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Supplemental Tables 
 

Table S1. 

Mean first passage times (MFPTs) between macrostates. 

 

MFPT (µs) to U to I to N 

from U - 9.4 20.7  

from I 6.4 - 6.9  

from N 15.5 5.9 - 

 

Table S2. 
Hydrophobic transfer (HT) model parameters for each amino acid.   Normalized maximal accessible 
surface areas A0 are taken from Tien et al.53 Consensus hydrophobicities are taken from Eisenberg et 
al.81 

Residue A0 (nm2) Consensus hydrophobicities 
(kcal/mol) 

Glycine 0.97 0.48 

Alanine 1.21 0.62 



 

 

Serine 1.43 -0.18 

Arginine 2.65 -2.53 

Proline 1.54 0.12 

Threonine 1.63  -0.05 

Methionine 2.03  0.64 

Valine 1.65 1.08 

Leucine 1.91 1.06 



 

 

Supplemental Figures 

Figure S1.  

Comparison of melting temperatures Tm measured in thermal shift assays (TSA) versus those measured 
using differential scanning calorimetry DSC.  Uncertainties in DSC Tm measurements for mutants are 
estimated to be  ±1 C. 

 

 



 

 

 

Figure S2. 

The locations of the twenty conformations used to initiate trajectories, projected onto the (tIC1, tIC2) free 
energy landscape. 

 

Figure S3. 

Transition counts observed between macrostates U, I and N (at lag time 5.0 ns) in the simulation trajectory 
data. 



 

 

 

Figure S4. 

Examples of trajectories involved in observed macrostate transitions.   Traces are plotted on the TICA 
free energy landscape, with the color denoting the direction of time (violet to red denotes the start to 
finish).  Animated visualizations of each of these trajectories are included in Supplemental  
Movies M1–M8. 

 

 



 

 

 

 

 

 

 

Figure S5.  

PSIPRED (http://bioinf.cs.ucl.ac.uk/psipred/) predictions of FOXO1 secondary structure. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 

Figure S6.  

Time-reversed convergence plots for ΔG estimates were used to identify and discard non-equilibrated 
regions of the trajectories.  In this analysis, two calculations are compared in which increasing amounts 
of data from a 8-ns trajectory are given to the MBAR free energy estimator; one from a time-forward 
trajectory and the other from a time-reversed trajectory.     When all the data is included, the two 
calculations yield the same estimate; disagreement of the estimates when only part of the data is included 
may indicate convergence problems.  The results show that most of the FEP simulations are sufficiently 
converged by the last 4 ns, with the possible exception of folded-state S152R. Therefore, we report FEP 
estimates computed from only the last 4 ns of each 8-ns trajectory.  

 



 

 

 

Figure S7. 

The overlap matrix, whose elements Oij quantify the overlap between the distributions of ΔUij = U(λj) – 
U(λi) for alchemical intermediate indices i and j (see Klimovich et al. 2015), is shown for each FEP 
calculation.  
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Figure S8. 

(A) To choose an appropriate TICA lag time and number of TICA dimensions, VAMP2 scores were 
computed for different microstate MSMs constructed using various numbers of TICA dimensions and 
TICA lag times: 𝜏TICA = 2.5 ns (blue), 5.0 ns (orange), 10.0 ns (green), and 25.0 ns (red). All models used 
alpha-carbon distance features, and 1000 k-means cluster centers.  Based on these results, we chose to 
construct MSMs of FOXO1 using a TICA lag time of 𝜏TICA = 2.5 ns, and four TICA dimensions. (B) To 
determine an appropriate number of cluster centers, VAMP2 scores were computed for microstate MSMs 
constructed using different numbers of cluster centers.   All calculations were performed using an MSM 
lag time of 𝜏MSM = 5.0 ns and TICA lag time of 𝜏TICA = 2.5 ns. 
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Figure S9. 

To demonstrate that four TICA components are sufficient to capture the slowest motions, we consider the 
“commute map” scaling of the TICA components.    While TICA returns eigenvectors of the time-lagged 
correlation matrix that have unit variance by definition, scaling each eigenvector by its corresponding 
eigenvalue results in a “kinetic map” (Noé, F. and Clementi, C. 2015), a space in which the Euclidean 
distance between any two points approximates a diffusion-based commute time.   A measure of the 
commute time ascribed to each tICi is provided by (ti/2)1/2 where ti is the ith implied timescale (Noé et al. 
2016). The fractional kinetic variance captured by each tICi can be expressed as ti/(Σi ti), and the total 
kinetic variance captured by the first n tICs is given by (Σi=1 to n ti)/(Σi ti).  (A) A plot of the commute time 
vs. total kinetic variance shows that first four tICs (yellow stars) capture the slowest motions. The total 
kinetic variance, however, comprises contributions from a large number of higher-dimensional tICs, likely 
arising from the heterogeneous and high-dimensional dynamics in unfolded states. (B) The correlation of 
each distance feature j with each tICi. The total correlation with the input feature data is by far the largest 
for the first tIC, which corresponds primarily to the folding of helix α3. 
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Figure S10. 

The Chapman-Kolmogorov test is used to check whether the macrostate MSM is sufficiently Markovian.   
In this test, empirical estimates of the 3 × 3 macrostate transition probability matrix T(nτ) constructed at 
lag times nτ, n = 1, 2, 3… (solid lines) are compared to predictions [T(τ)]n (dashed lines).  Each row of 
panels labeled “i → j” shows the time evolution of populations for macrostate j where the initial population 
is placed entirely in macrostate i. Here, i=1 is macrostate I, i=2 is macrostate N, and i=3 is macrostate U.  
The results show that the two models (empirical vs. prediction) are virtually indistinguishable, indicating 
the dynamics is Markovian. 

  



 

 

Supplemental Movies 
 

Movie M1.   Visualization of a U→U trajectory (1110 ns, RUN 1, CLONE 10).  

Movie M2.   Visualization of a U→I trajectory (600 ns, RUN 12, CLONE 451).  

Movie M3.   Visualization of a I→U trajectory (880 ns, RUN 0, CLONE 67).  

Movie M4.   Visualization of a I→I trajectory (1310 ns, RUN 0, CLONE 223).  

Movie M5.   Visualization of a I→N trajectory (1920 ns, RUN 0, CLONE 21).  

Movie M6.   Visualization of a N→U trajectory (620 ns, RUN 18, CLONE 48).  

Movie M7.   Visualization of a N→I trajectory (1380 ns, RUN 18, CLONE 80).  

Movie M8.   Visualization of a N→N trajectory (1410 ns, RUN 3, CLONE 8).  

 


