNPs, in which 5 are 
true signals, and the rest are true null. When FPR=5% and power=100%, we identify 5 true 
signals and 5 false positives that give FDR=5/10=50%. However, when the analysis is 
underpowered (e.g., assuming power=20%), even if we control the FPR (5%), we identify only 
one of the true signals and 5 false positives that give FDR=5/6=83.33%. Generally, for those 
variants that require the SPA to correct for the asymptotic normality of their score statistic, their 



MAC is very low and, therefore, substantially underpowered. Including so many underpowered 
variants in the study gives a large number of false discoveries. This explains why almost none 
of the new findings of the rare variants are replicated in the authors’ manuscript, as have been 
mentioned in the previous comment 6.1 in the first round of review. This is a good 
demonstration of the problem. If the authors want to control the FDR, they should use a more 
stringent threshold for p-value than p=5e-8, which would probably wipe out most of the findings. 
In fact, this is not a new issue. Over the last decade, a lot of efforts have been made to attempt 
to tackle this painful problem of power for rare variants by, for example, bundling them to 
increase the occurrence of minor alleles (e.g., the burden test and SKAT, just to name a few). 
Therefore, it can be dangerous to encourage geneticists to perform underpowered single-variant 
studies for rare variants with rare events by overblowing what the SPA can do and ignoring the 
FDR problems for rare variants.  

 



Reviewer #3 (Remarks to the Author): 

I would like to complement the authors again for a very through revision. I believe this revision has 

brought out the advantage of GATE more clear. I am also satisfied with the point-by-point response to 

my earlier comments. Overall this is a very fine paper that will significantly add to our toolbox for 

genetic analysis of large scale cohort studies. 



Point-by-point Responses to the Reviewers’ Comments 

 

Title: An efficient and accurate frailty model approach for genome-wide survival association 

analysis controlling for population structure and relatedness in large-scale biobanks 

 

Reviewer #2:  

 

• “The first issue is about the authors' claim about the efficiency of the GATE package, which the 

authors contrast to the COXMEG package. First of all, I would like to thank the authors for 

including “a section in the Supplementary Note (Section 8) to describe the computational resource 

requirement comparison between COXMEG and GATE.” Although the authors claim that they used 

COXMEG-sparse in their comparative analysis as a benchmark, this new section shows that they 

incorrectly used COXMEG R package. Specifically, the second step with COXMEG-sparse still 

uses COXMEG-score rather than COXMEG-sparse because there is a line 'score=TRUE' in the 

code, as highlighted below. This error explains why there is a trivial difference in the benchmark 

of Step 2, while a big difference is seen in Step 1 in Table 1, as highlighted below. This table 

confirms that the score test is implemented only for the dense matrix in COXMEG. However, the 

'score=TRUE' command will treat the GRM as a dense matrix. To implement the COXMEG 

package correctly for COXMEG-sparse, the authors should use 'score=FALSE' in Step 2, or 

exclude the 'score=TRUE' line from the code.” 

 

Response: Thanks for going through our script meticulously and we apologize for the error. We have 

now fixed it as per your suggestion, and edited Supplementary Note section 8, Supplementary Table 

1, Figure 1, and the Computation and Memory costs section in the main manuscript. Our results show 

that GATE remains substantially more efficient over COXMEG-Sparse in terms of computational costs: 

98% and 88% reductions in computation time and memory (line 211-213). 

 

• “The second issue is the same as in our previous version, i.e., about the analyses of variants with 

small minor allele count (MAC) and a few disease events individually, i.e., when just one variant is 

included in the model. The authors claim that they disagree with this comment, and they emphasize 

the type I error rate in their response. Let’s clarify that this issue is about the false discovery rate 

(FDR) but not the type I error rate (FPR). It is clear that SPA improves control of the FPR, but 

controlling FPR per se is not enough for the authors’ claim that rare variants in rare diseases (or 

with few cases in the data) can be included in a single-variant analysis, even with improved control 

of FPR in the SPA. As the authors agree, rare variants in rare diseases/events have two problems, 

i.e., inflated FPR and low power. The SPA can handle the first issue only. This is, however, not 

sufficient for the validity of including such variants in the single-variant analysis because the 

second issue (which is not controlled by SPA) would lead to a large number of false discoveries. 

The problem that low power leads to a much higher FDR is well known. It is a bit surprising that 

the authors seem to be using FDR and FPR interchangeably (“type I error/false discovery rate”). 

