ORIGINAL RESEARCH

Periapical dental X-ray image classification using deep neural networks

Dipit Vasdev¹ · Vedika Gupta² · Shubham Shubham¹ · Ankit Chaudhary¹ · Nikita Jain¹ · Mehdi Salimi^{3,6} · Ali Ahmadian^{4,5}

Accepted: 29 August 2022

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nuture 22

Abstract

This paper studies the problem of detection of dental diseases. Dental public section of dental diseases. majority of the world's population. Caries, RCT (Root Canal Treatment), scess, Bone Loss, and missing teeth are some of the most common dental condition, that a lect people of all ages all over the world. Delayed or incorrect diagnosis may res treatment, affecting not only an individual's oral health but also his or her overall health, thereby making it an important research area in medicine and engineering. We proceed a pipelined Deep Neural Network (DNN) approach to detect healthy and non-healthy periapical dental X-ray images. Even a minor enhancement or improvement in sisting techniques can go a long way in providing significant health benefits in the matical celd. This paper has made a successful attempt to contribute a different type of pircline opposite using AlexNet in this regard. The approach is trained on a large dataset 10 000 cental X-ray images, correctly identifying healthy and non-healthy X-ray images. We see an optimized Convolutional Neural Networks and three state-of-the-art DNN no. Is, namely Res-Net-18, ResNet-34, and AlexNet for disease classification. In our study, the AlexNet model outperforms the other models with an accuracy of 0.852. The recision, recall and F1 scores of AlexNet also surpass the other models with a score of 0.85 gross all metrics. The area under ROC curve also signifies that both the false-positive rate and false-negative rate are low. We conclude that even with a big data set and raw X-12y pictures, the AlexNet model generalizes effectively to previously unseen data ard can aid in the diagnosis of a variety of dental diseases.

- A Umadian ahradian.hosseini@unirc.it
 - Department of Computer Science and Engineering, Bharati Vidyapeeth's College of Engineering, New Delhi, India
- Jindal Global Business School, O.P. Jindal Global University, Sonipat, Haryana 131001, India
- Department of Mathematics and Statistics, St. Francis Xavier University, Antigonish, NS, Canada
- Department of Law, Economics and Human Sciences and Decisions Lab, Mediterranea University of Reggio Calabria, 89125 Reggio Calabria, Italy
- Department of Mathematics, Near East University, Nicosia, TRNC, Mersin 10, Turkey
- 6 Center for Dynamics, Faculty of Mathematics, Technische Universität Dresden, Dresden, Germany

Keywords AlexNet \cdot Convolutional Neural Network (CNN) \cdot Dental \cdot Periapical \cdot ResNet \cdot X-ray

1 Introduction

Dentistry or dental science is a branch of science that focuses on the study, diagnosis, prevention, and treatment of diseases and disorders related to oral health. Oral diseases have a high prevalence across the globe, making them an ideal subject for research. Dental clinical querity assessment is based on numerous quantitative measures, such as the number of yearly dental visits of people of all ages, including children, youngsters, and adults; necearies among children, endodontics; and extractions method proportion (Dental Quality Alloce, 2012). While these quality assessments evaluate dental clinical quality at the full-scale level, we likewise need to undertake subjective evaluations at the miniature lever for stance, to understand whether the treatment undertaken for a tooth produces the desire results. Traditionally, dental experts would assess the patients' dental condition to red on the previous treatment undertaken by comparing changes between the dental images after before and after the treatment.

Machine learning algorithms find an application in all fields imedicine-disease classification, disease prediction (Chatrati et al., 2020) and decision (Mishra et al., 2020), drug discovery, and medical decision making, thus, significantly changing the ways of practicing medicine. Such all-encompassing involvement in machine learning in medicine has paved paths for new research areas, such as computational plogy, biochemistry, computer-assisted surgery, and many others (Ren et al., 2019; Jacet al., 2019; Gupta, 2019a). The success of machine learning algorithms in healthcare in record years comes at a fortunate time when clinical records are progressively being attalized.

One of the characterizing high whits on resent-day medical services activity is that it produces enormous data identified w. various medical tests conducted to rule out possible infections. Among various r edical services fields, clinical images produce the most significant volume of information. Iso, this data is growing exponentially because the instruments are improving at capturing information. These captured bits of information carry valuable insights about the patient and indication, the development of the sickness/anomalies, and the treatment's success. Each piece adds to the entire and is critical to assemble all into a big picture precise.

Notwit stand, the extent of information frequently outreaches the potential outcomes of the cust pary investigation. Medical practitioners may not be able to analyze such a lot of information, owing to workforce limitations. In particular, this is significant because into reting medical data is essential in fields like clinical picture examination. The other such the human investigation is that it is restricted and inclined to mistakes because different elements—stress, lack of experience, and low expertise. Along these lines, deep arning is an appropriate solution to the problem. Deep learning applications can process data and extract critical insights at early stages with much more accuracy. This can help doctors to analyze data and examine test results more thoroughly. Implementing deep learning in healthcare services is an effective way to build the effectiveness of activity and precision results.

Image classification through deep learning frameworks has been dominant in the field of computer vision and imaging. The reason behind this is the ability of DNN and its variants to learn features hierarchically (Esteva et al., 2017). The current state of art gives several

variants of DNN architecture, with the most popular ones being AlexNet (Han et al., 2017) and ResNet (Sonoda & Murata, 2019). Previous works (Tuzoff et al., 2019; Anantharaman et al., 2018; Yang et al., 2018; Prajapati et al. 2017) have been limited by dataset-specific architecture, resulting from a dataset dependency in terms of small size or region or a particular disease classification. This work transforms experts' observations into labels and provides an artificially intelligent approach to detect any common disease in a given dental scan automatically. Thus, it helps in places where there is still a scarcity of any experienced radiologist or equally competent expert.

In this paper, we collected a dataset of 16,000 periapical dental X-Ray images. The dataset comprises annotated X-Ray images under dentists' supervision divided into classes of commonly occurring diseases. The annotated dataset thus created is evaluated using the perposed modified pipelined approach for binary classification of tooth disease. Four different NN models (AlexNet, ResNet-18, and ResNet-34, along with an optimized CNN) are deployed and compared. The performance is analyzed based on different standard performance metrics. The best performing model can provide its application in the automacal preliminary examination of periapical dental X-rays, which will also help the medial community. The deployed pipelined approach gives an accuracy of 0.852 when implement along the selected dataset. The dataset's novelty is that the images used have not see released earlier and collected by a regional dental clinic over its service course. To support the dental community in making clinical decisions, we propose a pipelined approach periapical dental classification using DNN. for automated clinical quality evaluation.

Artificial Intelligence(AI) has been prominently used in various segments of society—ranging from analyzing wind speed behavior of ostafaeipour et al., 2021) to prediction of marketing products(Goli et al., 2021). With that advincement of AI methods, medical practitioners are progressing more towards adapting ad implementing AI methods in various medical fields. In working towards reduce computing time (Ranjbarzadeh et al., 2021), Cascade Convolutional Neural Network (C-C, A) along with Distance Wise Attention(DWA) were used to prevent overfitting two route convolutional neural network(CNN) for identifying and categorizing COV D-19 infections were used for CT images(Ranjbarzadeh et al., 2021). A new machine learn of strategy based on modified deep learning (DL) to determine the location of a tumor in a breast cancer patient(Jafarzadeh Ghoushchi et al., 2021) is also considered.

The motivation behind the study conducted in this paper can be derived from the ever-growing requirement of science and medical fields to build upon computational models and propose effective echanisms to detect and efficiently handle human diseases. It is estimated that oral drawses affect close to 3.5 billion people worldwide, with caries of permanent teeth being the most common condition. Therefore, the main objective of this paper is to propose a parametral approach using the outperforming DNN model for efficient detection of dental liseas.

This paper presents a pipelined approach using AlexNet model. The reason for selection f AlexNet is that AlexNet has been known to excel at image classification tasks(Kumar et al., 2021), particularly when working with large real-world data sets such as the one used in this study. This is because it is capable of extracting both deep and baseline visual features. First, we developed a custom CNN model by tweaking and modifying its layers. We observed that the model has difficulty working on large high resolution data sets without over fitting. AlexNet solves this problem by combining model ensembles and consecutive convolution layers. Moreover, AlexNet requires fewer computations as compared to other DNNs

¹ https://www.who.int/news-room/fact-sheets/detail/oral-health.

like ResNet-18 and ResNet-34 which require intensive computations involving Graphics Processing Units (GPUs).

