Imprinting fidelity in mouse iPSCs depends on sex of donor cell and medium formulation

Maria Arez, Melanie Eckersley-Maslin, Tajda Klobučar, João von Gilsa Lopes, Felix Krueger, Annalisa Mupo, Ana Cláudia Raposo, David Oxley, Samantha Mancino, Anne-Valerie Gendrel, Bruno Bernardes de Jesus, Simão Teixeira da Rocha

SUMMARY OF SUPPLEMENTARY INFORMATION

Supplementary Figure 1 – Expression analysis of pluripotent markers in F1 hybrid KSR-iPSCs

Supplementary Figure 2 – Widespread imprinting methylation defects in KSR-iPSCs

Supplementary Figure 3 – RNAseq data of KSR-iPSCs

Supplementary Figure 4 – Generation of F1 hybrid FBS-iPSCs

Supplementary Figure 5 – Imprinting defects in the *Dlk1-Dio3* locus in female and male KSR- and FBS-iPSCs

Supplementary Figure 6 – Expression analysis of genes involved in the DNA methylation machinery and imprinting protection

Supplementary Figure 7 – Imprinting and global 5mC/5hmC dynamics during reprogramming and maintenance of iPSCs

Supplementary Figure 8 – Persistence of imprinting errors in iPSC-derived NPCs

Supplementary Figure 9 – Expression of imprinted genes in KSR/FBS- and FBS+VitCiPSCs

Supplementary Figure 10 – FACS gating strategy

Supplementary Table 1 - Previous studies addressing imprinting defects in mouse iPSCs

Supplementary Table 2 - Primers used for pyrosequencing, RT-qPCR, genotyping and allelic expression experiments

Supplementary Table 3 - Primers used for IMPLICON experiments

С

Upregulated autosomal genes

Upregulated X-linked genes e.g: Dusp9, Hprt, Mecp2, Rbmx1, Kdm5c

Downregulated genes

Supplementary Figure 1 – Expression analysis of pluripotent markers in F1 hybrid KSR-iPSCs

- A. RT-qPCR expression analyses of pluripotent markers (*Pou5f1*, *Nanog* and *Esrrb*) normalised with the *Gapdh* housekeeping gene in female MEFs, female (F KSR1-F KSR6), male (M KSR1-M KSR6) iPSCs and JM8.F6 and TX 2i ESCs; Values for each gene were normalised to the JM8.F6 ESCs; each bar represents data from only one biological replicate. Source data are provided as a Source Data file.
- B. Representative immunofluorescence (IF) images for three pluripotent markers (SSEA1, OCT4 and NANOG) in red and nuclei in blue (DAPI staining) in F KSR2 and M KSR5 iPSCs; This experiment was performed once per cell line for each antibody. Scale bars correspond to 10 μm.
- C. Representative karyotypes of M KSR3, M KSR5, F KSR2 and F KSR4 iPSC lines with 40 chromosomes each (N=40); Scale bars correspond to 10 μ m; A normal karyotype was considered when most of the metaphases counted presented 40 chromosomes (see Methods).
- D. Percentage of total RNAseq reads mapping on the X chromosome in biological triplicates of male (M KSR3 and M KSR5), female (F KSR2 and F KSR4) iPSCs and TX 2i ESCs. Graph represents the mean percentage ± SEM of reads mapping on the X chromosome per cell line. Source data are provided as a Source Data file.
- E. Differential expression analysis between female and male KSR-iPSCs using both EdgeR and intensity difference filter (*p*-value < 0.05 with multiple testing correction using Benjamini and Hochberg correction for both). Graph represents the number of upregulated and downregulated genes in female versus male KSRiPSCs. The number of differentially expressed genes from the X chromosome is highlighted. There are no downregulated X-linked genes. Source data are provided as a Supplementary Data 1.

