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Supplemental Figures 

 
Supplementary Figure. 1: Screening reported sulfotransferases with GFP assay. Data are plotted as 

means from n=2 independent samples. a.u. stands for arbitrary unit. 

 
Supplementary Figure. 2: Phylogenetic relationship of all sulfotransferases tested in Fig. 2d.  
Phylogenetic tree was generated in MEGAX software with UPGMA method. A0A091VQH7 

(https://www.uniprot.org/uniprotkb/A0A091VQH7/entry) was named NnSULT1C1 and used for following 

experiments. 
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Supplementary Figure. 3: Phylogenetic analysis and multiple sequence alignment of NnSULT1C1 and 

its 9 relatives. Phylogenetic tree was constructed by UPGMA method in MEGAX and multiple sequences were 

aligned by ClustalW method. 
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Supplementary Figure. 4: Sequence alignment of human cytosolic sulfotransferases (hSULTs) and 

NnSULT1C1. The highly variable region we found (SIQEPPAAS) in NnSULT1C1 is aligned well with the 

reported residues of  hSULTs important for substrate recognition. 
 
 

  

 

Supplementary Figure. 5: Superimposition of NnSULT1C1 and 2zvq. NnSULT1C1  was shown in blue 

colour and  mouse SULT1D1 (PDB: 2zvq, https://www.rcsb.org/structure/2ZVQ) was shown in cyan colour. The 

variable region SIQEPPAAS of NnSULT1C1 is shown in red.  
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Supplementary Figure. 6: Expression condition screening for sfGFP-sTyr production. The influence of 

expression medium, tyrosine addition, sulfate addition and glycerol addition on production of sfGFP-sTyr in 

bacterial cells containing sTyr biosyntheis and genetic incorporation machineries was evaluated with green 

fluorescent protein assay. Data are plotted as the mean +/- standard deviation from n=3 independent samples. 

a.u. stands for arbitrary unit. 

 

 

Supplementary Figure. 7: Kinetics measurment of tyrosine sulfation activity of NnSULT1C1. (A) SDS-

PAGE analysis of NnSULT1C1-His6 expressed in LB medium. (B) Standard curve of authentic sTyr detected 
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by SIM mode of ESI-MS.  Data are plotted as means of n=2 independent samples. (C) The effect of adding his6 

tag to C terminal of NnSULT1C1 on its activity. (D) Kinetics curve of NnSULT1C1 with tyrosine as its substrate.  

Data are plotted as means of n=3 independent samples. Error bars represent standard deviations from n=3 

independent samples. Vmax and Km were obtained by fitting the data to Michaelis-Menten equation in Prism. a.u. 

stands for arbitrary unit. 

 

 



 6 

Supplementary Figure. 8: Flow cytometry analysis of EGFP expression levels of HEK293T and 

HEK293T-NnSULT1C1. (original data for Fig. 4C)   

(a) Flow cytometry analysis of EGFP expression in HEK293T and HEK293T-NnSULT1C1 in the presence or 

absence of external sTyr. There are 3 independent biological replicates for one treatment group, as indicated 

by the numerical label. (b) Gating strategy used for (a). 

 

 
Supplementary Figure. 9: Cellular concentration of sTyr in HEK293T and HEK293T-NnSULT1C1. 
Indicated concentration of sTyr was added to the culture of HEK293T or HEK293T-NnSULT1C1 for 2 hour. Data 

are plotted as means from n=2 independent groups.  

 

Supplementary Figure. 10: ESI-MS analysis of EGFP39sTyr from HEK293T cells and HEK293T-

NnSULT1C1. The expected peak was calculated according to monoisotopic mass of EGFP39sY with N-terminal 

acetylation. Bottom left spectrum is identical to Fig. 4D. a.u. stands for arbitrary unit. 
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Supplementary Figure. 11: SDS-PAGE analysis of thrombin inhibitors purified from LB medium. sTyr-

containing inhibitors are expressed in LB medium with external addition of 3 mM sTyr. 