In this paper, we perform the following:

- We present a comprehensive workflow depicting the classification process of images in dentistry and medical sciences.
- We employed a large dataset of 16,000 dental X-ray images.
- Next, we implement most popular DNN models and compared them based on various performance measures.
- We propose a pipelined approach using AlexNet to correctly identify healthy and no healthy X-ray images.

The best performing model i.e. AlexNet can find applications in automated denial declassification, minimizing the possibilities of human error.

The rest of the paper is organized as follows: Sect. 2 presents the e istnowaks on periapical dental X-ray image classification. Section 3 discusses the paper contributions. Section 4 discusses the materials and methods employed to conduct to research. Section 5 shows the conducted experimental analysis and results' evaluation. Section 6 concludes the paper with an explanation of the obtained results and their securement with the baseline methods with further enhancement.

2 Related work

This section presents comprehensive coverage fexis ingrelated works in the field of dental image classification. Deep learning has develop Y in recent years and can automatically extract image features using the origin, once information as input. To achieve accurate classification in dental X-rays, several researchers have contributed distinct image-processing algorithms. Figure 1 presents the tax comical division of the reviewed literature in brief.

Gupta et al. (2019b) proposed a CNN, which is a deep learning-based framework for classifying dysplastic tissue mages. The four-way classification classified images into four classes, viz. normal tissue, mad dysplastic tissue, moderate dysplastic tissue, and severe dysplastic tissue. From use aftial dataset of 672 images collected from 52 patients, 2688 images were created based on the pre-processing and data augmentation. The initial dataset consisted of integration of the proposed framework achieved an accuracy of 91.65% for trained data and 89.3% for test date. The framework results were also compared with manual results produced by the medical experts and thus validated.

aret 1. (2019) proposed an efficient medical lesion image classification method. It was super-esolution based on the deep residual networks method. Initially, a large scale super-lation model was trained. The training procedure was based on a deep residual network. Secondly, a user-friendly interface was designed. Different scaled medical lesion images were reconstructed from the high-scale reconstruction model. Peak signal to noise ratios as well as structural similarity index values were calculated for all reconstructed images. The exploratory outcomes show that the proposed super-resolution remaking strategy accomplished better execution over different strategies thought about in this work.

In (Tuzoff et al., 2019), Tuzoff D. et al. introduced a novel arrangement dependent on convolutional neural systems (CNNs) that perform tasks for all-encompassing radiographs. The system was trained on a dataset comprising of 1352 chosen radiographs. Both tooth detection, as well as numbering studies, was performed and analyzed. The tooth detection

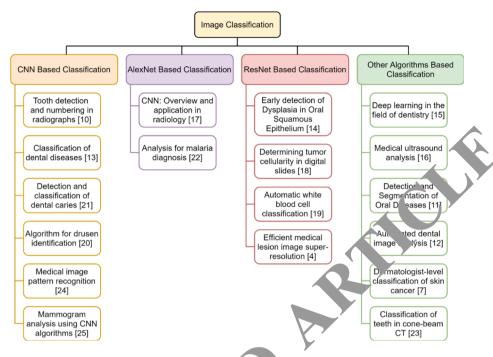


Fig. 1 Categorization of current state-of-the-art based n the hinique used

module process and marked the boul daries of each tooth using Faster CNN architecture. The numbering module, however, classified the detected marked tooth using the FDI notation. It used the traditional V G-16 CNN and the heuristic calculation to improve results as indicated by the principles for the spatial course of teeth' action. For detection, the system achieved a sensitivity of co. If and a precision of 0.9945. Similarly, for numbering, a sensitivity of 0.9800 and specificity was 0.9994 were achieved. The step-by-step investigation demonstrated at a proposed method makes some errors brought about by comparable factors as those respecialists. The exhibition of the proposed automatic diagnosis helped determinant arrangement was practically identical to the degree of specialists.

Artificial puelligence, commonly termed AI (Artificial Intelligence) represented by deep leasing, can solve dentistry's major problems. Hwang et al. (Hwang et al., 2019) brought in narchally intelligent view to dentistry. In this work, a comprehensive survey highlight-the recent discoveries in oral and maxillofacial radiology was presented. This survey's sources were collected from some popular databases such as PubMed, IEEE, and Scopus. The factors from 25 articles included system design, preparing information, assessment result, upsides and downsides, study item, and imaging methodology CNN was utilized as a principle organize segment.

Liu et al. (2019) concisely presented a few famous profound learning models. Afterward, they outlined and altogether talked about their applications in different explicit assignments in US picture investigation, such as grouping, recognition, and division. Finally, the open difficulties and potential patterns of things utilizing profound learning in restorative US picture examinations were discussed.

Anantharam et al. (2018) demonstrated the utilization of Mask-RCNN, the cutting edge convolutional neural system calculation for object recognition and division to the oral pathology space. Cover RCNN was initially produced for object identification and article occasion division of normal pictures. This test indicated that Mask-RCNN could likewise be utilized in a particular zone, for example, oral pathology. This paper planned for distinguishing and fragmenting mouth blisters and infections.

Yamashita et al. (2018) gave a profound view on CNN, a class of counterfeit neural systems that have gotten predominant in different computer- vision undertakings, pulling in enthusiasm over an assortment of spaces, including radiology. This audit article offered a point of view on CNN's essential ideas and the application of the same in different radio logical assignments; it also talked about its difficulties and the further scope in the field of radiology. Yang et al. (2018) presented the datasets, techniques, and results coordinate to survey dental treatment attributes utilizing periapical dental X-beam pictures to ren when the activities. To help dental specialists to settle on clinical choices, they propose an instrument pipeline for robotized clinical quality assessment. A dataset built from a patients was used as an input. The dataset consisted of periapical dental radiogram, mages. The images were annotated as "getting better," "getting worse," and "have received change" by the assigned dental specialists. Their proposition incorporated a programmed technique with the medicinal information to edit the ROIs for clinical assessment— reapical touching locale. The presented methodology accomplished the F1 score of 749, equivalent to master dental specialists and radiologists' presentation.

Prajapati et al. (2017) proposed an accurate classification of diseases. A labeled dataset consisting of 251 Radio Visio-Graphy (RVG) X-1 images of three different classes was used for classification. In this paper, they in tigat d the exhibition of CNN to conclude the small marked dental dataset. Likewise, to im, we accuracy, transfer learning was used. The paper presented experimental result for three different architectures of CNN. Akbar et al. (2018) proposed a strategy f decid, tumor cellularity in advanced slides utilizing profound learning procedures. They pared ResNet models' progression to yield both discrete and persistent qualitie and contrasted their results and scores obtained physically by a specialist pathologist. The setup, were approved on a dataset of picture patches removed from computerized slides, each containing different tumor cellularity degrees. The results obtained a precision scory 0.76. While recording tumor cellularity scores on a constant scale, ResNet shared great connections with physically distinguished scores. This indicated the potential reducible processing scores that are predictable with master assumptions using dee clearn, procedures. Habibzadeh et al. (2018) give a record of assessing white platele, din ential checks through the PC-supported conclusion framework and hematology rules. We loo, to decide a quick, precise component for grouping and assemble data about the propriation of white blood confirmations, which may analyze the level of any variations rom, norm during the test conducted. In this work, they consider pre-handling and directed platelets' issue into their four essential sorts, including neutrophils, eosinophils, lymbocytes, and monocytes, utilizing a continuous proposed profound learning structure.

Esteva et al. (2017) showed skin sores' arrangement utilizing a solitary CNN, prepared start to finish from pictures legitimately, utilizing just pixels and sickness names as data sources. They designed a CNN utilizing a dataset of 129,450 clinical pictures—two sets of size bigger than past datasets12—comprising 2032 distinct maladies. The CNN accomplished execution was keeping pace with every single tried master crosswise over the two errands, showing human-made brainpower fit for grouping skin malignant growth with a degree of ability practically identical to dermatologists.

