YMTHE, Volume 30

Supplemental Information

Eliciting anti-cancer immunity by genetically

engineered multifunctional exosomes

Qinqin Cheng, Zhefu Dai, Goar Smbatyan, Alan L. Epstein, Heinz-Josef Lenz, and Yong Zhang

 Table S1. List of primer sequences used for molecular cloning. Restriction enzyme sites EcoRI

 and NotI are underlined and italicized.

DNA fragment for cloning	Primer sequence
PD-1	Forward: 5'-CAGTGTGCTG <u>GAATTC</u> GGCTTGGGGGATATCCACC-3'
	Reverse: 5'- CCGGACTACCACCGCCTCCGCTAGCGAGGGGCCAAGAGCAGT GTCCATCC-3'
CD9-OX40L	Forward: 5'- CCCTCGCTAGCGGAGGCGGTGGTAGTCCGGTCAAAGGAGGCA CCAAGTGCATCAAATACC-3'
	Reverse: 5'- GATCTCGA <u>GCGGCCGC</u> CTTAATGGTGGTGGTGATGGTGAAGG- 3'
PD-1-CD9- OX40L	Forward: 5'-CAGTGTGCTGGAATTCCGGGGATATCCACC-3'
	Reverse:5'- GATCTCGA <u>GCGGCCGC</u> CTTAATGGTGGTGGTGATGGTGAAGG- 3'

Figure S1. Flow cytometric analysis of expression levels of PD-L1 and PD-L2 at varied conditions. (A) and (B) Surface expression levels of PD-L1 (A) and PD-L2 (B) for HEK293 and three TNBC cell lines without and with stimulations. HEK293, MDA-MB-231, BT-20, and MDA-MB-468 cells were treated with 100 U/mL IFN- γ or human PBMCs (PBMC:TNBC/HEK293=2:1) in the absence or presence of 20 ng/mL α CD3- α EGFR-Exos for 48 hours at 37°C. Non-treated and treated cells were then analyzed for PD-L1 and PD-L2 expression by flow cytometry. Lower panels: quantitative representations of mean fluorescence intensities (MFIs) of PD-L1 (A) or PD-L2 (B) for each cell line. Data are shown as mean ± SD of triplicates. ns = not significant, * P < 0.05, ** P < 0.01, *** P < 0.001, and **** P < 0.0001 (ordinary one-way ANOVA test).

Figure S2. Flow cytometric analysis of OX40 expression on non-activated T cells.

Figure S3. Enhancing T-cell activation by PD-1-OX40L-Exos. Human PBMCs were mixed with BT-20 cells at a ratio of 2:1 and incubated without or with α CD3- α EGFR-Exos (20 ng mL⁻¹) in the absence or presence of 10 µg mL⁻¹ PD-1-OX40L-Exos or native exosomes for 48 hours. The levels of secreted IL-2 were measured by ELISA. Data are shown as mean ± SD of duplicates. * P < 0.05 (two-tailed unpaired *t* test).

Figure S4. Yields of the genetically modified exosomes. Data are shown as mean \pm SD (n=4). ns = not significant, P > 0.05 (ordinary one-way ANOVA test).

Figure S5. Flow cytometric analysis of EGFR expression for three TNBC cell lines. Right panel: quantitative representations of MFIs of EGFR for each cell line. Data are shown as mean \pm SD of triplicates.

Figure S6. Flow cytometry of the binding of α CD3- α EGFR-PD-1-OX40L GEMINI-Exos to MDA-MB-468 cells (PD-L1⁻ PD-L2⁻ OX40⁻ CD3⁻ EGFR⁺) as detected by the anti-HA or anti-6×His antibody.

Figure S7. Photographs of xenografted mouse tumors at the endpoint.

Gating strategies for cell surface marker staining

Figure S8. Gating strategy for CD4⁺ CD25⁺ CD127⁻ Tregs.

Figure S9. Gating strategy for CD4⁺ CD25⁺ FoxP3⁺ Tregs.

Figure S10. Immune phenotyping of tumor infiltrating lymphocytes. (A) Percentages of CD4⁺ T cells in CD45⁺ cells in tumors. (B) Percentages of CD4⁺ CD25⁺ CD127⁻ Tregs in CD45⁺ cells in tumors. At the end of the *in vivo* efficacy study, tumors were harvested and disaggregated into single-cell suspensions. After immunostainings, cells were analyzed by flow cytometry for the expression of CD45, CD4, CD8, CD25, and CD127. Data are shown as mean \pm SD (n=5). ns = not significant, * P < 0.05, and ** P < 0.01 (ordinary one-way ANOVA test).

Figure S11. Immunohistofluorescence analysis of tumor-infiltrating T lymphocytes. (A) Representative immunohistofluorescence images of the margin and interior of frozen tumor sections from PBS- and exosomes-treated mice. Green: CD3⁺ cells stained with the anti-CD3 antibody. Blue: nuclei stained with DAPI. Scale bars: 50 μ m. (B) Quantitative representation of the number of CD3⁺ cells from each field of view along the margin and interior of each tumor from PBS- and exosomes-treated groups (up to three fields of view per region and three mice per group). Data are shown as mean \pm SD. * P < 0.05, ** P < 0.01, *** P < 0.001, and **** p < 0.0001 (ordinary one-way ANOVA test).

Figure S12. Immune phenotyping of lymphocytes in spleen and blood. At the end of the *in vivo* efficacy study, blood and spleen were harvested and spleen samples were disaggregated into single-cell suspensions. After immunostainings, cells were analyzed by flow cytometry for the expression of CD45, CD4, CD8, CD25, and FoxP3. Percentages of CD4⁺ T cells (top), CD8⁺ T cells (middle), and CD4⁺ CD25⁺ FoxP3⁺ Tregs (bottom) in CD45⁺ cells in spleen (left) and blood (right) were determined. Data are shown as mean \pm SD (n=5). * P < 0.05 (ordinary one-way ANOVA test).