 

 

Madanin-1 Chimadanin 

Form sTyr source Protein Yield 
(mg/L) 

Form sTyr source Protein Yield 
(mg/L) 

Wildtype  3.6 Wildtype  3.0 

32sTyr Biosynthesis 0.3 28sTyr Biosynthesis 0.11 

35sTyr 0.32 31sTyr 0.21 

32sTyr35sTyr 0.07 28sTyr31sTyr 0.08 

32sTyr External 
addition 

0.23 28sTyr External 
addition 

0.26 

35sTyr 0.35 31sTyr 0.55 

32sTyr35sTyr 0.04 28sTyr31sTyr 0.12 

Supplementary Figure. 12: Protein yields of all thrombin inhibitors used in this study. 
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Supplementary Figure. 13: ESI-MS analysis of all thrombin inhibitors used in this study. a.u. stands for 

arbitrary unit. 
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Madanin-1 Chimadanin 

Form sTyr source Ki (nM) Form sTyr source Ki (nM) 

Wildtype  16.0 + 0.9 Wildtype  12.9 +  1 

32sTyr Biosynthesis 1.3 + 0.1 28sTyr Biosynthesis 0.6 +  0.1 

35sTyr 6.1 +  0.6 31sTyr 1.5 +  0.1 

32sTyr35sTyr 0.5 +  0.1 28sTyr31sTyr 0.1 +  0 

32sTyr External 
addition 

1.8 +  0.2 28sTyr External 
addition 

0.5 + 0.1 

35sTyr 6.0 +  0.3 31sTyr 1.9 +  0.2 

32sTyr35sTyr 0.3 +  0.1 28sTyr31sTyr  

Supplementary Figure. 14: Inhibition constants (Ki) of all thrombin inhibitors used in this study. Ki  + 

standard error were calculated based on a tight-binding model, using Morrison equation in Prism. Standard 

errors were calculated from n=3 independent samples. 
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Supplementary Figure. 15: Original gel for Fig. 3F.  
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Supplementary Figure. 16: Original gel for Madanin-1. (Fig. 3F left and S11 left) 
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Supplementary Figure. 17: Original gel for Chimadanin. (Fig. 3F right and S11 right) 

 
Supplementary Figure. 18: Original gel for Fig. S7.  

(The lane next to ladder is NnSULT1C1, proteins in the rest lanes are not relevant to this study) 

 

Supplemental Methods 

Materials  

LB agar and 2YT were obtained from BD Difco™. Isopropyl-β-D-thiogalactoside (IPTG) was ordered from 

Anatrace.  4-12% Bis-Tris gels for SDS-PAGE was purchased from Invitrogen. Oligonucleotide primers were 

purchased from Integrated DNA Technologies and Eurofins Genomics (Supplementary Table S1 lists the 

oligonucleotides used in this report). Plasmid DNA preparation was carried out with the GenCatchTM Plasmid 
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DNA Miniprep Kit and GenCatchTM Advanced Gel Extraction Kit. BugBusterTM Protein Extraction Reagent was 

obtained from Novagen (Cat. 70584). PierceTM universal nuclease was purchased from Thermo Scientific (Cat. 

88700). Ni2+-NTA Agarose was obtained from Qiagen (Cat. 30230). M9-glucose minimal medium contain M9 

salt (6.78 g/L Na2HPO4, 3 g/L KH2PO4, 1 g/L NH4Cl, 0.5 g/L NaCl), heavy metal solution (1 μg/L CuSO4.5H2O, 

4 μg/L MnCl2.4H2O, 4 μg/L ZnCl2, 1.2 μg/L FeSO4.5H2O), 1 mM MgSO4, 0.1 mM CaCl2, 5 μg/mL Thiamine, 300 

μM Leucine 4 μM D-Biotin, Glucose (4 g/L).  

Unless otherwise mentioned, all solvents and chemicals for synthesis were purchased from Alfa Aesar and 

Fisher Chemical and used as received without further purification, unless otherwise specified.  

 

Plasmids Construction 

pUltra-sTyrRS and pAcBac2.tR4-OMeYRS/GFP* were obtained from addgene. pLei-sfGFP134TAG and pEvol-

Mj are generous gifts from Dr. Peter Schultz. Piggybac vector and Piggybac transposase plasmids are kind gifts 

from Dr. Caleb Bashor. The sequences of all DNA oligos used in this study were shown in supplementary table 

file. 