Checco et al. (2006) proposed a cell neural system-based calculation for drusen recognizable proof in fundus photo. The calculation was made by various picture preparing steps: clamor decrease, histogram standardization, and a novel method of versatile division. Ali et al. (2016) proposed another strategy to recognize and distinguish dental caries utilizing X-beam pictures as a dataset and a profound neural system as a method. This system depended on a stacked meager auto-encoder and a softmax classifier. Those procedures, scanty auto-encoder, and softmax were utilized to prepare a profound neural system. This methodology was tried on a genuine dataset and has exhibited a decent presentation of discovery. Zhaohui Liang et al. (2016) proposed another and strong AI model dependent on a convolution 1 neural system to arrange single cells in meager blood, consequently spreading on standar magnifying instrument slides tainted or uninfected. In a ten-fold cross-approval decondent on 27,578 single cell pictures, their new 16-layer CNN model's normal precision. 97, 7%.

Miki et al. (2016) explored using a profound CNN for arranging tooth types o dental coneshaft figured tomography (CT) pictures. Areas of intrigue (ROIs), including ing. eth, were removed from CT cuts. ROIs obtained from the preparation cases were valid. for preparing the DCNN. The proposed AlexNet used five convolutional layers, with bree pooling layers and two association layers for diminishing the overtraining sway: they exceeded the data by turning the picture. The test ROIs were characterized into seven to the types by the prepared system. The normal order precision utilizing the expanded preparing information by picture turns and force change was 88.8%. Contrasted and the out the without information growth, information enlargement brought about around 5% improvement in arrangement exactness. This shows the further improvement can be normal by extending the CT dataset. Lo et al. (1995) built up a few preparing techniques related convolution neural system for general medicinal picture design acknowledgment. A wimsical technique for utilizing turn and move invariance is likewise proposed to upgrade the new all net exhibition. Weighting coefficients of convolution pieces were shaped by the years' system through the back spread, preparing for this fake neural net. Also, radic gists using technique was demonstrated to train the counterfeit neural system to perceive be predefined picture designs and those important to specialists. Their preparation systems included (a) radiologists' appraising for each presumed picture territory, (b) backprogation of summed up dispersion, (c) coach forced capacities, (d) move and turn inversance or analysis understanding, and (e) consistency of clinical info information utilizing proper jundation decrease capacities.

Lizka et al. (2005) proposed analogic CNN calculations to identify the bosom disease's major neurotic and stricks in x-beam mammogram pictures. The detailed calculations could recognize the sn. Ver scale calcifications and the spicule around a given tumor portion.

In their pork to reduce the computational complexity Ramin Ranjbarzadeh et al. (2021) they proposed a methodology to work only on small section of the image rather than whole image. This reduces computational complexity while also preventing overfitting. They proposed Cascade Convolutional Neural Network (C-CNN) and a Distance Wise Attention WA) mechanism based on this. The model was then validated using the BRATS 2018 lotaset. The results were excellent, with whole tumor, enhancing tumor, and tumor core dice scores of 0.9203, 0.9113, and 0.8726, respectively.

One of the fastest ways to diagnose patients is to use lung CT scan images to detect the condition. Finding sick tissues and segmenting them from CT slices is difficult due to comparable neighboring tissues, ambiguous boundaries, and unpredictable infections. Ramin Ranjbarzadeh et al. (2021) propose a two-route convolutional neural network (CNN) for identifying and categorizing COVID-19 infection from CT images by extracting global and local properties. To represent the input image differently, researchers used two alternative strategies: fuzzy—means clustering and local directional pattern (LDN) encoding approaches.

The results showed that the proposed framework had a precision of 96 percent, a recall of 97 percent, and a F-score of 97 percent.

One of the most frequent and dangerous tumors in women is breast cancer. Convolutional networks are a modern machine learning (ML) model that conducts picture segmentation in one learning step for the goal of detecting signals of tumor formation. Sacid Jafarzadeh Ghoushchi et al. (2021) creates a new machine learning strategy based on modified deep learning (DL) to determine the location of a tumor in a breast cancer patient. The authors use two sophisticated network-based designs (VGG) (9 layers and 2.9 million parameters) in the next study work, while the remaining networks (10 layers and 0.9 million parameter are used in the following trials. Convolutional neural networks (CNNs) appear to be a viable choice for separating breast cancer lesions, according to the findings.

Three hybrid algorithms were presented in work by Ali Mostafaeipour et al. (201), and their efficacy in forecasting wind speed behavior in the Abadeh region was assessed. Three hybrid algorithms: Genetic algorithm (GA), Simulated Annealing work of (SAA), and Shuffling Frog-Leaping algorithm (SFLA) were proposed. Meteorologic data during a 10-year period from 2005 to 2015 from the Abadeh region was used in Juding eight inputs: maximum temperature, minimum temperature, water vapor, minimum humidity, wind speed, precipitation, and sunlight hours. The algorithms' efficacy and dependability in wind speed prediction were evaluated using the metric. MSE, MSE, MAPE, and R2. The SFLA hybrid algorithm has the lowest error and primum reliability in forecasting wind speed behavior in this investigation, with RMSE and R2 or 20761 and 0.91, respectively. SAA has lower reliability in wind speed prediction than the previous hybrid algorithms.

Alireza Goli et al. (2021) proposed an integra. I framework based on statistical tests, time-series neural networks, an improved notically reperceptron neural network (MLP), adaptive neuro-fuzzy interface system (ANFIS), ad support vector regression (SVR) with novel meta-heuristic algorithms in order coota in the prediction of dairy product demand in Iran. The innovation of this study is a improve artificial intelligence tools with the help of the newest meta-heuristic algorithms such as the grey wolf algorithm (GWO), cultural algorithm, and particle swarm optimization (PSO). The dataset consists of the monthly demand for dairy products from Pegah Golpa, can Company for a period of 60 months from 2013 to 2018. d. The Pearson correlation coemicient was used to eliminate ineffective variables: index of dairy prices, annual average gross income, and industrial production index. In the hybrid technique based. MLP, the forecast error was reduced by 1.8 times. In the ANFIS, this number was 1. 3 and in the SVR approach, it was 3.2 times higher. These findings showed that the ANFIS is the highest potential for improvement using meta-heuristic techniques. It is proposed that hybrid algorithms, such as hybrid GWO-PSO, be used to improve artificial intelligence pedictions in this study.

be 1 shows a comprehensive literature survey in tabular form. Table 1 and the previous ectio details show that this paper presents an automated comparable classification analysis desults of tooth dental X-ray images as diseased or un-diseased. The four most sort after pd hierarchically evolving deep learning architectures having a huge number of layers to prevent overfitting of data have been used. The results obtained from the application of all architectures over the complete dataset are compared.

Although previous works have worked extensively on such a topic, the literature survey reveals that there are research gaps that this study seeks to fill. The following are the research gaps in the existing literature:

• Slightly outdated CNN architectures are used, compromising performance and robustness.

Table 1 Literature survey

Existing Works	Dataset	Algorithms	Experiment result
Tissue Level Based DL Framework for Early Detection of Dysplasia (Gupta et al., 2019b)	Total of 2688 images 1882 training images 806 testing images	CNN	While training for 75 epochs, the Trained CNN achieved an accuracy of 91.65% on training data. It provided 89.3 percenaccuracy on testing data
Tooth detection and numbering in panoramic radiographs using CNN (Tuzoff et al., 2019)	1352 testing panoramic radiographs 222 testing images	Faster R-CNN (Detection) VGG-16 CNN	For teeth detection a sensitivity of 0. 41 and precision of 0.994, was achieved
		(Numbering)	sensity of 0.9800 and specificity is
Utilizing Mask R-CNN for Detection and Segmentation of Oral Diseases (Anantharaman et al., 2018)	30 training images 10 testing images	Mask R-CNN	The dice coefficient score of Cold sores was 0.774 and for Cancer sores was 0.714
Automated Dental Image Analysis by Deep Learning on Small Dataset (Yang et al., 2018)	196 combinations having pre and post-treatment images	Cl Aley Net GoogleNet	The proposed network got higher accuracy in 'getting better' cases but made more wrong decisions on 'getting worse' cases The final F1 score obtained is 0.749
Classification of Dental Diseases Using CNN and Transfer Learning (Prajapati et al., 2017)	251 ray i nages with - and 26 used validation and testing, respectively	CNN	The given CNN architecture gives an accuracy of 73% on testing data
	<i>y</i>	Transfer Learning (VGG16)	The VGG16 model give an extra 15.39% compared to CNN model
		Transfer Learning (VGG16) with Fine Tune	Due to only 4 layers learning very low level features, fine tuning didn't improve the score much
utomatic white blood cell classification using pre-trained deep learning models: ResNet and Inception (Esteva et al., 2017)	Blood Cells images	ResNet-101	When the final layer was fine-tuned, it obtained an accuracy of 87.23 percent. When all layers were fine-tuned, the accuracy increased to 99.46 percent

