Supplementary material for:

Evaluation of the tert-butyl group as a probe for NMR studies of macromolecular complexes

Rashmi Voleti^{1,2,3}, Sofia Bali^{4,10}, Jaime Guerrero^{1,10}, Jared Smothers^{5,10}, Charis Springhower^{1,9,10},

Gerardo A. Acosta^{6,7}, Kyle Brewer^{1,2,3}, Fernando Albericio^{6,7,8} and Josep Rizo^{1,2,3,*}

¹Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA ²Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA USA

³Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA

⁴Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA

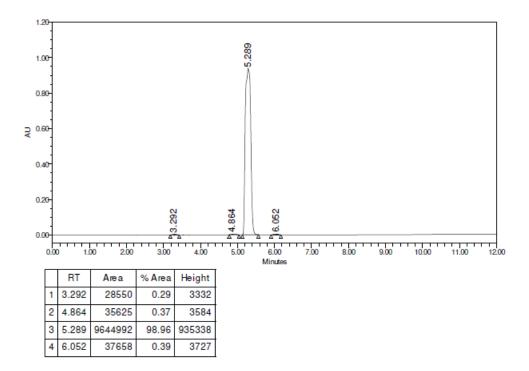
⁵Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas

75390, USA

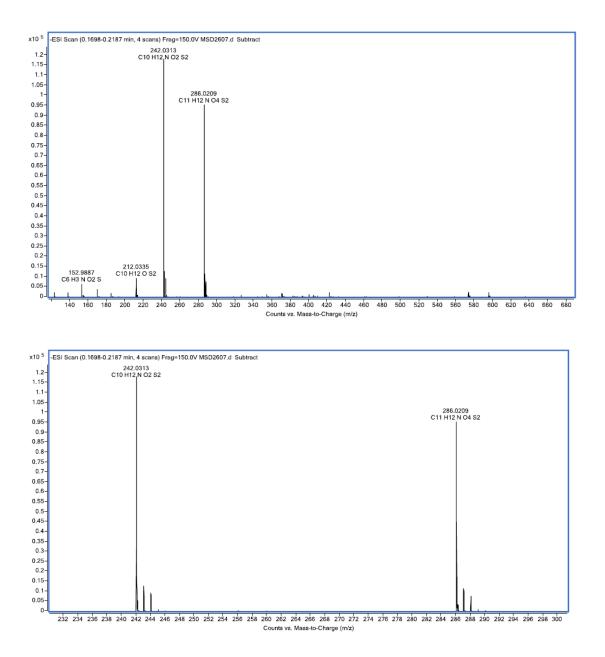
⁶CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, and Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain

⁷Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Spanish National Research Council (CSIC),

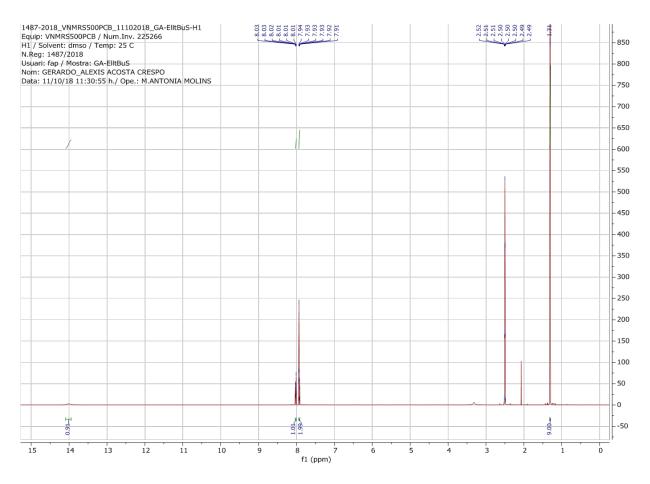
Jordi Girona 18-26, 08034 Barcelona, Spain