Sulfotransferase-containing pBad plasmids for initial screening were constructed by Gibson Assembling of pBad 

vector amplified from pBad-HER2-ScFv with Da343&344 and sulfotransferase fragment amplified from synthetic 

DNA. pEvol-NnSULT1C1 was acquired by Gibson Assembling of pEvol-Mj vector amplified by Da443&444 and 

NnSULT1C1 amplified from pBad-NnSULT1C1with Da441&442. To generate pEvol-cysDNC, cysDNC cassette 

was amplified from E.coli genome with Da446 and Da447 and inserted into pEvol vector amplified from pEvol-

Mj with Da443&445. To generate pEvol-cysDNCQ, cysDNC cassette and cysQ cassette amplified separately 

from E.coli genome with Da446&448 and Da449&450, respectively, were overlapped and Gibson Assembled 

into pEvol vector amplified from pEvol-Mj with Da443&445.  pEvol-NnSULT1C1-cysDNC(Q) were generated by 

inserting NnSULT1C1 fragment amplified from pBad-NnSULT1C1 into the vector of pEvol-cysDNC(Q) amplified 

with Da444&454.  

To generate the plasmid for sTyr genetic incorporation in mammalian cells, OMeYRS of pAcBac2.tR4-

OMeYRS/GFP* was substituted with sTyr-selective EcTyrRS mutant (L71V, D182G, L186M), which was 

achieved by Gibson Assembling of synthetic sTyrRS amplified with Da462&463 and pAcBac2.tR4-

OMeYRS/GFP* vector digested by Xho1 and Nhe1. To integrate NnSULT1C1 into genome of HEK293T, PB-

NnSULT1C1 was constructed by Gibson assembling synthetic NnSULT1C1 amplified by Da655&656 and 

Piggybac vector digested with BsrG1. 

pET22b-T5-chi was constructed by Gibson Assembling of synthetic chimadanin sequence amplified with 

Da556&557 and pET22b-T5-sfGFP151TAG vector digested with Hind3 and Nde1. pET22b-T5-chi-28TAG and 

pET22b-T5-chi-31TAG were made according to the protocol on NEBaseChanger with Da664&665 and 

Da584&585, respectively, using pET22b-T5-chi as their template. pET22b-T5-chi-28TAG31TAG were made by 

following the same protocol with Da666&Da664 with pET22b-T5-chi-31TAG as a template. 

pET22b-T5-mad was constructed by Gibson Assembling of synthetic madanin-2 sequence amplified with 

Da558&559 and pET22b-T5-sfGFP151TAG vector digested with Hind3 and Nde1. pET22b-T5-mad-32TAG and 

pET22b-T5-mad-35TAG were made according to the protocol on NEBaseChanger with Da586&587 and 



 15 

Da661&662 with pET22b-T5-mad as a template. pET22b-T5-mad-32TAG35TAG were made by following the 

same protocol with Da663&Da661 using pET22b-T5-mad-32TAG as a template. 

To explore whether sulfotransferase with similar structure with NnSULT1C1 could catalyze tyrosine sulfation, 

pEvol-mSULT1D1/hSULT1C2-cysDNCQ was constructed by assembling synthetic sulfotransferases amplified 

by Da832&833/ Da838&839 with pEvol-NnSULT1C1-cysDNCQ vector amplified with Da802&803.  

To test the importance of NnSULT1C1 loop (SIQEPPAAS)  and residues (T30, I33, W93, E161) involved in 

substrate binding, their corresponding mutants was obtained by Gibson Assembling pEvol-NnSULT1C1-

cysDNCQ fragments amplified with Da858&859, Da871&872, Da873&874, Da875&876, Da877&878. 

To express NnSULT1C1 with his6 tag at C terminal for its kinetics measurement, NnSULT1C1 was amplified 

from pEvol-NnSULT1C1-cysDNCQ with Da687&688 and Gibson Assembled with pET22b-T5-sfGFP151TAG 

digested with Hind3 and Nde1, which yields pET22b-T5-NnSULT11-His6. 

 

 

Expression and Purification of Proteins. 

