Supplementary Information

Molecular architecture of the augmin complex

Clinton A. Gabel^{1,3}, Zhuang Li^{1,3}, Andrew G. DeMarco^{2,3}, Ziguo Zhang⁴, Jing Yang⁴, Mark C. Hall^{2,3}, David Barford⁴, and Leifu Chang^{1,3,*}

¹Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA.

²Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA.

³Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.

⁴MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK.

*Correspondence to L.C. (<u>lchang18@purdue.edu</u>).

Supplementary Figure 1. Secondary structure prediction and EM methodology. (a) Schematic of HAUS subunits with predicted α -helices highlighted in pink. (b) Negative stain EM micrograph of augmin holo-complex from a total of 210 micrographs. Scale bar: 100 nm. (c) Representative 2D classes (out of a total of 100 classes) of augmin holo-complex from negative stain EM. Scale bar: 20 nm. (d) A cryo-EM micrograph of augmin^{Δ H6C} on holey carbon grids from a total of 20 micrographs. Scale bar: 100 nm. (e) A cryo-EM micrograph of augmin^{Δ H6C} on holey carbon grids covered with graphene oxide flakes from a total of 20 micrographs. Scale bar: 100 nm. (f) A cryo-EM micrograph of augmin^{Δ H6C} on holey carbon grids covered with a thin, amorphous carbon layer from a total of 2,100 micrographs. Augmin particles are indicated in white boxes. Scale bar: 100 nm.

Supplementary Figure 2. Segmentation of augmin for cryoEM analysis. (a) Cryo-EM 2D classes of augmin^{ΔH6C}. Green squares indicate classes centered on the V-shaped head. Green circles indicate classes centered on the neck. Red circles indicate classes centered on the legs of the tail. **(b)** Overall 3D classification maps of augmin. Percentage of total particles for each

volume listed below volumes. (c) 2D classes of the segmented V-shaped head. (d) Resulting 3D classification volumes from the 2D classes of the V-shaped head in c. Classes 1 and 3 represent the extended state of augmin. Class 2 represents the contracted state of augmin. (e) 2D classes of the centered legs. (f) Resulting 3D map of the legs from the 2D classes in e. (g) 2D classes of the centered neck of the tail. (h) Resulting 3D classification volume of the neck of the tail from the 2D classes in g. (i) FSC curves for the different maps represented in d, f, and h.

Supplementary Figure 3. Fitting of AlphaFold2 predictions into the tip of branch 1. (a) H1–8 subunits AlphaFold2 predictions from the AlphaFold Protein Structure Database. (b) Fitting of H6's AlphaFold2 structure prediction, a.a. 1–160, (α 1–8) within the cryo-EM map of the tip of branch 1. (c) Fitting of H7's AlphaFold2 structure prediction, a.a. 26–180, (α 1–8) within the cryo-EM map of the tip of branch 1. (d) Fitting of both N-termini of H6 and H7 within the cryo-EM map of the tip of branch 1.

Supplementary Figure 4. Structure prediction of binary combinations of H1–8 subunits by ColabFold. (a) ColabFold prediction of binary combinations of H1–8 subunits. Binary combinations with structure well fitted within the cryo-EM map are indicated by boxes. (b) Representation of surface contact between subunits, with larger black circles representing greater contact between the two subunits.

Supplementary Figure 5. Rigid-body fitting of predicted structure to the cryo-EM map of augmin. (a) Rigid-body fitting of the ColabFold predictions of the H1/4 dimer to the long leg in the cryo-EM map of augmin. (b) Rigid-body fitting of the ColabFold predictions N-termini of the H3/5 dimer to the short leg in the cryo-EM map of augmin. (c) Rigid-body fitting of the ColabFold predictions of the H1/4 dimer and the C-termini of the H3/5 dimer to the long leg in the cryo-EM map of augmin. 60 a.a glycine linkers were used to allow for structure prediction of more than two subunits. (d) Rigid-body fitting of the ColabFold prediction of the H3/5 dimer within the neck

and short leg of the cryo-EM map of augmin. (e) Rigid-body fitting of the ColabFold predictions of the N-termini of H2/6N/7/8 within branch 1 of the V-shaped head. 60 a.a glycine linkers were used to allow for structure prediction of more than two subunits. (f) Rigid-body fitting of the ColabFold predictions of H2/6N/7/8 within the kink of the V-shaped head. 60 a.a glycine linkers were used to allow for structure prediction of more than two subunits. (g) Rigid-body fitting of the ColabFold predictions of H2/6N/7/8 within branch 2 of the V-shaped head. 60 a.a glycine linkers were used to allow for structure prediction of more than two subunits. (g) Rigid-body fitting of the ColabFold predictions of H2/6N/7/8 within branch 2 of the V-shaped head. 60 a.a glycine linkers were used to allow for structure prediction of more than two subunits. (h) AlphaFold Multimer prediction of the V-shaped head of augmin with H2/6N/7/8. (i) AlphaFold Multimer prediction of the tail of augmin with H1/3/4/5.