Supplementary Figure 2 – Widespread imprinting methylation defects in KSRiPSCs

- A. Methylation analysis of *Sox2* (unmethylated control) and *Prickle1* (methylated control) in male and female MEFs, female (F KSR1-F KSR6) and male (M KSR1-M KSR6) iPSCs and TX 2i ESCs; Each graph represents the mean ± SD methylation levels measured at each CpG within different genomic regions per parental allele for each sample (number of CpG per locus *Sox2*: n=14; *Prickle1*: n=10); Source data are provided as Supplementary Data 2.
- B. Methylation analysis of *Gnas* and *Kcnq1-Kcnq1ot1* imprinted loci in female and male MEFs, female (F KSR1-F KSR6) and male (M KSR1-M KSR6) iPSCs and TX 2i ESCs; Each graph represents the mean ± SD methylation levels measured at each CpG within different genomic regions per parental allele for each sample (number of CpG per locus *Gnas*: n=10; *Kcnq1-Kcnq1ot1*: n=23); Source data are provided as Supplementary Data 2.
- C. Plots display methylated and unmethylated CpGs for each CpG position (in columns) in all the individual reads (in rows) for both maternal and paternal alleles of *Gnas* and *Kcnq1-Kcnq1ot1* imprinted loci in female MEFs, F KSR2 and M KSR5 iPSCs and TX 2i ESCs.

Supplementary Figure 3 - RNAseq data of KSR-iPSCs

- A. Heatmap representing the percentage of total reads of each parental chromosome (MAT maternal; PAT paternal) in biological triplicates of female MEFs, female (F KSR2 and F KSR4) male (M KSR3 and M KSR5) iPSCs and TX 2i ESCs. Note: absence of Y chromosome in M KSR3 and M KSR5 is due to low number of confident SNPs for this chromosome (1132) compared to others (e.g, X chromosome 636442 SNPs). Source data are provided as a Source Data file.
- B. Percentage of total RNAseq reads of chromosome 6 (top) and of allele-specific reads distinguishing the two parental chromosomes 6 (bottom) in biological triplicates of female MEFs, female (F KSR2 and F KSR4), male (M KSR3 and M KSR5) iPSCs and TX 2i ESCs. Graphs represent the mean percentage ± SEM of total (top) and allele-specific (bottom) reads mapping on the chromosome 6 per cell line. Source data are provided as a Source Data file.
- C. Genome browser view of chromosome 6 region containing *Mest* imprinted gene (denoted by black arrow); Height of bars correspond to log2 RPKM values for each gene on either maternal (MAT) or paternal (PAT) inherited allele for biological triplicates of female MEFs, female (F KSR2 and F KSR4) male (M KSR3 and M KSR5) iPSCs and TX 2i ESCs. Selected genes names on sense (red) and antisense (dark blue) are shown.

Supplementary Figure 4 – Generation of F1 hybrid FBS-iPSCs

- A. RT-qPCR of pluripotent markers (*Pou5f1, Nanog, Esrrb* and *Sox2*) normalised to the *Gapdh* housekeeping gene in female MEFs, female and male FBS-iPSCs and JM8.F6 ESCs; Values are normalised to JM8.F6 ESCs; Each bar represents data from only one biological replicate. Source data are provided as a Source Data file.
- B. Table and representative H&E staining of teratomas derived from FBS-iPSCs; i, Low magnification of a mature teratoma. ii, Trophectoderm-derived trophoblast giant cells, associated with large vascular spaces (black arrowhead). iii, Ectodermal components corresponding to squamous epithelium (black arrowhead). iv, Endodermal components corresponding to ciliated respiratory epithelium (black arrowhead). v, vi, vii, Mesodermal components (black arrowhead) corresponding to fibrous tissue, cartilage, and blood vessels; Table summarises the successful generation of trilineage teratomas from F FBS1, M FBS1 and M FBS5 iPSCs. Two teratomas per cell line were analysed by H&E staining.
- C. Representative karyotypes of F FBS1, F FBS5, M FBS1 and M FBS5 iPSC lines with 39 chromosomes for the F FBS1 and 40 for the others. Scale bars correspond to 10 μ m; Number of chromosomes considered per each line corresponds to the most frequent pattern present in the metaphases counted (see Methods);
- D. Graph represents mean expression ± SEM measured by RT-qPCR of X-linked genes (*Mecp2*, *Huwe1* and *Jarid1c*) normalised to the *Gapdh* gene in F FBS1, F FBS5, M FBS1, M FBS5, F KSR2 and M KSR5 iPSCs (n=3 biological replicates). Source data are provided as a Source Data file.
- E. Graph represents the mean percentage of methylation ± SEM at methylated and unmethylated alleles of ICRs in both parental MEFs (note: same data as in Fig. 2B, n=2 independent cell lines), female and male FBS-iPSCs (n=5 independent cell lines each); Statistically significant differences between female and male

FBS-iPSCs are indicated as ** p < 0.01; *** p < 0.001 (unpaired two-tailed Student's *t*-test). Source data are provided as Supplementary Data 2.