E. coli BL21(DE3) cells, transformed with pUltra-sTyrRS, pLei-sfGFP134TAG, and pBad-Empty/pBad-

HsSULT1A1/pBad-HsSULT1A3/pBad-RnSULT1A1/pBad-GgSULT1C1/pBad-CsSULT1C2, were grown in 2YT 

medium at 37°C. The protein expression was carried out in Luria-Bertani (LB) medium with or without 1 mM 

sTyr addition. When the OD600 of the cell culture reached 0.6, protein expression was induced by the addition 

of IPTG and l-arabinose to a final concentration of 1 mM and 0.2%, respectively.  After growth overnight at 30 °C. 

Cells were harvested by centrifugation at 4,750 × g for 10 min and used for GFP fluorescence and cell optical 

density measurements.  (Fig.S1) 

BW25113, ΔtrpE BW25113, ΔtyrA BW25113, ΔackA BW25113, ΔptsH BW25113, ΔcysH BW25113 cells 

transformed with pUltra-sTyrRS, pET22b-T5-sfGFP151TAG, and pEvol-NnSULT1C1/pEvol-Empty, were grown 

in 2YT medium at 37°C. The protein expression was carried out in Luria-Bertani (LB) medium with or without 1 

mM sTyr addition. When the OD600 of the cell culture reached 0.6, protein expression was induced by the 

addition of IPTG and l-arabinose to a final concentration of 1 mM and 0.2%, respectively.  After growth overnight 

at 30 °C. Cells were harvested by centrifugation at 4,750 × g for 10 min and used for GFP fluorescence and cell 

optical density measurements. (Fig. 3B) 

ΔcysH BW25113, transformed with pUltra-sTyrRS, pET22b-T5-sfGFP151TAG, and pEvol-Empty/pEvol- 

NnSULT1C1/ pEvol- NnSULT1C1-cysDNC/pEvol- NnSULT1C1-cysDNCQ, were grown in 2YT medium at 37°C. 

The protein expression was carried out in Luria-Bertani (LB) medium with or 1 mM sTyr addition. When the 

OD600 of the cell culture reached 0.6, protein expression was induced by the addition of IPTG and l-arabinose 

to a final concentration of 1 mM and 0.2%, respectively.  After growth overnight at 30 °C. cells were harvested 

by centrifugation at 4,750 × g for 10 min and used for GFP fluorescence and cell optical density measurements. 

(Fig. 3C) 

ΔcysH BW25113 cells, transformed with pUltra-sTyrRS, pET22b-T5-sfGFP151TAG, and pEvol-Empty/pEvol-

NnSULT1C1-cysDNCQ, were grown in 2YT medium at 37°C. The protein expression was carried out in Luria-
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Bertani (LB) medium. When the OD600 of the cell culture reached 0.6, NnSULT1C1 expression was induced 

by indicated concentration of l-arabinose and grown at 30°C for 6 h. Then the cells were diluted 5 times to OD 

0.6. Expression of reporter sfGFP and sTyrRS were induced with 1 mM IPTG and indicated concentration of 

sTyr was added at same time. Additional l-arabinose was also added to maintain its indicated concentration.  

After growth at 30 °C for 18 hours, cells were harvested by centrifugation at 4,750 × g for 10 min and used for 

GFP fluorescence and cell optical density measurements. (Fig. 3D) Proteins were purified on Ni-NTA resin 

(Qiagen) following the manufacturer’s instructions. The purified protein was used for SDS-PAGE and  ESI-MS 

analysis. (Fig. 3F-H) 

ΔcysH BW25113 cells, transformed with pUltra-sTyrRS, pET22b-T5-sfGFP151TAG, and pEvol-Empty/pEvol-

NnSULT1C1-cysDNCQ, were grown in 2YT medium at 37°C. The protein expression was carried out in Luria-

Bertani (LB) medium. When the OD600 of the cell culture reached 0.6, NnSULT1C1 expression was induced 

by 15 mg/L l-arabinose and grown at 30°C for 6 h. Then the cells were diluted 5 times to OD 0.6. Expression of 

reporter sfGFP and sTyrRS were induced with 1 mM IPTG and indicated concentration of sTyr was added at 

same time. Additional l-arabinose was also added to maintain its final concentration of 15 mg/L.  After growth 

overnight at 30 °C for 18 hours, cells were harvested by centrifugation at 4,750 × g for 10 min and used for 

measuring cellular sTyr concentration. (Fig. 3E)  