Table 1 (continued)

Existing Works	Dataset	Algorithms	Experiment result
		ResNet-152	When the final layer was fine-tuned, it obtained an accuracy of 87.46 percent. When all layers were fine-tuned, the accuracy increased 99.84 percent
Dermatologist-level classification of skin cancer with deep neural networks (Checco & Corinto, 2006)	129,450 clinical images	CNN/3-way	The CNN classer had a mean accuracy of 69.5% with a strind deviation of the control of the contr
		CNN/9-way	e CNN classifier has a nean accuracy of 48.9% with a standard deviation of 1.9% on 9-way classification
		CNN-PA/3 way	For 3 classes, with the proposed partitioning algorithm the accuracy increases to a mean of 72.1% with 0.9% standard deviation
		CNN-PA/9-way	For 9 classes, with the proposed partitioning algorithm the accuracy increases to a mean of 55.4% with 1.7% standard deviation
Detection and Classification Control Caries in X-ray haves Using Dec. Neural Networks (A. Mala., 2016)	The data set of images was collected from many dentists	Deep Neural Network	Predictions for teeth decay are 98 percent accurate, while predictions for normal teeth are 96.1 percent accurate. 96 percent of all tooth decay cases are correctly predicted as decayed teeth. 98 percent of all normal teeth cases are correctly classified. In total, 97 percent of predictions are correct

Table I (Continued	Tabl	e 1	(continued)
--------------------	------	-----	-------------

Existing Works	Dataset	Algorithms	Experiment result
CNN-Based Image Analysis for Malaria Diagnosis (Liang et al., 2016)	450 malaria images	CNN Transfer Learning	The proposed method using the new CNN model outperforms the transfer learning model. The CNN model's average classification accuracy is 97.37 percent, and be model's shisting, specificity, and precisen are all the model's whereas the transfer learning odel achieved an a curacy of only 91 percent.
Classification of teeth in cone-beam CT using deep convolutional neural network (Miki et al., 2016)	Original Rotation Intensity Transform Rotation + Intensity Translation	AlexNet	Samples rotated and window adjusted improved accuracies in training. In random sampling, the fill method has the best classification accuracy. Overall, increasing the number of training samples improved classification performance to 91.0 percent accuracy by rotation and intensity transformation
Artificial Convolution Neural Networl for Medical Image 14. Recognition (Lo c 1 1995)	55 chest radiographs 28 images for training 27 images for testing	Convolution	The average Az (area under the receiver operating characteristic curve) was 0.77 when CNN with delta function was used
		CNN/OA-Sym	Az was increased to 0.83 when output association was performed using CNN with a narrow Gaussian distribution

Existing Works	Dataset	Algorithms	Experiment result
		CNN/OA-Asym/8 Rotations	Az was increased to 0.87 by including eight different types of rotated image blocks in the input and output associations

- Because the datasets are so small, the performance of a deep CNN on such a datase is questionable.
- The model is not trained on a larger number of epochs in some paper
- The data is disproportionate, or some existing works have been lighted to a few dental problems.

Our pipelined addresses these research gaps by working a contraction with AlexNet, which excels at extracting deep and baseline visual features. The esearch gaps mentioned are addressed as follows:

- AlexNet and ResNets are modern deep CNN architectures that excel at image classification tasks
- The dataset we used contains 16000 images of are evenly distributed across several dental condition classes. It has been collected from a pay 5000 patients over a 15-year period. The presence of such a dataset improgramme nodel's validity, performance on real-world data, and robustness.
- We trained the model for the approxiate number of epochs (20) to avoid underfitting and overfitting.
- Our data has been evenly istributed across several dental classes, including caries, RCT, bone loss, missing teeth, and so on.

In this work, we provide a top-level categorization of dental X-ray image scans into a diseased or he (th. scan, which comes to be comparable to any radiologist or dental expert's assessment.

3 Tontribution outline

Table 1 (continued)

of tegrating DNN and validating it fairly (concerning state-of-the-art works) large amounts of Gata to understand and analyze periapical dental diseases is the study's primary aim. This allows us to have multiple objectives:

- (a) The evaluated DNN includes four well-known deep learning architectures/models, namely CNN, AlexNet, ResNet-18, and ResNet-34, for disease classification. Compared to the state-of-the-art works, the baseline architecture of AlexNet makes a difference in terms of performance (ref. Section Results). Further, employing multiple deep learning architectures/models provides a fair comparison among them.
- (b) As no state-of-the-art works provide large amounts of data for validation, we obtained a dataset of 16,000 images and annotated them for dental periapical classification. This

brings us a solution to quantify/test DNN appropriately and is available for research purposes (upon request).

As depicted in Fig. 12 (ref. Sect.4.3), the assessed approach works by collecting and preparing a dataset obtained from a dental clinic followed by disease detection and consequent classification through state-of-the-art baselines DNN.

4 Materials and methods

4.1 Materials

This sub-section discusses the employed datasets, the assessed deep neural network and tectures, and the algorithm used.

4.1.1 Dataset collection

The dataset contains almost 16,000 unique dental X-ray images that are taken from around 5000 patients. The X-ray images were being taken for over 15 $_{\odot}$ rs. some of these images may be useful, and others may not be. Some will be clear, while some will be distorted. All the images are of different sizes. Hence, pre-processing is a cessary. After removing the distorted and useless images, the rest of the images were scaled to a specific size of 140 \times 105 pixels by cropping the unnecessary area, restance, or by introducing some white pixels around it. The dataset has four feature column. The geID, PatientID, Gender, and Age.

4.1.2 Dataset preparation

Caries: Dental caries is a complex control disease that cannot be easily detected in the early stages. The occlusal, aproximal, and smooth surfaces at the gingival margins of teeth are available areas where plaque an accumulate easily and undisturbed to form dental caries.

In dental X-ray, car'es can be identified by black spots on the crown of the tooth, as shown in the below dental X-ray, larges (Naam et al., 2017). Figure 2a shows a sample image of caries infected to the from the dataset.

Root Cana. Tre cont (RCT): Root canal treatment is a frequently performed procedure to address pulpa. Pd periarticular disease. It comprises several clinical steps regardless of the initial cognosis.

RCT can be defined as an extension of caries. In dental X-Rays, RCT, similar to caries, can be identified by black spots on the tooth's crown (Almanei et al., 2017). The difference etwo the two is that if the black spot touches the nerve, it is identified as RCT (shown in 2b).

Abscess: Dental abscess is a frequently occurring infectious process known to health practice. The infection's fate depends on the bacteria's virulence, host resistance factors, and regional anatomy. Serious consequences arising from the spread of a dental abscess lead to significant morbidity and mortality.

In dental X-rays, an abscess can be identified by black spots around the root tip of the tooth dental X-ray Images (Chapman et al., 2013) (also shown in Fig. 2c).

Bone Loss: The black triangle between two teeth can identify bone Loss in the X-Ray images. If the triangle formed is significantly big or, in other words, is bigger than the average one, then the patient is suffering from Bone Loss. Some of the images are shown in Fig. 2d.

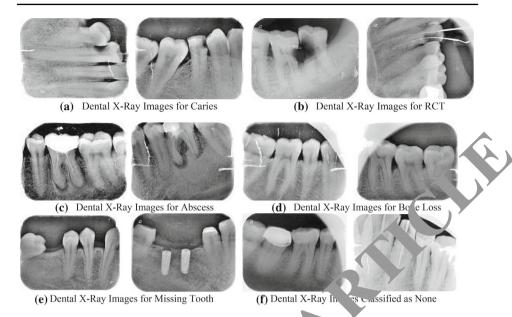


Fig. 2 Some Example of various dental conditions from the dataset

Missing Tooth: Missing tooth can be easily idented by any person as there is a big gap between two teeth. The big gap between the teeth indicates that the tooth is missing. Some sample X-Rays of a missing toot? any shown in Fig. 2e.