F. Plots displaying methylated and unmethylated CpGs for each CpG position (columns) in all the individual reads (rows) for both maternal and paternal alleles of *Igf2-H19* and PWS/AS loci in female MEFs, F FBS5 and M FBS5 iPSCs; Schemes on the left represent the normal methylation status in *Igf2-H19* and PWS/AS loci (as in Fig. 2A).

Supplementary Figure 5 – Imprinting defects in the *Dlk1-Dio3* locus in female and male KSR- and FBS-iPSCs

- A. Plots displaying methylated and unmethylated CpGs for each CpG position (in columns) in all the individual reads (in rows) for both maternal and paternal alleles of *Dlk1-Dio3* locus in female MEFs, female and male KSR-iPSCs (F KSR2, F KSR4, M KSR3, M KSR5) and female and male FBS-iPSCs (F FBS1, F FBS5, M FBS1, M FBS5) with the correspondent chromatograms displaying allelic-specific *Meg3* expression assayed by Sanger sequencing on their right. M FBS5 does not express *Meg3*, hence allelic expression was not performed (NA not applicable); scheme on the left of female MEFs plot represent the normal imprinting status of *Dlk1-Dio3* locus with normal *Meg3* expression and with the associated SNP (in blue) of each allele; white circle unmethylated ICR; black circle methylated ICR; Mat maternal allele; Pat paternal allele; orange rectangle expressed gene; grey rectangle –silenced gene; region is not drawn to scale.
- B. Scatter plot representing the correlation between *Dlk1-Dio3* ICR methylation and *Meg3* expression for the samples: F KSR2, F KSR4, M KSR3, M KSR5, F FBS1, F FBS5, M FBS1 and M FBS5. The X-axis represents the average methylation levels of the *Dlk1-Dio3* ICR considering both parental alleles. The Y-axis represents the *Meg3/Gapdh* values measured by RT-qPCR expression analysis and normalised to the M FBS1 iPSC line (n=3 biological independent replicates). *r* represents Pearson's correlation between methylation levels of *Dlk1-Dio3* locus measured by IMPLICON and *Meg3* expression data measured by RT-qPCR. Source data are provided as a Source Data file.

Supplementary Figure 6 – Expression analysis of genes involved in the DNA methylation machinery and imprinting protection

RT-qPCR expression analyses for *Dnmt3a*, *Dnmt3b*, *Dnmt1*, *Dnmt3L*, *Uhrf1*, *Tet1*, *Tet2*, *Tet3*, *Zfp57*, *Trim28* and *Dppa3* normalised with the *Gapdh* housekeeping gene in female MEFs, F KSR2, F KSR4, M KSR3, M KSR5, F FBS1, F FBS5, M FBS1, M FBS5 iPSCs (n=3 biological independent replicates; except for F KSR4 iPSC, where n=3 only for *Dnmt1* and n=2 biological replicates for all the other genes). Graph represents the mean expression \pm SEM for each cell line. Values for each gene were normalised to the M FBS1 iPSC. *P*-values < 0.5 comparing KSR- and FBS-iPSCs are indicated on top of the bars (two-way ANOVA). Source data are provided as a Source Data file.

Supplementary Figure 7 – Imprinting and global 5mC/5hmC dynamics during reprogramming and maintenance of iPSCs

- A-B. FBS-to-KSR (A) and KSR-to-FBS swap (B) experiments briefly, M FBS1 and M FBS5 previously generated in Foetal Bovine Serum-based medium (FBS) were cultured for 10 passages (~20 days) in Knockout Serum Replacement-based medium (KSR), while M KSR3 and M KSR5 previously generated in KSR medium were cultured in FBS medium. Imprinting methylation was measured after swap by IMPLICON and imprinting expression was measured by Sanger Sequencing. Graphs on top in A and B show mean ± SD methylation levels measured at each CpG within different imprinted regions per parental allele for each sample (number of CpG per locus *Peg3*: n=24; *Dlk1-Dio3*: n=27; *Igf2-H19*: n=16; PWS/AS: n=15) before and after swap (note: same data as in Fig. 4B for M FBS1 and M FBS5 iPSCs and as in Fig. 2A for M KSR5 iPSC before swap); On the bottom in A and B, chromatograms of *H19* and *Snrpn* genes are shown for M FBS1 and M FBS5 as well as M KSR3 and M KSR5, respectively, before and after medium swap (note: same chromatograms as in Fig. 4C for M FBS5). Source data are provided as Supplementary Data 2.
- C. Representative flow cytometry plot for F FBS day12 (2) showing where gates were placed for collecting reprogramming [SSEA1+/THY1- (S+/T-) colored in green] and non-reprogramming [SSEA1-/THY1+ (S-/T+) colored in blue] intermediates. Mixed population is colored in orange.
- D. RT-qPCR expression analyses of pluripotent markers (*Nanog* and *Esrrb*) normalised to the *Gapdh* gene in female cells collected during reprogramming (day12 and day24: T+/S- non-reprogramming intermediates; T-/S+ reprogramming intermediates) as well as in fully reprogrammed day50 F FBS2 and F FBS4 iPSCs; each bar represents data from only one biological replicate; Source data are provided as a Source Data file.
- E. Graphs represent the average percentage ± SEM of 5mC and 5hmC per total cytosines in female and male cells sorted at day12 (T+/S-, n=1 for both biological sexes; female T-/S+, n=2; male T-/S+, n=1) and at day24 (female T-/S+, n=3;