To express wildtype thrombin inhibitors, BL21(DE3) cells transformed with either pET22b-T5-chi or pET22b-T5-

mad were grown in 2YT medium at 37°C. The protein expression was carried out in LB medium. When the 

OD600 of the cell culture reached 0.6, protein expression was induced by the addition of 0.4 mM IPTG. After 

growth overnight at 18 °C for 18 hours, cells were harvested by centrifugation at 4,750 × g for 10 min. Proteins 

were purified on Ni-NTA resin (Qiagen) following the manufacturer’s instructions. The purified protein was used 

for SDS-PAGE and ESI-MS analysis. (Fig. 5C) 

To express thrombin inhibitors containing sTyr, ΔcysH BW25113 cells, transformed with pUltra-sTyrRS, 

pET22b-T5-inhibitor-X-TAG, and pEvol-NnSULT1C1-cysDNCQ, were grown in 2YT medium at 37°C. In the 

control group,  ΔcysH BW25113 cells were transformed with pUltra-sTyrRS, pET22b-T5-inhibitor-X-TAG, and 

pEvol-Empty. When the OD600 of the cell culture reached 0.6, NnSULT1C1 expression was induced by 15 

mg/L concentration of l-arabinose and grown at 30°C for 6 h. Then the cells were diluted 5 times to OD 0.6. 

Expression of inhibitor and sTyrRS were induced with 1 mM IPTG and 3 mM sTyr was added to only control 

cells at same time.  Additional l-arabinose was also added to maintain its final concentration of 15 mg/L.  After 

growth overnight at 18 °C for 18 hours, cells were harvested by centrifugation at 4,750 × g for 10 min. Proteins 

were purified on Ni-NTA resin (Qiagen) following the manufacturer’s instructions. The purified protein was used 

for SDS-PAGE and  ESI-MS analysis. (Fig. 5C and S11) 

To test the importance of the variable loop and residues in binding pockets, ΔcysH BW25113 cells, transformed 

with pUltra-sTyrRS, pET22b-T5-sfGFP151TAG, and pEvol-NnSULT1C1-cysDNCQ with indicated sequence 

mutations were grown in 2YT medium at 37°C. To test the tyrosine sulfation activity of the top 3 sulfotransferases 

with similar structure to NnSULT1C1, ΔcysH BW25113 cells, transformed with pUltra-sTyrRS, pET22b-T5-

sfGFP151TAG, and pEvol-X sulfotransferase-cysDNCQ were grown in 2YT medium at 37°C. The protein 

expression was carried out in LB medium. When the OD600 of the cell culture reached 0.6, sulfotransferase 

expression was induced by 15 mg/L  l-arabinose and grown at 30°C for 6 h. Then the cells were diluted 5 times 
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to OD 0.6. Expression of sfGFP and sTyrRS were induced with 1 mM IPTG.  Additional l-arabinose was also 

added to maintain its final concentration of 15 mg/L.  After growth overnight at 30 °C for 18 hours, cells were 

harvested by centrifugation at 4,750 × g for 10 min and used for GFP fluorescence and cell optical density 

measurements. (Fig. 2B, C, F)  

To express NnSULT1C1 for kinetics measurment, BL21(DE3) cell transformed with pET22b-T5-NnSULT11-

His6 was grown in 2YT medium at 37°C.  The protein expression was carried out in Luria-Bertani (LB) medium. 

When the OD600 of the cell culture reached 0.6, protein expression was induced by the addition of 0.3 mM 

IPTG. After growth overnight at 30 °C for 18 hours, cells were harvested by centrifugation at 4,750 × g for 10 

min. Proteins were purified on Ni-NTA resin (Qiagen) following the manufacturer’s instructions. The purified 

protein was used for SDS-PAGE and kinetic assay. (Fig. S7) 

Expression and Fluorescence Measurement of sfGFP 

After sfGFP expression with the methods described above, 0.5 mL cells were harvested by centrifugation at 

4,750 × g for 10 min and then suspended with 0.5 ml PBS (pH 7.4).  Fluorescence of cells was measured using 

excitation/emission wavelengths of 395/509 nm. Optical Density at 600 nm was also obatined. The sfGFP 

fluorescence/OD600 was used as the normalized fluorescence. The error bars represent the standard 

deviations of 3 independent protein expression trials. 