None: This class is used to classify the "ntal X-Ray images that are not suffering from any of the above diseases. If an X-Ray, age ca mot be classified in any of the above categories, it is classified as "None." Some image that are classified as "None" are shown in Fig. 2f.

The dataset was first prepared from the raw data provided by the dental clinic. It contained patient information, X-ray in amount, and X-ray images. The information like patient age, gender, and patient ID extracted to find patterns to associate different diseases.

After extracting the 12aa, the data and the X-ray images were used to classify them into different diseases sentic and in the dataset description.

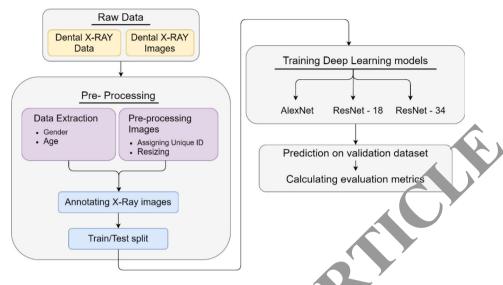


Fig. 3 Proposed modified pipelined approach for periapical disease classific.

4.2 Modified approach

In the proposed work, a modified CNN mod. Alex et, ResNet-18, and ResNet-34 are the four DNNs that are used to train and test the images using the Google Colab² tool. The initial pre-processing of the dataset includes the addition, resining, and cropping. A Unique ID recognizes every image. Corresponding to a labeling is used, which consists of attributes: Gender and Age. The resulting at no and periapical X-Ray images further trained using other baseline and optimized CNN.

The baseline models use the weights and knowledge gained from solving a specific problem and applying it to solve solve

² https://colab.research.google.com.

ALGORITHM 1: Periapical pre-processing and classification using Deep Neural Networks

This algorithm takes the extracted images 1. **if** (videos) 2. images = ExtractFrames(videos) 3. end if. 4. for each image 5. NewImage = Preprocessing (image) 6. function Resize(NewImage, MinSize, MaxSize, Padding) resized imge = cv.resize (img, (140,105))7. 8. return resized imge, Window, ScalingFactor, Padding 9. end function 10. end For 11. **function** Preprocessing(image){ OpenCV.ImageRead(image) 13. OpenCV.convert(image) 14. return ProcessedImage 15. function Resize(Image, MinSize, MaxSize, Padding) 16. if Padding is true 17. Image resized to MaxSize x MaxSize 18 19. Image resized to MinSize x MaxSize 20. endif 21. returns Image 22 **function** Sequential 23. x train,x val,y train,y val = Sr'itData(x, lest size= 0.3) 24. **for** each model ϵ F do // F is the value ted Neural Network model 25. $z = predict(x_test)$ 26 27. $y_pred = append(z)$ 28. end for gorical crossentropy', optimizer='adam', met-29. model.compile (loss= rics=['accuracy']) 30. model.confusionmatrix(y pred,y test) 31. accur cy com are(y_pred,y_val) 32. return p. .accuracy 33. d funct in

In four deep neural networks are trained on the processed data batches created. Based in the results (ref. Sect. 5), the best-trained model for every deep neural network is used to classify diseased and un-diseased on the periapical dental images.

4.3 Methods used and mathematical analysis

This section discusses in detail the mathematical analysis of the methods used in the proposed pipelined approach. The various DNNs used are—CNN, ResNet -18, ResNet-34, and AlexNet.

CNN: The CNN model takes an image of size 105×140 pixels in Red-Green-Blue (RGB) format. The modified CNN contains four different layers; the first two layers are

convolutional. A max-pooling layer then follows these two layers. Finally, the output is flattened and dropped so that it can be fed to a dense layer.

The basic layers of the four Deep Learning models were designed based on the following:

Convolutional Operation: It is done on the image of size a*b, with a kernel size of p, stride size r, and padding q, produces an output of $size = \frac{(a-p+2q)}{r+1} \times \frac{b-p+2q}{r+1}$.

In neural systems, piece size shows neurons' particular field, authorizing neighborhood availability of neurons to the past. K, which is the resultant output derived from the convolutional operation of matrix X (U*V) and matrix Y(M*N) is:

$$K(i,j) = \sum_{v=0}^{u=1} \sum_{v=0}^{V=1} X(u,v) \times Y(i-u,j-u)$$
 (1)

Here, O < i < U + M-1 and 0 < I < 0 + N-1.

For computing K(0,0), Y is first turned by 180° about the middle continent, and the inside is slide so as it lies on the top of U(0,0). After this, each element of Y is multiplied by every element of X. To calculate K(0,0), all the products are sume ad together. The operation that doesn't consider flipping of grid Y is known as cross connection activity. This is expressed as:

$$K(i,j) = \sum_{v=0}^{u=1} \sum_{v=0}^{V=1} X(u,v) \times Y(u-1,v-1)$$
 (2)

Maximum Pooling Operation: Max-Pooling an a gregation operation that extracts the max value in a region on the image. Doing this are helps in controlling over-fitting. Dropout Regularization: "Dropout" refers to rand the pring the neuron, which can be both hidden and visible, in a neural network. This technique was developed to tackle the over-fitting problem in a neural network.

Non-Linearity Layers: After convoluting layers, some non-linear operations are applied with the "activation functions." Record as shown in Eq. 3, is a rectifier function that is half-wave and helps prevent over a converge. The variations of ReLU such as leaky ReLU, Noisy ReLU, ELU.

$$f(u) = (0, u) \tag{3}$$

$$f(u) = \{u, u > 00.01u, \text{ otherwise}$$
 (4)

$$f(u) = \{u, u \ge 0a(e^u - 1), \text{ otherwise}$$
 (5)

Lere Eq. (3) is of Simple ReLU, Eq. (4) is of Leaky ReLU, and Eq. (5) is of Exponential U(ELU), a is a hyper-parameter in Eq. (5). Softmax function gives an output value between 0 and 1, is usually used for two or more classes. It is defined as:

$$f(u_i) = \frac{e^{u_i}}{\sum_{i=0}^k e^{u_i}}$$
 (6)

Normalization: ReLUs has the desirable property that they do not require input normalization to prevent them from saturating. Denoting $c_{x,y}^k$ as the activity of neuron calculated for kernel k at position (x, y). After applying the above Nonlinearity of the ReLU, the normalized output

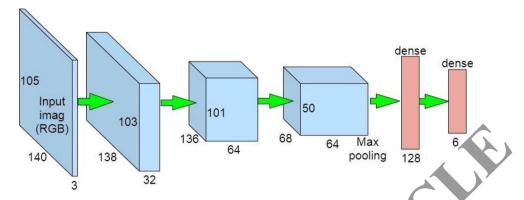


Fig. 4 Architecture of the optimized CNN Model designed

is given by $o_{x,y}^k$ and Eq. 7.

$$o_{x,y}^{k} = \frac{c_{x,y}^{k}}{k + \alpha \sum_{j=\max(0,k-\frac{n}{2})}^{N-1,k+\frac{n}{2}} c_{x,y}^{k}}$$
(7)

Figures 4, 5a, b, and 6 respectively show the specific architectures of the four models used-optimized CNN, ResNet-18, Res. at 34, and AlexNet.

The architecture of both the Res'Net means as depicted in Fig. 5, have been described as follows:-

ResNet-18 consists of a total of 18 layers. Each module has four convolutional layers (excluding 1×1 the convolutional layer). It is similar to the ResNet-34 but only with fewer layers (He et al., 2016).

ResNet-34 consists α . convolutional layer and a pooling layer followed by four similar layers. The layers perform 3×3 convolution with a feature map of dimension [64, 128, 256, 512] respective by, what was in the input every two convolutional layers (He et al., 2016). Also, the dimensions by what and height remain the same during the entire layer. The dotted line represents change in the dimension of the input volume. Note that this reduction between layers is achieved by increasing the stride at each layer's first convolution instead of a pooling of that on.