Supplementary Figure 6. Examples of MSMS spectra from identified DSSO-crosslinked

HAUS peptides. (a) SDS-PAGE showing crosslinked augmin. The results shown are representative of more than three experiments. (b,c) y and b fragment ions and DSSO signature parent peptide ions (M) matched to HAUS subunit peptides by MetaMorpheus are labeled. Ions are singly charged unless indicated otherwise. (b) Peptide pair 26 from Table 3 containing HAUS7 peptide ²¹⁹SEEEE<u>K</u>LAELAR (blue labels) and HAUS8 peptide ¹⁷⁷NLLIMC<u>K</u>EK (red labels). (c) Peptide pair 7 from Table 3 containing HAUS4 peptide ¹¹⁶ARLQQEVEEQL<u>K</u>K (blue labels) and HAUS3 peptide ¹²¹N<u>K</u>CQLMASVTSHK (red labels).

Supplementary Figure 7. Intrasubunit crosslinks identified in purified augmin^{Δ H6C} complex. Intrasubunit crosslinks are mapped onto the augmin structure using PyXlinkViewer. Subunits are colored as in other figures. Labels correspond to numbers in **Supplementary** Table 2. Black lines represent crosslink C α -C α distances <30 Å and light gray lines represent distances >30 Å.

Supplementary Figure 8. Comparison of the cryo-EM map fitted subunits and AlphaFold2 Predictions. Cryo-EM map fitted HAUS subunits (colored) aligned with the single subunit predictions from the AlphaFold Protein Structure Database.

	Head	Tail	Neck	Head
	(Extended)			(Contracted)
Data collection and processi	ng		-	-
Magnification	105,000	105,000	105,000	105,000
Voltage (kV)	300	300	300	300
Electron exposure (e ⁻ /Å ²)	25	25	25	25
Defocus range (–µm)	0.6–1.2	0.6–1.2	0.6–1.2	0.6–1.2
Pixel size (Å)	1.384	1.384	1.384	1.384
Symmetry imposed	C1	C1	C1	C1
Initial particle images (no.)	1,173,445	1,173,445	1,173,445	1,173,445
Final particle images (no.)	447,864	218,459	71,325	355,252
Map resolution (Å)	5.08	6.76	7.10	5.54
FSC threshold	0.143	0.143	0.143	0.143
Map sharpening <i>B</i> factor (Å ²)	-400	-400	-120	-400
Map resolution range (Å)	5 – 8	6 – 10	7 – 11	5 – 9
Refinement	-			
Initial model used	C	olabFold prediction	ons	
Model resolution (Å)	9.4			
FSC threshold	0.5			
Model resolution range (Å)	5 – 20			
Model composition				
Non-hydrogen atoms	23600			
Protein residues	2927			
Nucleotides	0			
Ligands	0			
<i>B</i> factors (Å ²)				
Protein		312		
R.m.s. deviations				
Bond lengths (Å)	0.004			
Bond angles (°)	0.872			
Validation				
MolProbity score		1.55		
Clashscore	7.31			
Poor rotamers (%)	0.04			
Ramachandran plot				
Favored (%)		97.18		
Allowed (%)	2.79			
Disallowed (%)	0.03			

Supplementary Table 1 Cryo-EM data collection, refinement and validation statistics