E. coli Intracellular sTyr Concentration Measurement 

Cells were harvested by centrifugation at 4,750 × g for 10 min and washed with PBS 7.4 for three times. The 

cell pellets were re-suspended in 300 µL of bugbuster lysis buffer : toluene (80: 20) solution and shaken at 30 ℃ 

for 1 h. The resulting lysate was centrifuged at 21000 g for 30 min at 4 ℃. 200 µl supernatant was transferred 

to a new tube and re-centrifuged at 21000 g for 2 h. 50 µl supernatant from the top was then analyzed using the 

LC-MS. An Agilent 1260 Infinity II LC System coupled with Single Quadrupole ESI-MS System was used for 

analysis of all samples. To measure the sTyr ions, ions detected were set to selected ion monitoring (SIM) mode 

(262 m/z) to detect positive ions of sTyr. Standards of 1 µM, 25 µM, 50 µM, 100 µM, 200 µM, and 400 µM of 

authentic sTyr (Bachem) were also prepared and analyzed by the same method. Using LC-MS data, a linear 

standard curve was generated based on peak areas corresponding to sTyr ions and the concentration of sTyr 

in standards. The standard curve was then used to calculate the concentrations of sTyr from different cell lysates. 

Each sample was carried out in n=3 independent groups. The intracellular concentration of sTyr in cells was 

calculated based on the following equation. 

[𝒔𝑻𝒚𝒓	𝒊𝒏𝒕𝒓𝒂𝒄𝒆𝒍𝒍𝒖𝒍𝒂𝒓] =
𝒔𝑻𝒚𝒓	𝒄𝒐𝒏𝒄𝒆𝒏𝒕𝒓𝒂𝒕𝒊𝒐𝒏	𝒊𝒏	𝒍𝒚𝒔𝒂𝒕𝒆	 × 𝒗𝒐𝒍𝒖𝒎𝒏	𝒐𝒇	𝒍𝒚𝒔𝒂𝒕𝒆

	𝒕𝒐𝒕𝒂𝒍	𝒄𝒆𝒍𝒍	𝒏𝒖𝒎𝒃𝒆𝒓𝒔	 × 	𝑬. 𝒄𝒐𝒍𝒊	𝒄𝒆𝒍𝒍	𝒗𝒐𝒍𝒖𝒎𝒏
 

Total cell numbers were calculated with the approximate values:  8 ×108 cells per OD600. 0.6 fL was used as 

an average E. coli cell volume. 

Exploration on evolutionary relationship of NnSULT1C1 

The rooted phylogenetic tree was inferred using the UPGMA method in MEGA X software. The UPGMA 

algorithm constructs the tree that reflects the genetic distance between protein sequences present in a pairwise 

similarity matrix. The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary 

distances used to infer the phylogenetic tree. The evolutionary distances were computed using the Poisson 



 18 

correction method and are in the units of the number of amino acid substitutions per site. 10 sequences from 

bottom branch were used for Multiple sequence alignment (MSA) on https://www.ebi.ac.uk/Tools/msa/ with Maftt 

method. The alignment result was visulized in Jalview software. The sequence consensus was analyzed at 

https://weblogo.berkeley.edu. (Fig. S2) 

Kinetics Measurement of NnSULT1C1 

The purified NnSULT1C1 was buffer exchanged to 10 mM NH4OAc buffer pH 8 via PD-10 column. The 

concentration of enzyme was calculated based on its Absorption at 280 nm. The enzymatic reaction was 

performed in 100 µL 10 mM NH4OAc buffer pH 8 including 1 µM NnSULT1C1, 20 µM PAPS, 5 mM CaCl2 and 

variable concentration of tyrosine. The reactions were incubated at 37°C and quenched with 100 µL ACN at 5 

minutes. The supernatants of these mixtures were used for sTyr quantification via ESI-MS. To improve the 

sensitivity of sTyr detection, Selected Ion Monitoring (SIM) mode was used to detect the negative ion 

(m/z=260) under 50 °C drying gas temperature and 2400 V capillary voltage. The standard curve of authentic 

sTyr was prepared under the same condition, which yields the linear relationship between area under the 

curve and its sTyr concentration. To obtain the concentration of sTyr produced in enzymatic reaction,  its area 

under the curve was used to calculate sTyr concentration based on the equation obtained from standard 

curve. Each sample was carried out in n=3 independent samples. The data was fitted to Michaelis-Menten 

equation in Prism. 