1. description of Fig. 6, is given as follows:-

AlexNet: The input of AlexNet is always an image of size 250 × 250 pixels and in RGB format. If the image is not in this shape, it is converted to that format. AlexNet contains eight different layers; the first five layers are convolutional. Max-pooling layers then follow them. Finally, the last three layers are fully connected (Krizhevsky et al., 2012). It uses the non-saturating ReLU activation function, which showed improved results and better training performance over tanh and sigmoid. The weight update rule of AlexNet using stochastic gradient descent is given by Eq. 8.

$$v_{i+1} = 0.9v_i - 0.0005 \cdot \varepsilon \cdot w_i b - \varepsilon \cdot \frac{\partial L}{\partial w}|_{w_i D_i}$$
(8)

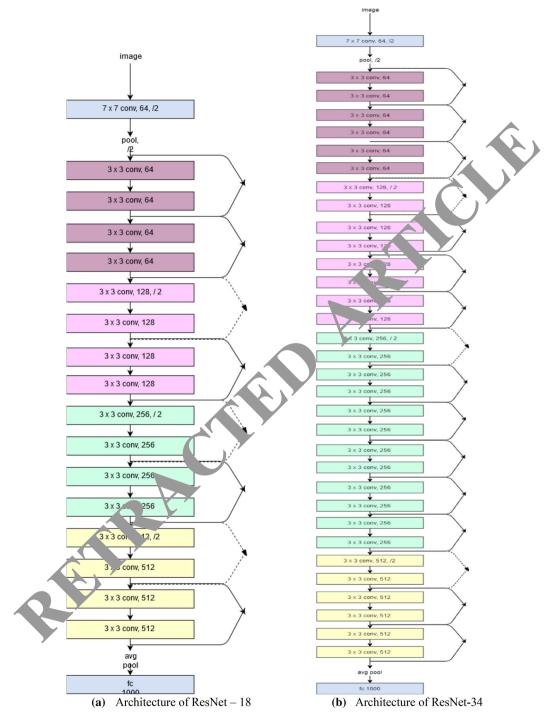


Fig. 5 Architectures of two ResNet modes namely a ResNet-18 and b RestNet-34

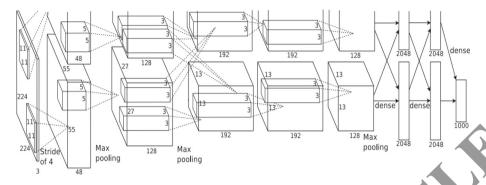


Fig. 6 Architecture of AlexNet

Equation 9 shows the Local Response Normalization that is used to the Ar xNet model to aid generalization.

$$b_{x,y}^{i} = a_{x,y}^{i} / \left(k + \alpha \sum_{j=\max(0,i-n/2)}^{\min(N-1,i+n/2)} j^{2} \right)^{p}$$
(9)

5 Experimental results

After applying a DNN on fairly lift data collection, the data goes through a pre-processing phase. This phase performs resizing, copping, and augmenting, finally producing a unique dataset of 16,000 dental X-ray images as per Algorithm 1 (ref. Section 4). Further, these images are given as input to 10 deep neural network models, as described in Sect. 4.1. The following sub-section 10 parts the experimental results based on binary classification into diseased and un-disease and healthy tooth 10 espective y.

5.1 Result

In thy, a six-way classification is performed by all four models for finer disease classification, a lowed by a four-way partition or classification scheme for all four models to achieve erse grain analysis of the dataset. The study indicated that the results were fairly observible, but were constrained by skewed and coarse annotation. Later, binary classification is obtained on the entire dataset to get certain finer insights. The progress in accuracy demonstrates the validity effectiveness of the partition diseased and un-diseased so formed. Though the dentists label the dataset by a run-through scan, they are not necessarily confirmed as per specific treatment making the metric inconclusive and proving that the models CNN, AlexNet, and ResNet are learning after every epoch. Table 2 represents the complete dataset results for two classes for all models used—the metrics used for comparison—precision, recall, F1-score, an accuracy score. We further present the intermediate results of all the DNNs. The performance metrics considered for this study are as follows:

	Accuracy	Precision	Recall	F1 Score
Modified CNN	0.612	0.780	0.617	0.549
AlexNet	0.852	0.850	0.850	0.850
ResNet-18	0.815	0.815	0.815	0.815
ResNet-34	0.493	0.247	0.500	0.330

Table 2 Result of different models on the complete dataset for dental disease classification

1. Accuracy: It is the proportion of correctly classified points (prediction) to total redictions. It has a value between 0 and 1. It is the most intuitive metric and can be a full when both test and training accuracies are compared to check if the model has overfitted or underfitted the dataset. Its formula is given in Eq. 10.

Accuracy =
$$\frac{(TP + TN)}{(TP + FP + TN + FN)}$$
 (10)

2. *Precision:* It is the proportion of correctly predicted por tive points to total positive points. High precision thus means that the false positive rate is now which is beneficial for a model. Its formula is given in Eq. 11.

Precision =
$$\frac{TP}{TP + FP}$$
 (11)

3. *Recall:* It is the proportion of correctly projected positive observation to the all observations in actual class. It provides and indicated of missed positive predictions. Its formula is given in Eq. 12.

$$Recall = \frac{TP}{TP + FN}$$
 (12)

4. *F1 Score:* It is a weighted average of precision and recall. It helps combine precision and recall and provides a latter measure of model performance. It's formula is given in Eq. 13.

$$F1 - score = \frac{2 \times Precision \times Recall}{Precision + Recall}$$
 (13)

5. Confision M_{\star} ix: It is a binary classification matrix of dimension 2×2 , with real values on one is and predicted values on the other.

VP rre,

True Negative (TP) is an outcome in which the model forecasts the positive class properly.

True Negative (TN) is an outcome in which the model predicts the negative class properly.

Palse Positive (FP) is an outcome in which the model forecasts the positive class inaccuately.

False Negative (FN) is a result in which the model forecasts the negative class inaccurately.

(i) CNN with added Layers: Fig. 7a, b and c show that training and testing accuracy vs. epochs, training loss with testing loss vs. epochs and confusion matrix. The accuracy score obtained using this redefined CNN architecture is 0.612, as shown in Fig. 8. Using optimized CNN, the precision-recall score evaluates to 0.78 and 0.617, respectively, for both classes. This score accounts for the best amongst all the tweaked CNN, i.e., freezing and un-freezing layers.

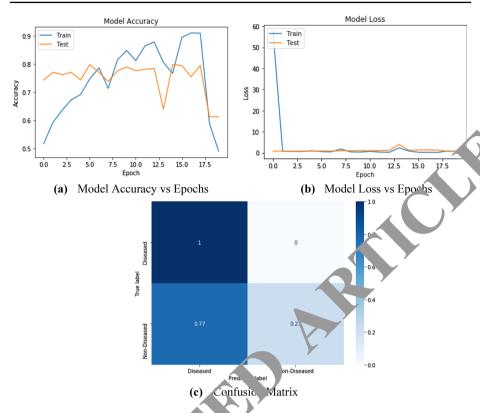


Fig. 7 Performance of the CNN model with added cors shown a Accuracy vs Epochs and b Loss vs Epochs c Confusion Matrix

- (ii) AlexNet: Fig. 9a, b and show the training and testing accuracy vs. epochs, training loss with testing vs. epochs and confusion matrix. The accuracy obtained using this model architecture is v.852, as shown in Fig. 10. A larger area under the curve can be obtained in a idea scenario with high recall and precision values. Since the area under the curve vary indicating high precision (accurate results) and high recall (majority possive results). This signifies that both the false-positive rate and false-negative rate are low
- (iii ** *PesNet-18: Fig. 11a, b and c demonstrate training and testing accuracy vs. epochs, raining loss with testing loss vs. epochs and confusion matrix. The accuracy score c stained using this is 0.815 (also shown in Fig. 12).
 - ResNet-34: Fig. 13a, b and c demonstrate training and testing accuracy vs. epochs, training loss with testing loss vs. epochs and confusion matrix. The accuracy obtained using this model is 0.612, as shown in Fig. 14.

The Table 3 depicts comparative analysis between out approach and existing approaches. However, a complete and fair comparison involving the results of existing approaches the proposed approach is not directly possible since to the best of our understanding, there has been no work on a large dataset as used in our study (16,000 images).