	CL Distance (Å)	Protein	Peptide1	Peptide2	Score
1	18.2		¹⁷⁹ RQNMDFL <u>K</u> AK ¹⁷³ A <u>K</u> VDNR ¹⁹⁴ FGI <u>K</u> AAEEQLSAR ¹⁸⁷ A <u>K</u> SEEFR		15.5
2	14.1	TIAUST			18.5
	*	HAUS2	²⁷⁶ VHVQTINA <u>K</u>	²⁵³ ILAEESYLY <u>K</u> HDIIMPPLPFTSK	12.2
3	28.0		⁸⁶ TSDL <u>K</u> TPR	⁶⁷ SG K PILEGAALDEALKTCK	26.5
4	9.6	HALISS	¹²⁰ RN <u>K</u> CQLMASVTSHK	¹¹⁴ NL <u>K</u> IQR	16.2
	self-link	TIA000	⁴³⁹ NTID <u>T</u> KDYSTHR	⁴³⁹ NTID T KDYSTHR	16.2
5	20.9		⁴³⁹ NTIDT <u>K</u> DYSTHR	⁴⁵¹ LYQVLEGEN K KK	11.2
6	128.7	HALISA	¹⁸⁵ KSAAY S QVLLR	³⁰¹ QATENKRWALQEF § KVYR	12.1
7	14.3	112024	³⁰⁸ WALQEFS <u>K</u> VYR	³⁰¹ QATEN <u>K</u> R	38.3
8	15.7		¹⁹⁶ AQFLQNLLLPQA <u>K</u> R	³⁷⁸ ELQA <u>K</u> QQR	41.4
9	9.9		³⁵⁷ ALHDQ S QELQDAAGHR	³⁴⁹ CCLWTEL <u>K</u>	21.3
10	9.5		⁴⁰² LLIKGNSA S KTR	⁴¹⁷ S PGEVLALVQR	24.2
11	9.9		⁴¹⁷ S PGEVLALVQR	⁴⁰⁶ GNSA <u>S</u> KTR	19.4
12	16.5	HAU33	⁴¹⁷ S PGEVLALVQR	⁴²⁸ KVVPTFEAVAPQSR	23.4
13	65		⁴²⁸ KVVPTFEAVAPQSR	³⁷⁸ ELQA <u>K</u> QQR	17.2
14	32.5		⁴²⁸ KVVPTFEAVAPQSR	⁴⁰² LLI K GNSASK	25.5
15	109.2		⁵⁶⁵ ENLGQAL <u>K</u> R	⁵⁷⁴ LE <u>K</u> LLK	30.3
16	15.0		¹⁵⁹ PQDLH <u>K</u> CIAR	¹⁴⁶ NSSHHFVE <u>T</u> FNIK	11.2
17	18.5		¹⁹⁰ YQENAQLSV <u>K</u> QVR	¹⁷⁶ FLQILQRQDCV <u>T</u> QK	30.4
18	10.1		³³⁰ LTVDLHYLE <u>K</u> ETK	³⁴³ FQ <u>K</u> ER	11.1
19	10.7	TAUS0	³⁴⁸ LSDL <u>K</u> HMR	³⁴³ FQ <u>K</u> ER	21.4
20	10.4		³⁴⁸ LSDL <u>K</u> HMR	³⁵⁸ I <u>K</u> DDLTTIR	37.4
21	14.4		³⁵⁶ YRI <u>K</u> DDLTTIR	³⁶⁷ H S VVEK	13.2
22	39.3	HAUS7	³³⁵ AVETV <u>K</u> K	³⁶² MNELME <u>K</u>	24.3
	self-link		¹² PATGPTNSSSA K K	¹² PATGPTNSSSA <u>K</u> K	10.1
	*		⁴⁶ TTQ K APAGDGSQTR	³⁹ YLQYE <u>K</u> K	34.4
	*		⁴⁶ TTQ <u>K</u> APAGDGSQTR	⁶⁰ G <u>K</u> MSEGGR	18.2
	*		⁴⁶ TTQ K APAGDGSQTR	⁶⁸ <u>K</u> SSLLQK	26.3
	*		⁶⁰ G <u>K</u> MSEGGR	³⁹ YLQYE <u>K</u> K	20.6
	self-link		⁶⁰ G <u>K</u> MSEGGR	⁶⁰ G <u>K</u> MSEGGR	16.4
	*		⁶⁸ <u>K</u> SSLLQK	⁶⁰ G <u>K</u> MSEGGR	29.5
	*		68 <u>K</u> SSLLQK	⁷⁵ S K ADSSGVGK	23.5
	*	TAUS0	⁶⁸ K <u>S</u> SLLQK	⁴⁶ <u>T</u> TQKAPAGDGSQTR	14.1
	*		¹¹⁶ TPQLA K TISK	¹¹² SIV <u>K</u> K	22.2
	*		¹²⁶ KPESTSFSAPR	60G <u>K</u> MSEGGR	12.5
	*		¹²⁶ KPESTSFSAPR	¹¹⁶ TPQLA <u>K</u> TISK	23.5
23	14.1		¹⁷³ RAE <u>K</u> NLLIMCK	¹⁸⁴ E K EKLQKK	17.2
24	6.3		¹⁹¹ KAHELK	¹⁸⁴ EKE <u>K</u> LQK	17.2
25	8.6		²³⁵ <u>T</u> FATALDTTRHELPVR	²²⁹ F <u>K</u> EQYR	16.1
	*		³²⁵ EAALANQEVWEE <u>T</u> QGMAPPSR	³¹⁰ RSFAQVLELSAEA <u>S</u>K	24.4

Supplementary Table 2. Intrasubunit crosslinks identified in purified augmin^{ΔH6C} complex.

