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NudC regulated Lis1 stability is essential

for the maintenance of dynamic

microtubule ends in axon terminals

Dane Kawano, Katherine Pinter, Madison Chlebowski, Ronald S. Petralia, Ya-Xian
Wang, Alex V. Nechiporuk, and Catherine M. Drerup
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Figure S1. The nudc mutation causes loss of NudC function and autophagosome accumulation in axon 
terminals. Related to Figure 1. (A) Overexpression of mRFP-NudC in nudc mutants can suppress the 
axon terminal swelling phenotype (ANOVA). Zygotes were injected with mRNA encoding mRFP-NudC 
for ubiquitous expression in the developing larvae. (B) RT-PCR for nudc shows it is maternally deposit-
ed (present at 2-cell stage) and also zygotically expressed. (C,D) Transmission electron micrographs of 
wild type and nudc axon terminals. Enlarged autophagosomes are labeled with yellow arrows. Axon 
terminal outlined by dashed line. (E) Quantification of autophagosome density in axons from TEM 
images (ANOVA). Wild type data was collected from 12 micrographs representing 3 fish. nudc data was 
collected from 9 micrographs representing 3 fish. Data are expressed as mean ± S.E.M.
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Figure S2. Mitochondrial and peroxisome transport in nudc mutants. Related to Figure 2. (A,B) Kymograph 
analysis of peroxisomes (labeled by a peroxisome targeting sequence tagged with mRFP) transport. (C) Percent 
of peroxisomes in the anterograde, retrograde, stationary, and bidirectional populations are unaffected in nudc 
mutants. A slight, non-significant reduction in anterograde peroxisome transport was noted (ANOVA; p=0.0553). 
(D) Total number of peroxisomes present in the axon is unchanged in nudc mutants (ANOVA). (E,F) Quantifica-
tion of peroxisome transport parameters reveals slight decreases in their anterograde distance and velocities in 
nudc mutants (ANOVA). (F`,F``) Histogram of velocities binned in 0.2μm/sec intervals demonstrates a slight shift 
towards slower anterograde velocities. (G,H) Kymograph analysis of mitochondrial transport. (I) Percent of mito-
chondria in the anterograde, retrograde, stationary and bidirectional populations are unaffected in nudc mutants 
(ANOVA). (J) Total number of mitochondria present in the axon is unchanged in nudc mutants (ANOVA). (K,L) 
Quantification of mitochondrial transport parameters reveals slight decreases in their anterograde and retrograde 
transport velocities in nudc mutants (Anterograde: Wilcoxon Rank Sum; Retrograde: ANOVA). (L`,L``) Histogram 
of velocities binned in 0.2μm/sec intervals demonstrates a shift towards slower velocities particularly in the retro-
grade direction. Data are expressed as mean ± S.E.M. Sample sizes indicated on graph.
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Figure S3. Dync1li1V2-labeled cargo transport in nudc mutants. Related to Figure 2. (A,B) Kymograph 
analysis of Dync1li1v2 transport. (C) The percent of anterograde Dync1li1v2 transport decreases in nudc 
mutants (ANOVA; p=0.0002) while bidirectional movement increases (ANOVA; p=0.0009). Retrograde and 
stationary Dync1li1V2 punctal transport frequency are unchanged (ANOVA; p=0.3839 and p=0.069 respec-
tively). (D) Total number of Dync1li1V2+ vesicles in the axon are unchanged in nudc mutants (ANOVA). 
(E,F) Quantification of Dync1li1v2 transport shows that anterograde and retrograde velocity are both 
reduced in nudc mutants (ANOVA). (F`F``) Shifts towards slower velocities are clear in the binned histo-
grams. Data are expressed as mean + S.E.M. Sample sizes indicated on graphs.
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Figure S4. Microtubule stability in the axon shaft is unchanged in nudc mutants. Related to Figure 3. (A,B) 
Kymograph analysis of EB3-labeled microtubule growth. (C) The number of plus-end directed comets are the 
same between wild type and nudc mutants (ANOVA). (D,E) Quantification of microtubule growth distance 
and velocity show no difference between wild type and nudc mutants (ANOVA). (D`, E`) Binned histograms of 
distance and velocity showing no population shifts for either measurement. (F,G) Images of RFP-Patro-
nin-CC labeling of microtubule minus ends in the cell body, axon, and axon terminal. (H-J) Quantification of 
Patronin punctal density shows no difference in microtubule minus end number in any compartment 
(ANOVA). Data are expressed as mean ± S.E.M. Scale bar = 10μm. Sample sizes indicated on graphs.
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