male T-/S+, n=2), as well as in female and male day50 FBS-iPSCs (note: same data as in Fig. 5B, D for FBS-iPSCs, n=5 for both biological sexes); Source data are provided as a Source Data file.

- F. Graph represents the mean percentage of methylation ± SEM considering both parental alleles of *Prickle1* gene in female and male cells sorted at day12 (T+/S-, n=1 for both biological sexes; female T-/S+, n=2; male T-/S+, n=1) and day24 (T-/S+, n=2 for both biological sexes) as well as in female and male day50 iPSCs (n=5 for both biological sexes); Source data are provided as Supplementary Data 2.
- G. Allele-specific *H19* and *Snrpn* expression analysis assayed by Sanger sequencing.Chromatograms are shown for M FBS day24 clA and M FBS2.

С

Supplementary Figure 8 – Persistence of imprinting errors in iPSC-derived NPCs

- A. On the left, RT-qPCR expression analyses of pluripotent marker (*Nanog*), pluripotent and Neuronal Precursor Cell (NPC) marker (*Sox2*) and NPC-specific markers (*Ascl1*, *Musashi*, *Nestin*) normalised to the *Gapdh* housekeeping gene in F FBS5, M FBS5 and their correspondent NPCs (n=3 biological independent replicates); Graph represents the mean expression \pm SEM in iPSCs and corresponding NPCs. On the right, a representative bright-field image of the F FBS5 NPCs. Scale bar corresponds to 100 µm. Source data are provided as a Source Data file.
- B. Methylation analysis of *Peg3*, PWS/AS, *Igf2-H19*, *Dlk1-Dio3* imprinted regions and *Prickle1* (methylated control) in F FBS5, M FBS5 iPSCs and correspondent NPCs (note: same data as in Fig. 4B for F FBS5 and M FBS5 iPSC lines); Each graph represents the mean ± SD methylation levels measured at each CpG within different genomic regions per parental allele for each sample (number of CpG per locus *Peg3*: n=24; PWS/AS: n=15; *Igf2-H19*: n=16; *Dlk1-Dio3*: n=27; *Prickle1*: n=10); Source data are provided as Supplementary Data 2.
- C. Allele-specific *H19* and *Snrpn* expression analysis assayed by Sanger sequencing and RT-qPCR expression analysis of *Meg3* normalised to the *Gapdh* housekeeping gene in F FBS5 and M FBS5 NPCs (n=3 biological independent replicates). Graph represents the mean expression ± SEM in F FBS 5 and M FBS 5 NPCs. Source data are provided as a Source Data file.

В

Methylated Unmethylated

Supplementary Figure 9 – Expression of imprinted genes in KSR/FBS- and FBS+VitC-iPSCs

- A. Allele-specific *H19* and *Snrpn* expression analysis assayed by Sanger sequencing in KSR/FBS- and FBS+VitC-iPSCs. Chromatograms for M KSR/FBS1 and M KSR/FBS5 (top) and for M FBS+VitC1 and M FBS+VitC5 (bottom) are shown.
- B. On the left, plots displaying methylated and unmethylated CpGs for each CpG position (in columns) in all the individual reads (in rows) for both maternal and paternal alleles of *Igf2-H19* locus in M FBS+VitC5. On top right, the scheme represents M FBS+VitC5 iPSCs with a mixed population of cells with normal and abnormal imprinting as estimated by the plots presented on the left. The status of *Igf2-H19* ICR with normal and abnormal (hypermethylation) imprinting are also displayed (white circle unmethylated ICR; black circle methylated ICR; Mat maternal allele; Pat paternal allele; orange rectangles expressed genes; grey rectangles silenced genes; regions are not drawn to scale). On the bottom right, graph represents the RT-qPCR expression analysis of *H19* expression normalised with the *Gapdh* housekeeping gene in the subclones of M FBS+VitC5, original M FBS+VitC5 and M FBS2 (normal imprinting); dashed line represents the *Meg3* expression level of the parental M FBS+VitC5 iPSC line; each bar represents data from only one biological replicate. Source data are provided as a Source Data file.