Our study focuses on a pipeline approach in which data is cleaned and preprocessed prior to being used in any deep learning model. However, AlexNet has been known to excel at

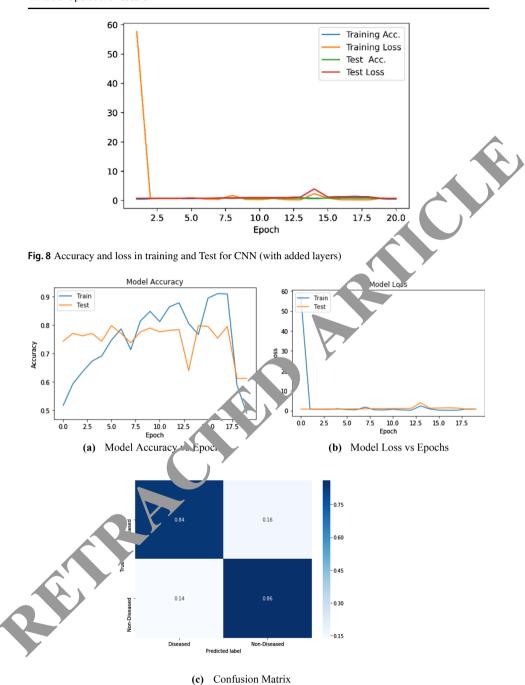


Fig. 9 Performance of the AlexNet shown as a Accuracy vs Epochs and b Loss vs Epochs c Confusion Matrix

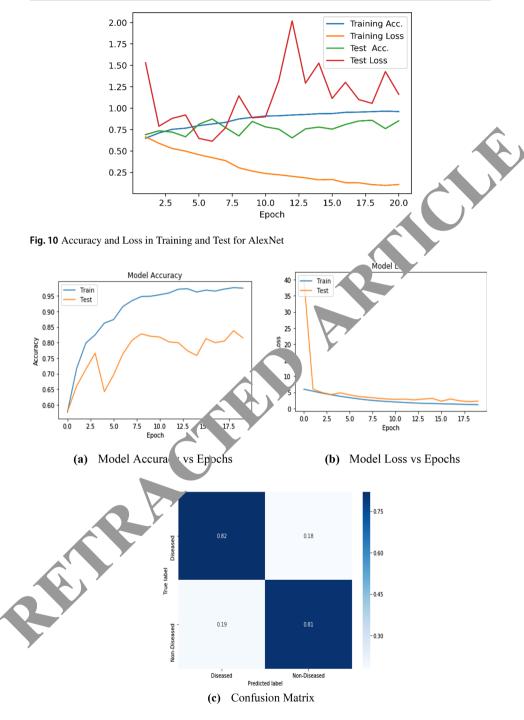


Fig. 11 Performance of the ResNet-18 shown as a Accuracy vs Epochs and b Loss vs Epochs c Confusion Matrix

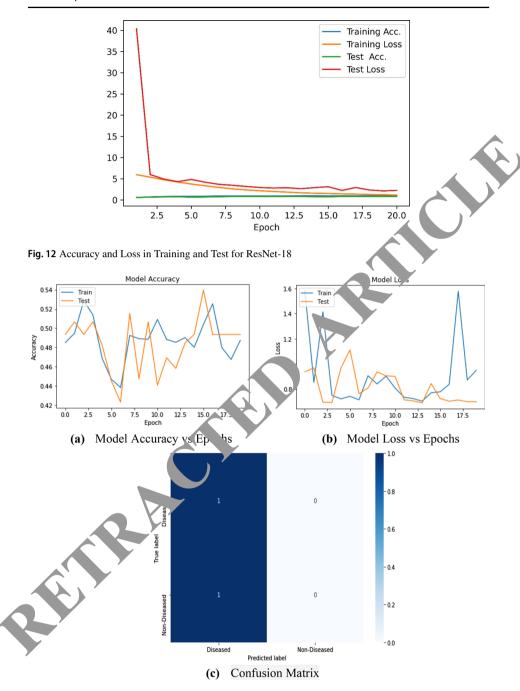


Fig. 13 Performance of the ResNet-34 shown as a Accuracy vs Epochs and b Loss vs Epochs c Confusion Matrix

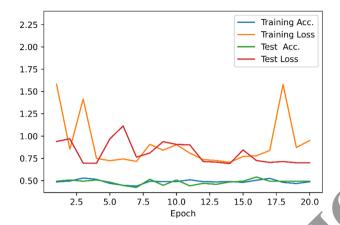


Fig. 14 Accuracy and Loss in Training and Test for ResNet-34

Table 3 Comparative Analysis of existing approaches and our pipelined approaches

Parameter	Our Study	Dermatologist-level classification of skin cancer with deep neural networks (Checco & C rinto, 2006)	A mated Lental Imager, alysis by Deto Learning on Small Dataset (Yang et al., 2018)	Utilizing Mask R-CNN for Detection and Segmentation of Oral Diseases (Anantharaman et al., 2018)
Accuracy	AlexNet achieves maximum accuracy o 85.2%	The maximum nuracy was objected as 73%	The accuracy achieved was 77%	74%
Dental Dataset Size	16,00 unique denta r. image, that are tak n around 5000 patients	-	196 combinations having pre and post-treatment images	30 training images 10 testing images
Model Used	AlexNet	CNN-PA/3-way	CNN	Mask R—CNN

be one used in this study. This is because it is capable of extracting both deep and baseline visual features. Even though the optimized CNN model presented has been tweaked and modifications made to the layers, the model has difficulty working on large high resolution data sets without over fitting. Alexnet solves this problem by combining model ensembles and consecutive convolution layers.

A model is said to be a good fit if it can generalize and learn the features from the training data without over-fitting or under-fitting, i.e., it can generalize the features and perform well even on unseen data. Considering that the images are real X-ray images and the size of the dataset is very larger, AlexNet model is performing very well. As it can be seen from Fig. 9a

and 10, the training and testing accuracy are similar throughout the training, indicating that the model hasn't over fitted to the dataset and is generalizing well on unseen data. This can be seen from the fluctuation in the graph for the validation accuracy curve.

6 Conclusion

The importance of timely and accurate dental diagnosis cannot be overstated. The sooner a dental problem is identified and treated, the more likely it is to reverse and repair the dama a with minimal invasion. Even a minor enhancement or improvement in existing technique, can go a long way in providing significant health benefits in the medical field. This power has made a successful attempt to contribute a different type of pipelined approach using An Net in this regard. Medical diagnoses and treatments differ from one patient to thousand. While some treatment options may be beneficial to a specific patient population of the may not. However, due to the unpredictable nature of different medical treatments on a ferent human bodies, some patients' bodies may be receptive of one kind of treatment whale the other patients could be responding to different treatments.

In this paper, we performed dental X-ray image classifications and four different DNNs, namely, AlexNet, ResNet-18, ResNet-34 and modified CNN a 1 tairly large dataset of 16,000 periapical dental X-ray images. To the best of our orderstanding, this dataset is the largest data considered under study for the purpose of dentar a sease detection. The dataset was then annotated with the most common diseases in teeth- caries, root canal treatment, abscess, bone loss, and a missing tooth. has pulled initial pre-processing followed by the state-of-the-art deep learning The approach noticel application. The validation accuracy was fairly observable for all the algorithms; however, a exNet outperformed the other algorithms for X-ray classification with the accuration 0 352. This may be attributed to the fact that AlexNet has been known to excele timage classification tasks, particularly when working with large real-world data sets such as the one used in this study (Ref. Section 1: Introduction). We observe that AlexNet model does not overfit the dataset and generalizes effectively to new data. The idea behind tal X-ray automation is to accurately diagnose the problem by studying dental X-1 vs with usep learning architectures. The presented approach will not replace the manual force, ... is, the clinical staff; rather, it will increase human productivity, decrease the treatment time, and efficiently treat many patients. Additionally, the pipelined paper addresses the research gaps in existing literature as specified in approach used. the paper Ref. 5 ion 2: Related Work).

Re ren :es

- Š., Peikari, M., Salama, S., Nofech-Mozes, S., & Martel, A. L. (2018). Determining tumor cellularity in digital slides using resnet. In Medical Imaging 2018: Digital Pathology *10581*, 105810U. International Society for Optics and Photonics.
- Ali, R. B., Ejbali, R., & Zaied, M. (2016). Detection and classification of dental caries in x-ray images using deep neural networks. In Int. Conf. on Software Engineering Advances (ICSEA) (p. 236).
- Almanei, K., Alsulaimani, R., Alfadda, S., Albabtain, S., & Alsulaimani, R. (2017). Digitally scanned radiographs versus conventional films for determining clarity of periapical lesions and quality of root canal treatment. The Scientific World Journal.
- Anantharaman, R., Velazquez, M., & Lee, Y. (2018). Utilizing Mask R-CNN for Detection and Segmentation of Oral Diseases. In 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), IEEE (pp. 2197–2204).