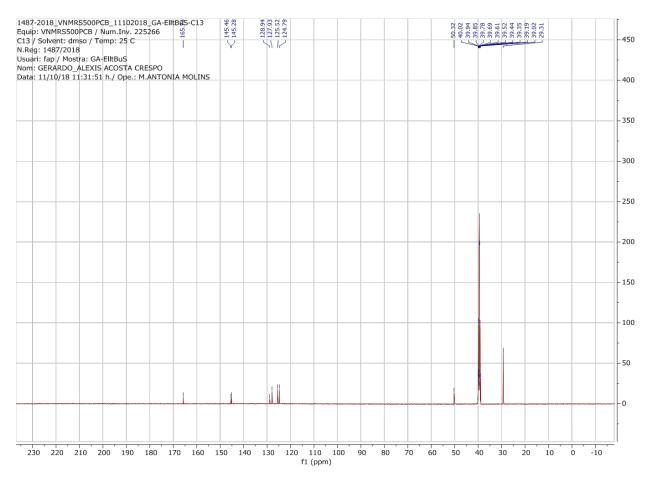

⁸Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban

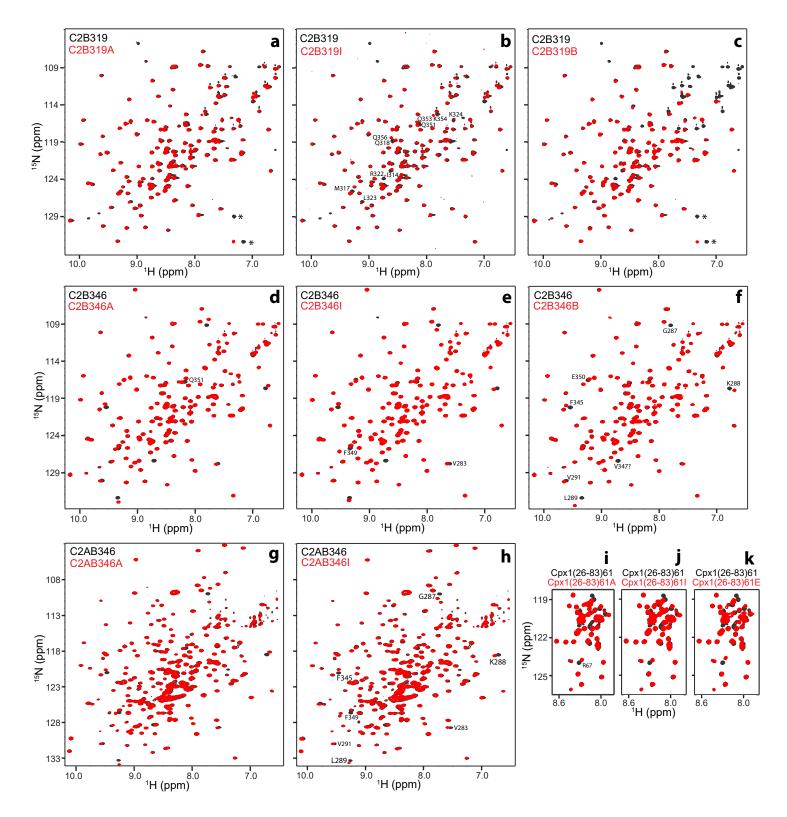
4001, South Africa


⁹Current address: Alicat Scientific, Tucson, Arizona 85743, USA

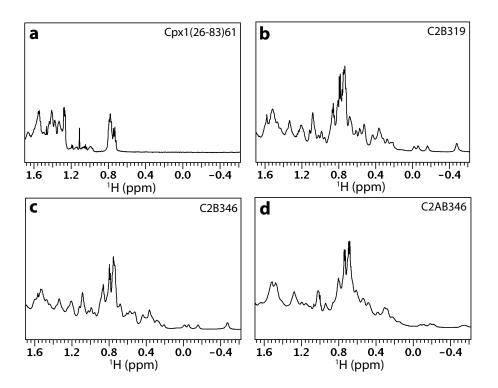
¹⁰These authors contributed equally to this work