FACS gating strategy

Supplementary Figure 10 – FACS gating strategy

Gating strategy used for FACS-sorting of THY1+/SSEA1- (T+/S-) non-reprogramming intermediates and THY1-/SSEA1+ (T-/S+) reprogramming intermediates. Cells were gated in an FSC and SSC intensity dot plot to eliminate debris. Doublets were excluded based on FCS-W, FSC-A and SSC-W, SSC-A. Then non-reprogramming and reprogramming intermediates populations were discriminated based on CD90.2/Thy1.2 and CD15/SSEA-1 expression (note: last plot on the right is the same data as in Supplementary Fig. 7C). FSC: Forward scatter, SSC: Side scatter.

	Article	Stadtfeld et al., (2010)	Sun, et al., (2012)	Takikawa et al., (2013)	Yagi,et al., (2019)
Reprogramming	System	DOX-inducible, OKSM in <i>Col1a1</i> locus + <i>rtTA</i> in <i>Rosa26</i> locus	Retrovirus vsv- pseudotyped expressing individual human K,O,S,M	DOX-inducible, OSKM in <i>Col1a1</i> locus + <i>rtTA</i> in <i>Rosa26</i> locus	<i>PiggyBac</i> vector containing a DOX- inducible OSKM + <i>rtTA</i>
	Culture Conditions	15% FBS	20% KSR	15% FBS	15% FBS
iPSCs lines	Strain		Reciprocal crosses of C57BL/6J x Cast/Ei	(F)DBA/2 x (M)129	(F)129X1/SvJ x (M) MSM/Ms
	Number	6	8	12	5 (and 1 pre-iPSC)
	Gender	Not defined	Female and Male	Not defined	Male
	Imprinted clusters analysed	Dlk1-Dio3	PWS/AS, Peg3, Kcqn1-Kcnq1ot1 , Dlk1-Dio3, lgf2- H19, Mcts2-H13	Dlk1-Dio3, lgf2- H19, Rasgrf1, Mest/Peg1, Peg3, Sgce-Peg10, PWS/AS, Plagl1/Zac1	Virtually all
	Methylation method	Bisulfite Pyrosequencing	Bisulfite Pyrosequencing	COBRA / Bisulfite sequencing	Bisulfite sequencing MethylC-seq
Imprinting analyses	Expression	Affymetrix mRNA expression microarray & RT-qPCR	Pyrosequencing	Allele-specific RT-PCR	RNA-seq
	Parental allele distinction	No	No	Yes, only for <i>Zim1</i> and <i>Snrpn</i> genes	Yes, large number of genes with SNPs
	Output	Hypermethylation of <i>Dlk1-Dio3</i>	Hypomethylation of PWS/AS, Peg3 & Kcnq1- Kcnq1ot1 (only female); Dlk1- Dio3, Mcts2-H13 and Igf2-H19 (male + female)	Hypomethylation of <i>Dlk1-Dio3</i> , <i>lgf2- H19, Rasgrf1</i> , <i>Peg3</i> , Sgce- <i>Peg10</i> , PWS/AS, <i>PlagI1/Zac1</i> Hypermethylation of <i>Mest/Peg1</i>	Hypermethylation of Dlk1-Dio3 and lgf2- H19

Supplementary Table 1 – Previous studies addressing imprinting defects in mouse iPSCs

Abbreviations: DOX - Doxycycline; OSKM – *Oct4*, *Sox2*, *Klf4*, *c-Myc*; FBS – Fetal Bovine Serum; KSR – Knockout Serum Replacement; F - Female; M – Male.