Numbers in left column correspond to labels in Supplementary Fig. 7

*= peptide 1 is not present in structure

Crosslinked amino acids are underlined in bold

Score is the Total XL score from Metamorpheus.

oupplementaly rable of oubding names deross species and nobil decession ibs			
H. sapiens	D. melanogaster	A. thaliana	X. laevis
HAUS1 isoform 1	Wee Augmin (WAC)	AUGMIN subunit 1	HAUS1
(NP_612452.1)	(NP_001261194.1)	(NP_001031524.1)	(XP_041426206.1)
HAUS2 isoform 1	Msd1, Dgt9	AUGMIN subunit 2	HAUS2
(NP_060567.1)	(NP_612100.2)	(NP_565760.1)	(NP_001085195.1)
HAUS3 isoform 1	Dgt3	AUGMIN subunit 3	HAUS3
(NP_001290072.1)	(NP_01285856.1)	(NP_199663.2)	(NP_001086973.1)
HAUS4 isoform 2	Dgt2 (NP_611533.2)	AUGMIN subunit 4	HAUS4
(NP_001159742.1)		(NP_175486.2)	(NP_001089559.1)
HAUS5 isoform 1	Dgt5	AUGMIN subunit 5	HAUS5
(NP_056117.1)	(NP_001286349.1)	(NP_198704.2)	(XP_018082057.1)
HAUS6 isoform 1	Dgt6 (NP_65167.1)	AUGMIN subunit 6	HAUS6
(NP_060115.3)		(NP_568585.1)	(NP_001090564.1)
HAUS7 isoform 1	Msd5, Dgt7	AUGMIN subunit 7	HAUS7
(Q99871.3)	(NP_612101.1)	(NP_568354.1)	(NP_001121229.1)
HAUS8 isoform 1/A	Dgt4	AUGMIN subunit 8	HAUS8
(NP_219485.1)	(NP_001259231.1)	(NP_001329921.1)	(NP_001090302.1)

Supplementary Table 3. Subunit names across species and NCBI accession IDs

H. sapiens	D. melanogaster	A. thaliana	X. laevis
HAUS Subunits	(Identity/Similarity%)	(Identity/Similarity%)	(Identity/Similarity%)
HAUS1	17.2/31.2	25.1/46.6	53.6/71.3
HAUS2	14.8/30.0	19.0/33.8	45.9/62.7
HAUS3	19.3/40.0	21.2/43.7	47.5/58.8
HAUS4	17.3/32.1	19.8/34.0	38.6/57.5
HAUS5	18.1/21.6	19.1/25.6	32.5/51.0
HAUS6	17.9/32.2	18.7/31.0	36.9/55.4
HAUS7	16.2/32.7	17.9/34.0	35.7/54.8
HAUS8	14.4/21.6	15.8/25.6	33.6/51.0

Supplementary Table 4. Sequence comparison of human augmin subunits to other species.

eappienteritary ran	
Oligonucleotide	Sequences
H1_F	ATTTACAATCAtgGAGCCACAAGAGGAAAG
H1_R	ACCGCATGCtCACAACTCCATCATATCCACC
H2_F	ACTTCCAGTCAAtGGCAGCTGCAAACCCTTG
H2_R	AAGCTTGttaCTTTGCGTTAATGGTCTGAAC
H3_F	ATTTACAATCAtgTCATGTGGAAACGAATTTGTAG
H3_R	ACCGCATGCt CAATCTTCCAGGCTAACTGC
H4_F	ACCTATAAATAtgGCTTCAGGTGATTTCTGC
H4_R	AAGCTTGttaACGGTAG ACCTTAGAGAACT
H5_F	ACCTATAAATAtgGAATTAG CACAAGAAGCTC
H5_R	AAGCTTGtCAGCTGCACAGTTTCTGGA
H6_F	ATTTACAATCAtgTCAAGCGCATCTGTGAC
H6_R	ACCGCATGCttaCCTCGTA AGGTCGCTTG
H6N_F	ATTTACAATCAtgTCAAGCGCATCTGTGAC
H6N_R	ACCGCATGCttaATCAGGTAAACTGGCCGGGTATTGACA
H7_F	ATTTACAATCAtgGGAGGAGCTAGACTTGG
H7_R	ACCGCATGCttaCTTCTCCATCAGTTCGTTCA
H8_F	ACCTATAAATAtgGCTGATT CCTCCGGTAGAG
H8 R	AAGCTTGttaTGAAAGATCACGACCACTACGAGAGAGACT

Supplementary Table 5. Oligonucleotide sequences for PCR amplification of H1–8.