*Josep Rizo: <u>Jose.Rizo-Rey@UTSouthwestern.edu</u>

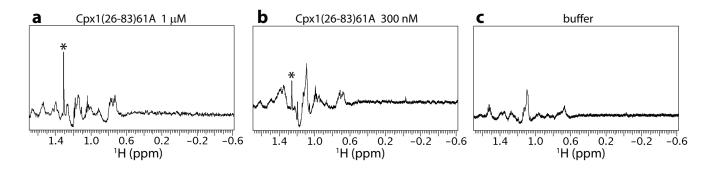

Supplementary Figure 1. HPLC-PDA of purified 5-(*tert*-butyldisulfanyl)-2-nitrobenzoic acid. Column: Xbridge BEH 130 C18 3,5μm 4,6x100mm; Eluent: water with 0,045% of TFA and ACN with 0,036% of TFA; Gradient: 40 to 100% of ACN in 8 minutes, Flow 1 mL/min. Purity 98,96 % at 220 nm. Retention time 5,289 min.


Supplementary Figure 2. HR-MS: HR-MS –ESI of 5-(tert-butyldisulfanyl)-2-nitrobenzoic acid. Calculated Mass $[M+H]^{+1} = 287,35$; $[M-COOH]^{-1} = 242,33$. Found Mass $[M-H]^{-1} = 286,0209$ Diff. = 1.43 ppm; $[M-COOH]^{-1} = 242,0313$ Diff = 0,81 ppm. Diff = (Calculated Mass- Found Mass)/Calculated Mass * 10⁶.

Supplementary Figure 3. ¹H-NMR spectrum of 5-(*tert*-butyldisulfanyl)-2-nitrobenzoic acid.



Supplementary Figure 4. ¹³C-NMR spectrum of 5- (*tert*-butyldisulfanyl)-2-nitrobenzoic acid.



Supplementary Figure 5

Supplementary Figure 5. ¹H-¹⁵N HSQC spectra illustrating cross-peak shifts caused by ^tBu tagging. ¹H-¹⁵N HSQC spectra of Syt1 C₂B domain N319C (**a-c**), Syt1 C₂B domain E346C (**d-f**), Syt1 C₂AB E346C (**g-h**) and Cpx1(26-83) V61c (**i-k**) before (black contours) and after (red contours) tagging with a ^tBu group via the acrylate (**a**, **d**, **g**, **i**), iodoacetamide (**b**, **e**, **h**, **j**) or BDSNB (**c**, **f**, **k**) reaction. Selected cross-peaks that shifted in the spectra of the Syt1 C₂B domain or C₂AB fragment mutants due to tagging with the ^tBu group using the corresponding reactions are labeled in panels (**b**, **f**, **h**), and additional cross-peaks that shifted due to tagging with other reactions are labeled in the corresponding panels. All the perturbed cross-peaks correspond to residues in close proximity to the site tagged with a ^tBu group in the three-dimensional structure of the C₂B domain. For Cpx1(26-83) V61C, only one well-resolved cross-peak that shifts due to tagging (corresponding to R67) can be unambiguously assigned. The ¹H-¹⁵N HSQC spectrum of C2B319B (red contours in panel **c**) was acquired by mistake with a TROSY-enhanced pulse sequence and hence it does not contain the cross-peaks corresponding to the Asn and Gln side chains, but the spectra is still useful to monitor shifts in the backbone NH groups. Note also that we did not acquire a ¹H-¹⁵N HSQC spectrum from C₂AB346B, but tagging of the protein with ^tBu group of C₂B346B (Figure 4c, d).

Supplementary Figure 6. Expansions corresponding to the methyl region of 1D ¹H NMR spectra of Cpx1(26-83) V61C mutant [Cpx1(26-83)61)] (**a**), Syt1 C₂B domain N319C mutant (C2B319) (**b**), Syt1 C₂B domain E346C mutant (C2B346) (**c**) and Syt1 C₂AB E346C mutant (C2AB346) (**d**).

Supplementary Figure 7. 1D ¹H NMR spectra of 1 μ M Cpx1(26-83)A (**a**), 300 nM Cpx1(26-83)A (**b**) and the buffer used to dissolve these samples (**c**), which contained 20 mM HEPES pH 7.4, 125 mM KCl and 10% D₂O. The spectra of (**a**) and (**c**) were acquired in 1 hr and were plotted at the same vertical scale. The spectrum of (**b**) was acquired in 3 hr and plotted at a vertical scale 3.3 time higher than those of (**a**, **c**).