	Region	Primer name	Primer sequences	PCR conditions
b		L1-A F	AGATTGAGGTATATAGGGAAGTAGGTT	
cir	Line1-A	L1-A R-[Btn]	[biot]ATCCACTCACCAAAAATCTTAAAAT	Tm: 55C
en		L1-A seq	GGTATATAGGGAAGTAGGTTA	
nb		L1-T F	GGTTGGGGAGGAGGTTTAAGTTATA	
Se	Line1-T	L1-T R-[Btn]	[biot]CTACCTATTCCAAAAACTATCAAATTCTCT	Tm: 55C
/ro		L1-T seq	GGGAGGAGGTTTAAGTTATAGTA	
Ð.		IAP F	GAGGGTGGTTTTTTATTTTATGTGT	
	IAP	IAP R [Btn]	[biot]ATCACTCCCTAATTAACTACAACC	Tm: 58C
		IAP seq	TTTTTATTTTATGTGTTTTGTTTTT	
	5	mPou5f1 Fw	CCGGAAGAGAAAGCGAACTA	
	Pou5f1	mPou5f1 Rv	CGCCGGTTACAGAACCATAC	1 m: 60C
		mNanog Fw	CCAGTCCCAAACAAAAGCTC	F 000
	Nanog	mNanog Rv	ATCTGCTGGAGGCTGAGGTA	1 m: 60C
	- /	mEsrbb3 Fw	TCTCATCTTGGGCATCGTGT	F 000
	Esrrb	mEsrbb31 Rv	AGTTTCTTGTACCTGCGCAC	1 m: 60C
	0 "	mGapdh Fw	AACTTTGGCATTGTGGAAGG	F 000
	Gapdh	mGapdh Rv	ACACATTGGGGGTAGGAACA	1 m: 60C
		mMeg3 Fw	TTGCACATTTCCTGTGGGAC	F 000
	Meg3	mMeg3 Rv	AAGCACCATGAGCCACTAGG	1 m: 60C
	D 11	mDnmt1 Fw	ATCAGGTGTCAGAGCCCAAAG	
	Dnmt1	mDnmt1 Rv	TGGTGGAATCCTTCCGATAAC	1m: 60C
	5 10	mDnmt3a Fw	AGACGTCTCCAACATGAGCC	
	Dnmt3a	mDnmt3a Rv	TTTCTCTTCTGGGTGCTGAAC	Tm: 60C
	D (0)	Dnmt3b Fw	CCCTTGAAGGACTACTTTGCC	
	Dnmt3b	Dnmt3b Rv	AGAGAACATGAGCACCATGC	1m: 60C
	5 (0)	Dnmt3L Fw	ATGGACAATCTGCTGCTGACTG	
	Dnmt3L	Dnmt3L Rv	CGCATAGCATTCTGGTAGTCTCTG	1m: 60C
	T . (4	mTet1 Fw	TTTGGTTCGTGAGCGTGTAG	T. 000
	Tet1	mTet1 Rv	TGCAGGTACGCTTTTTGTTG	Tm: 60C
	T . (0	mTet2 Fw	AACCTGGCTACTGTCATTGCTCCA	T. 000
~	Tet2	mTet2 Rv	AGATGTTCTGCTGGTCTCTGTGGGAA	Tm: 60C
CF CF	T (0	mTet3 Fw	TGCGATTGTGTCGAACAAATAGT	T 000
Ъ	Tet3	mTet3 Rv	TCCATACCGATCCTCCATGAG	Tm: 60C
Ě	71.57	mZfp57 Fw	CACAAATCCACAAAGCCGCAA	T. 000
R	Ztp57	mZfp57 Rv	TGAACGGGGCCTATAACCTAAA	Tm: 60C
	T /	mTrim28 Fw	CGCATGTATCAGGCATGAAG	T. 000
	Trim28	mTrim28 Rv	CTTCCAGGAAAGACCTTGAAGA	Tm: 60C
	Dung	mDppa3 Fw	GACCCAATGAAGGACCCTGAA	T. 000
	Dppa3	mDppa3 Rv	GCTTGACACCGGGGTTTAG	Tm: 60C
	111-44	mUhrf1 Fw	CCCAGGTGGTCCAGGTACAG	T 000
	Uniti	mUhrf1 Rv	CACGAGCACGGACATTCTTG	TM: 60C
	00	mSox2 Fw	ATGCACCGCTACGACGTCA	T
	Sox2	mSox2 Rv	CTTTTTGCACCCCTCCCAATT	TM: 60C
	Vie (mXist Fw	GCTGGTTCGTCTATCTTGTGGG	T
	XISt	mXist Rv	CAGAGTAGCGAGGACTTGAAGAG	TM: 60C
	14.000	mMecp2 Fw	TGACTTCACGGTAACTGGGAG	T
	iviecp2	mMecp2 Rv	TTTCACCTGAACACCTTCTGATG	TM: 60C
	11	mHuwe1 Fw	GAGGGCGTAAACATACAGAGAAG	T
	Huwei	mHuwe1 Rv	CGCTGCTGTGTAAAGTGGC	TM: 60C
	louidt -	mJarid1c Fw	GAGGCCCAGACAAGAGTGAAA	Tm: 000
	Jarid1C	mJarid1c Rv	TTGGGAATCTTTAAGGATGAGCC	1 m: 60C
	Acald	mMash1 Fw	CCAACTACTCCAACGACTTGAACTC	Tm: 000
	ASCIT	mMash1 Rv	TCCTGCCATCCTGCTTCCAAAG	111: 6UC
	Mussahi	mMsi1 Fw	CCGGAGTTACACAGGCCTTG	Tm: 000
	iviusasni	mMsi1 Rv	GGGATAGCTGTGAGCTCGGG	111: 6UC
	Nestin	mNestin Fw	CTCCTGTGACAGCCTTTCTGAAG	Tm: 60C