- Chapman, M. N., Nadgir, R. N., Akman, A. S., Saito, N., Sekiya, K., Kaneda, T., & Sakai, O. (2013). Periapical lucency around the tooth: Radiologic evaluation and differential diagnosis. *Radiographics*, 33(1), 15–32.
- Chatrati, S. P., Hossain, G., Goyal, A., Bhan, A., Bhattacharya, S., Gaurav, D., & Tiwari, S. M. (2020). Smart home health monitoring system for predicting type 2 diabetes and hypertension. *Journal of King Saud University-Computer and Information Sciences*.
- Checco, P., & Corinto, F. (2006). CNN-based algorithm for drusen identification. In 2006 IEEE International Symposium on Circuits and Systems. IEEE (pp. 4).
- Dental Quality Alliance (2012). Pediatric oral health quality and performance measures: Environmental scan. American Dental Association.
- Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. *Nature*, *542*(7639), 115.
- Goli, A., Khademi-Zare, H., Tavakkoli-Moghaddam, R., Ahmad S., Sasanian, M., Malekalipou Kordestanizadeh R. (2021). An integrated approach based on artificial intelligence and nov 1 metaheuristic algorithms to predict demand for dairy products: A case study, Network: Computation Veural Systems, 321, 1–35 https://doi.org/10.1080/0954898X.2020.1849841
- Gupta, R. K., Kaur, M., & Manhas, J. (2019b). Tissue level based deep learning framework for early detection of dysplasia in oral squamous epithelium. *Journal of Multimedia Information Systems*, 6 81–56.
- Gupta, V., Singh, V. K., Ghose, U., & Mukhija, P. (2019a). A quantitative and text-benedular aracterization of big data research. *Journal of Intelligent and Fuzzy Systems*, 36(5), 4659–467
- Habibzadeh, M., Jannesari, M., Rezaei, Z., Baharvand, H., & Totonchi, M. (26 (8)). stomatic white blood cell classification using pre-trained deep learning models: ResNet and J. ption. Tenth International Conference on Machine Vision (ICMV 2017) 10696, 1069612. In rna onal Society for Optics and Photonics.
- Han, X., Zhong, Y., Cao, L., & Zhang, L. (2017). Pre-trained alexnet architect with pyramid pooling and supervision for high spatial resolution remote sensing image sc. lossification. *Remote Sensing*, 9(8), 848.
- He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern agnition (pp. 770–778). 3
- Hwang, J. J., Jung, Y. H., Cho, B. H., & Heo, M. S. (2019). In overview of deep learning in the field of dentistry. *Imaging Science in Dentistry*, 49(1). 1–1.
- Jafarzadeh Ghoushchi, S., Ranjbarzadeh, R., Najafabadi, A., et al. (2021). An extended approach to the diagnosis of tumour location in breast car. Jusing deep learning. *Journal of Ambient Intelligence and Humanized*. https://doi.org/10.1007/12652-103613-y
- Jain, R., Jain, N., Aggarwal, A., & He na. D. J. (2019). Convolutional neural network based Alzheimer's disease classification from magnetic restance brain images. *Cognitive Systems Research*, 57, 147–159.
- Krizhevsky, A., Sutskever, I., & I inton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in new al information processing systems. 1097–1105.
- Kumar, A., Bhadauria, H. S., & Sing, A. (2021). Descriptive analysis of dental X-ray images using various practical methods: A *PeerJ. Computer Science*, 7, e620. https://doi.org/10.7717/peerj-cs.620
- Liang, Z., Powell, A., Ersoy J., Postchi, M., Silamut, K., Palaniappan, K., Guo, P., Hossain, M.A., Sameer, A., Maude, P.J. Huang, J. X. (2016). CNN-based image analysis for malaria diagnosis. In 2016 IEEE Internation. Compace on Bioinformatics and Biomedicine (BIBM) (pp. 493–496). IEEE.
- Liszka, G., Roska, Zarandy, A., Hegyesi, J., Kek, L., & Rekeczky, C. (1995). Mammogram analysis using CNV. orithms in Medical Imaging 1995: Image Processing, 2434, 461–470. International Society for Cotics at Photonics.
- Liu S., Wang, Y., Yang, X., Lei, B., Liu, L., Li, S. X., .Ni, D. & Wang, T. (2019). Deep learning in medical uraso and analysis: A review. *Engineering*.
- o, S. B., Chan, H. P., Lin, J. S., Li, H., Freedman, M. T., & Mun, S. K. (1995). Artificial convolution neural network for medical image pattern recognition. *Neural Networks*, 8(7–8), 1201–1214.
- vm., Y., Muramatsu, C., Hayashi, T., Zhou, X., Hara, T., Katsumata, A., & Fujita, H. (2016). Classification of teeth in cone-beam CT using deep convolutional neural network. *Computers in Biology and Medicine*, 80, 24–29.
- Mishra, S., Pandey, S. R., Hicks, D., Goyal, A., & Gaurav, D. (2020). A blood pressure and heartbeat anomaly detection and notification mobile application system. *Journal of Web Engineering*, 735–761.
- Mostafaeipour, A., Goli, A., Rezaei, M., Qolipour, M., Arabnia, H.-R., Goudarzi, H., & Behnam, E. (2021). Performance of different hybrid algorithms for prediction of wind speed behavior. *Wind Engineering*, 45(2), 245–256. https://doi.org/10.1177/0309524X19882431
- Naam, J., Harlan, J., Madenda, S., & Wibowo, E. P. (2017). Image processing of panoramic dental X-ray for identifying proximal caries. TELKOMNIKA Telecommunication Computing Electronics and Control, 15(2), 702–708.

- Prajapati, S. A., Nagaraj, R., & Mitra, S. (2017). Classification of dental diseases using CNN and transfer learning. In 2017 5th International Symposium on Computational and Business Intelligence (ISCBI) (pp. 70–74). IEEE.
- Ranjbarzadeh, R., Bagherian Kasgari, A., Jafarzadeh Ghoushchi, S., et al. (2021). Brain tumor segmentation based on deep learning and an attention mechanism using MRI multi-modalities brain images. *Science and Reports*, 11, 10930. https://doi.org/10.1038/s41598-021-90428-8
- Ranjbarzadeh, R., Jafarzadeh Ghoushchin S., Bendechache, M., Amirabadi, A., Ab Rahman, M. N., Baseri Saadi, S., Aghamohammadi, A., Kooshki Forooshani, M. (2021). Lung Infection Segmentation for COVID-19 Pneumonia Based on a Cascade Convolutional Network from CT Images, *BioMed Research International*, 2021, Article ID 5544742, 16. https://doi.org/10.1155/2021/5544742
- Ren, S., Jain, D. K., Guo, K., Xu, T., & Chi, T. (2019). Towards efficient medical lesion image super-resolution based on deep residual networks. Signal Processing: Image Communication, 75, 1–10.
- Sonoda, S., & Murata, N. (2019). Transport analysis of infinitely deep neural network. The Journal of Machine Learning Research, 20(1), 31–82.
- Tuzoff, D. V., Tuzova, L. N., Bornstein, M. M., Krasnov, A. S., Kharchenko, M. A., Nikolenko, S. A., Svesh, M. M., & Bednenko, G. B. (2019). Tooth detection and numbering in panoramic ra tographs using convolutional neural networks. *Dentomaxillofacial Radiology*, 48(4), 20180051.
- Yamashita, R., Nishio, M., Do, R. K. G., & Togashi, K. (2018). Convolutional neural etves: An overview and application in radiology. *Insights into Imaging*, 9(4), 611–629.
- Yang, J., Xie, Y., Liu, L., Xia, B., Cao, Z., & Guo, C. (2018). Automated detalogge analysis by deep learning on small dataset. In 2018 IEEE 42nd Annual Computer Softward and Applications Conference (COMPSAC) 1, 492–497). IEEE.

Publisher's Note Springer Nature remains neutral with regard to jul Victional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