 To illustrate the problem, let’s consider a toy example in which we test 100 SNPs, in which 5 are 

true signals, and the rest are true null. When FPR=5% and power=100%, we identify 5 true signals 

and 5 false positives that give FDR=5/10=50%. However, when the analysis is underpowered (e.g., 

assuming power=20%), even if we control the FPR (5%), we identify only one of the true signals 

and 5 false positives that give FDR=5/6=83.33%. Generally, for those variants that require the 

SPA to correct for the asymptotic normality of their score statistic, their MAC is very low and, 

therefore, substantially underpowered. Including so many underpowered variants in the study gives 



a large number of false discoveries. This explains why almost none of the new findings of the rare 

variants are replicated in the authors’ manuscript, as have been mentioned in the previous comment 

6.1 in the first round of review. This is a good demonstration of the problem. If the authors want to 

control the FDR, they should use a more stringent threshold for p-value than p=5e-8, which would 

probably wipe out most of the findings. In fact, this is not a new issue. Over the last decade, a lot 

of efforts have been made to attempt to tackle this painful problem of power for rare variants by, 

for example, bundling them to increase the occurrence of minor alleles (e.g., the burden test and 

SKAT, just to name a few). Therefore, it can be dangerous to encourage geneticists to perform 

underpowered single-variant studies for rare variants with rare events by overblowing what the 

SPA can do and ignoring the FDR problems for rare variants.” 

 

Response: Thanks for the helpful comments.  First, we agree with you that single variant analysis has 

low power for testing rare variant effects, and SNP-set tests are needed for boosting the power of rare 

variant association tests. In the Discussion section (pg 16-17, lines 473-482), we have expanded our 

discussions on this matter. We have provided more discussions on the limitation of single-variant 

analyses using GATE for rare variants, and noted that significant single variant based GWAS findings 

for rare variants need to be interpretated with caution, and replication of these findings using 

independent samples is important.  We have discussed how to extend GATE to perform rare variant 

set-based tests such as SKAT or burden tests, using frailty models for censored time-to-event data in 

the future. 

 

Second, we would like to note that throughout the manuscript, we have only used False positive rate 

(FPR, or Type I error) as our genome-wide significance criteria, as it is typically done in GWASs.  We 

have never mentioned False Discovery Rate (FDR).  The FDR control is beyond the scope of this paper. 

Given FDR is not commonly used in GWAS, it would be of future research interest to investigate FDR 

control in GWAS. 

 

Finally, we would like to mention that SPA is very valuable even if one is interested in controlling FDR.  

Since FDR is a strictly increasing function of FPR, by bounding FPR for a given power value, the FDR 

will be bounded. Specifically, assuming SNPs are independent, we have 𝐹𝐷𝑅 = [1 +
𝑐𝛾

(𝑁−𝑐)𝛼
]
−1

, where 

𝑁 is the number of SNPs tested, 𝑐 is the number of causal SNPs, 𝛼 is the FPR, and 𝛾 is the power1. We 

demonstrate this through a toy example. Suppose, we test 100 million SNPs, out of which 100 SNPs 

are causal with 20% power. Then as SPA controls the FPR at 𝛼 = 5 × 10−8, the FDR using SPA will 

be ~ 20%. Whereas, without SPA, the FPR will be 5 × 10−5 (as seen through simulation studies, 

Supplementary Table 5), which results in FDR being ~ 99.6%. This toy example shows that by 

controlling FPR, SPA will greatly help controlling FDR as well. 

 

 

Reviewer #3: 

 

“I would like to complement the authors again for a very through revision. I believe this revision has 

brought out the advantage of GATE more clear. I am also satisfied with the point-by-point response to 

my earlier comments. Overall this is a very fine paper that will significantly add to our toolbox for 

genetic analysis of large scale cohort studies.” 

 

- Thank you for your positive comments. We appreciate your time and effort on reviewing our 

manuscript. Your comments and suggestions have certainly helped improve the manuscript. 
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REVIEWERS' COMMENTS

Reviewer #2 (Remarks to the Author): 

Thanks for addressing my comments. 

I still have one more concern as I do not understand why computational time for GATE in Step 1 in 

your Table 1 in the supplemental text changes non-monotonically with increasing the sample size.



Point-by-point Responses to the Reviewers’ Comments 

Title: Efficient and accurate frailty model approach for genome-wide survival association 

analysis in large-scale biobanks 

Reviewer #2:  

 “Thanks for addressing my comments. I still have one more concern as I do not understand why 

computational time for GATE in Step 1 in your Table 1 in the supplemental text changes non-

monotonically with increasing the sample size.” 

Response: Thanks for the comment. We now have added an explanation in the first paragraph of 

Section 8.5 in the Supplementary Note which reads “In addition to the sample size, the computation 

time for GATE in step 1 depends on other factors such as the number of steps required for the pre-

conditioned conjugate gradient (PCG) method to converge and estimation of the variance component, 

especially when the sample-size is small. This explains the non-monotonic nature of the median 

computation time for GATE step 1 as the sample size increases in the low sample size regime, however, 

the mean computation times are still monotonically increasing with sample size.” We have also included 

the mean computation times in addition to the median computation times previously reported in 

Supplementary Note Table 1.