		mNestin Rv	AGGATAGGGAGCCTCAGACATAGG	
g	Yamanaka	mPpary Fw	CAGCATCAAATGGCTCGGTA	Tm: 500
pin	cassette	mLenti Rv	GCACCATCCAAAGGTCAGTG	THI. 59C
oty	rtTA accortio	mRosa26 wt Fw	AAAGTCGCTCTGAGTTGTTAT	
en	(Popo26 logue)	mRosa26 wt Rv	GGAGCGGGAGAAATGGAATG	Tm: 59C
G	(RUSAZO IUCUS)	mRosa26 mut Rv	GCGAAGAGTTTGTCCTCAACC	
_	1110	mH19 Fw	GCAATGCTGCCCCAGTAC	
ior	пія	mH19 Rv	GACTAGGCGAGGGGAAGGC	111.010
elic ss	Caraa	mSnrpn Fw	CATTATGGCTCCTCCACCTG	Tm: 610
Alle	Shiph	mSnrpn Rv	GGGTCAAAAAGCTTGCAGGTAC	111.010
/ dxe	Maga	mMeg3 Fw	CTTGCTGGCCCTGGAGAT	Tm: 610
0	ivieg3	mMeg3 Rv	AACGTGTTGTGCGTGAAGTC	111. OIC

Supplementary Table 2 – Primers used for pyrosequencing, RT-qPCR, genotyping and allelic expression experiments