Protein Purification from Mammalian Cells 

To confirm the genetic incorporation of sTyr from either biosynthesis or external addition, HEK293T and 

HEK293T-NnSULT1C1 cells were transfected with pAcBac2.tR4-sTyrRS/GFP* with Polyjet In Vitro DNA 

Transfection Reagent (SignaGen Laboratories) in the presence or absence of 3 mM sTyr addition.  Mediums 

were changed at 12-16 hour after transfection. After 48 hours of transfection, cells were harvested with trypsin 

and subsequently washed by DPBS for 3 times. Cells were lysed using the Mammalian Cell PE LB reagent (G-

Bioscience) according to its manual. The cell lysates were centrifuged at 15,000 rpm for 10 minutes. The protein 

in the supernatant was purified from the supernatant using Ni-NTA resin (Qiagen) following the manufacturer’s 

instruction. The purified protein was used for ESI-MS analysis. 

Mammalian Cell sTyr Concentration Measurement 

HEK293T and HEK293T-NnSULT1C1 were detached from plate with trypsin and washed with DPBS for 3 times. 

The number of cells was counted by hemocytometer. Cells were resuspended in 0.5 mL methanol-water (2:3) 

and lyzed by six freeze-thaw cycles. The resulting cell lysates were centrifuged at 21000 × g for 1h at 4℃. The 

resuting supernantants were injected to LC-MS for the quantification of sTyr with selected ion monitoring (SIM) 

mode. An Agilent 1260 Infinity II LC System coupled with Single Quadrupole ESI-MS System was used for the 

analysis of all samples. To measure the sTyr ions, ions detected were set to Selected Ion Monitoring (SIM) 

mode (262 m/z) to detect positive ions of sTyr. Standards of 1 µM, 25 µM, 50 µM, 100 µM, 200 µM, and 400 µM 

of purchased sTyr (Bachem) dissolved in methanol-water (2:3)  were also prepared and analyzed by the same 

method. A linear standard curve was generated based on peak areas corresponding to sTyr ions and the 

concentration of sTyr in standard samples. The standard curve was then used to calculate the concentration of 
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sTyr from different cell lysates. The intracellular concentration of sTyr in cells was calculated with the following 

equation. 

[𝑠𝑇𝑦𝑟	𝑖𝑛𝑡𝑟𝑎𝑐𝑒𝑙𝑙𝑢𝑙𝑎𝑟] =
𝑠𝑇𝑦𝑟	𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛	𝑖𝑛	𝑙𝑦𝑠𝑎𝑡𝑒	 × 𝑣𝑜𝑙𝑢𝑚𝑛	𝑜𝑓	𝑙𝑦𝑠𝑎𝑡𝑒

	𝑡𝑜𝑡𝑎𝑙	𝑐𝑒𝑙𝑙	𝑛𝑢𝑚𝑏𝑒𝑟𝑠	 × 		𝑐𝑒𝑙𝑙	𝑣𝑜𝑙𝑢𝑚𝑛
 

2 pL was used as an average volume of mammalian cells. 

 

Mass Spectra Methods For Proteins 

A single quadrupole mass spectrometer (Agilent: G7129A) coupled with 1260 infinity II Quaternary Pump 

(Agilent: G7111B) was used for all the protein samples with PLRP-S (1000A, 5 μm) column.  Water with 0.1% 

formic acid and ACN with 0.1% formic acid were the organic and aqueous mobile phase, respectively. Flow 

gradient was initially set at 5% ACN, 15% ACN at 0.1 min, 55% ACN at 4.5 min and then back to 10% ACN at 

5 min. Spectra were deconvoluted using the Maximum Entropy deconvolution algorithm in the software 

BioConfirm. 

 