	Locus	Primer name	Primer sequences	PCR conditions	Coordinates of CpGs analysed	Type of ICR
	5003	mSox2 Fw	CTACACGACGCTCTTCCGATCTTAGTTAGTTATGGGTAGGGATT	Tm: EFC	24231610370 21610EE1	V / V
	ZYOC	mSox2 Rv	TGCTGAACCGCTCTTCCGATCTNNNNNNNAATATTTCAAAAAACTAACAAAACC		10-040400 VO-0404000 IID	A N
	517	mKlf4 Fw	CTACACGACCTCTTCCGATCTGGTTTTTTTTGTTAATATTGATGAT		Chr4165530301 55530505	V I V
	NJ4	mKlf4 Rv	TGCTGAACCGCTCTTCCGATCTNNNNNNACAAATAAAAAACTCCTCTACAACC			A/N
	Pulping	mPrickle1 Fw	CTACACGACGCTCTTCCGATCTGTTGGTTAAGGAAATAGTTTTTTT		00200300 0030030440	V V
	LICKIET	m Prickle1 Rv	TGCTGAACCGCTCTTCCGATCTNNNNNNNCAACCTCTATAACCAATATACCCATAC		671 UUCEE-250UUCEE:CT 100	A/N
		mH13DMR Fw	CTACACGACGCTCTTCCGATCTAGTATTAGAATATTGGGGGGATTTT	U L		
	H13-IMCtSZ	mH13DMR Rv	TGCTGAACCGCTCTTCCGATCTNNNNNNNNAATTAAAAAAAAAA	J/S :MI	CN12:122080/80/201-08/080221:2700	Maternal
		mGnasDMR Fw	CTACACGACGCTCTTCCGATCTATTTTGGATTAAAGTTTAAAGTGTT	T 1 1 0		
	Gnas	mGnasDMR Rv	TGCTGAACCGCTCTTCCGATCTNNNNNNNACAATTATACACCATACAAATAAATATATT	1m: 54C	206662411-801662411:2100	Maternal
	ć	mPeg3DMR Fw	CTACACGACGTCTTTCCCGATCTTTTGTAGGGGATTTTGATAAGGAG	U CU		
	Pegs	mPeg3DMR Rv	TGCTGAACCGCTCTTCCGATCTNNNNNNNCAACCTTATCAATTACCCTTAAAAA	1m: 6UC	CNF7:6/30141-6/30468	Maternal
		mSnrpnDMR Fw	CTACACGACGCTCTTCCGATCTAATTTGTGTGTGTGTTTGTAATTATTTGG			
N	PW9/AS	mSnrpnDMR Rv	TGCTGAACCGCTCTTCCGATCTNNNNNNNATAAAATACACTTTCACTACTAAAAATCC		CNr / 1000043-64000001/100	Maternal
וככ	0111 61-1	mH19DMR Fw	CTACACGACGCTCTTCCGATCTGTAGGAGATTATGTTTTATTTTGG	001 ·····E	LOOCOJCI 17L10JCV 1.L.40	
٦d	6TH-2(6)	mH19DMR Rv	TGCTGAACCGCTCTTCCGATCTNNNNNNNCCTCATAAAACCCATAACTAT	70C : MI	UUL / : 142381/01-14238208/	raternal
MI		mKvDMR Fw	CTACACGACGCTCTTCCGATCTTAAGGTGAGTGGTTTAGGAT			
	тэртралыстра	mKvDMR Rv	TGCTGAACCGCTCTTCCGATCTNNNNNNNAATCCCCCACACCTAAATTC		CIII / :143299094-1432994 / 0	гацегла
	Country Country	mCommd1DMR Fw	CTACACGACGCTCTTCCGATCTTAGGAGTATTTTTATTGTAGGGGG	T 60C	1010CC CI01CC.11440	104000
	COMMA1-21ST1	mCommd1DMR Rv	TGCTGAACCGCTCTTCCGATCTNNNNNNNCTAAAACAATAATTATCTACCTTACC		1917/92-2641/922:11100	Maternal
		mIG-DMR Fw	CTACACGACGCTCTTCCGATCTGTGGTTATGGGTAAGTTT			
		mIG-DMR Rv	TGCTGAACCGCTCTTCCGATCTNNNNNNNCCCTTCCCTCCACAAAAATTAA		T 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
	Mart (Dard	mPeg1 DMR Fw	CTACACGACGCTCTTCCCGATCTTTTTGTTATTGCGTTAAGGG	T E 1.C	00826206 00326206.3440	N determined a
	Thay/isami	mPeg1 DMR Rv	TGCTGAACCGCTCTTCCGATCTNNNNNNNNCCTCTTTCCTTATAAATCTCTAA	1111. 340	UII 0.30/3/009-30/3/009	Materia
		mPlag11 Fw	CTACACGACGCTCTTCCGATCTTTGTAGTTAGAGATGTAGAAGG			
	Plagit/zact	mPlag11 Rv	TGCTGAACCGCTCTTCCGATCTNNNNNNNTTCCCCAAAAAAACACAAAT	1m: 54C	CULTO:T20ATT805T7AD777	Maternal
	044-0	mGrb10 Fw	CTACACGACGCTCTTCCGATCTTTTTAAGGAGAAAAAAGGTT	U U U		
	OTOD	mGrb10 Rv	TGCTGAACCGCTCTTCCGATCTNNNNNNNCCAAATAATAAACAACTCCT	JUC .IIII		Maternal
	22	mlgf2r Fw	CTACACGACGCTCTTCCGATCTAGGGTGAAAAGTTGTATAAG	Tm: EEC	00101701 07101701.71141	
	19)21	mlgf2r Rv	TGCTGAACCGCTCTTCCGATCTNNNNNNNAATTTACACCCTCAAAATAC	700	CIII 1/:12/421/3-12/42488	Maternal
		mlmpact Fw	CTACACGACGCTCTTCCGATCTGTGGATGAGGTGTATAATTT	TT	11 PCEOC 9 JOCEOC 7 01-4J	
	IIIIbact	mlmpact Rv	TGCTGAACCGCTCTTCCGATCTNNNNNNNACAAAACAAAA	JOC	CUTC / 67T-0007 / 67T.0T JUO	ואומרבווומו

Supplementary Table 3 – Primers used for IMPLICON experiments