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Special Considerations Related to Interpreting Oscillometry 

Useful physiological and pathological information from oscillometry can be obtained from the 

dependence of the frequency of oscillation. Most clinical oscillometric studies in children and 

adults have been conducted over relatively medium frequency ranges (between 4 to 50 Hz), 

although low frequency (less than 1 Hz) and high frequency (greater than 50 Hz) ranges have 

also been studied, particularly in infants.  Much of the published literature has reported on 

whole-breath analysis to derive Zrs, but there is increasing interest in “intra-breath” applications 

where a single frequency is used to track the breathing cycle temporally (1, 2). Additionally, the 

important effects of lung volume on oscillatory mechanics need to be better appreciated (3).  Rrs 

has an inverse relationship with lung volume, particularly at low lung volumes where Rrs 

increases substantially.   In children, this volume-dependence of Rrs is magnified in the presence 

of airway obstruction (4).  The relationship between Xrs and lung volume is more complex, such 

that Xrs suddenly and abruptly decreases at low lung volumes due to airway closure  (5-8).  Such 

volume-dependent behaviours are best explained by parenchymal tethering of the airways, which 

allows lung inflation to increase airway calibre, or airway closure to occur during lung deflation.  

An understanding of these physiological relationships facilitates the clinical interpretation of 
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oscillometry measurements as the clinical relevance of this lung function modality continues to 

mature.   

 

Oscillometry During Infancy 

The vast majority of  studies in infants have applied  oscillations at raised lung volume during a 

period of apnoea, induced via the Herring-Bruer reflex. In infants, the equilibrium between tissue 

properties, lung volume, airway wall compliance, and airway diameter is highly complex and 

dynamically interacting (9). Consequently, oscillations outside of the medium frequency range 

have been applied to infants in an attempt to further understand the early origins of lung disease. 

For example, Zrs at low frequencies (below 1-2 Hz) contains information on both the resistive 

and elastic properties of the respiratory tissues (i.e., the parenchyma and chest wall) (10), as 

shown during methacholine challenge (11) and bronchodilator administration (12, 13) in wheezy 

and “healthy” infants. Similar low-frequency methods have been applied to a small number of 

preterm infants (14), but the clinical interpretation remains unclear. 

 

High frequency oscillations (above 50Hz), which contains information on the airway wall 

properties, have also been applied to infants. These data reveal that the first anti-resonance (when 

the impedance is wholly due to resistance rather than reactive components which include elastic 

and inertial contributions) is altered in asymptomatic infants with wheezing disorders (15), 

consistent with changes in mechanical properties of the airway walls.  Since both airway 

diameter and airway wall mechanics contribute to flow limitation (16) these findings support the 

notion that the mechanical properties of the airway walls may play a role in recurrently wheezing 

infants at baseline, as well as post-beta-agonist inhalation (17).  
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Most recently, oscillometry has been applied to infants during quiet sleep, utilizing medium 

frequency spectral analyses and the single frequency (intra-breath) method, with successful 

measurements obtained as early as the first day of life (18-20).  This method has been applied to 

unsedated healthy infants at 6 weeks of age, to identify subjects at risk of developing severe 

respiratory illness in the first year of life, including those with lower respiratory tract illnesses 

and wheezing (21).  Further studies in this emerging research area are likely to determine the 

broader role of oscillometry in detecting infants (and children) who may go on to develop 

chronic respiratory disease (22). 

 

Effects of Lung Volume on Oscillatory Mechanics in Asthma 

Van den Elshout and colleagues (23) have observed different responses of Zrs to changes in lung 

volume between healthy and asthmatic adults with and without bronchial hyperreactivity. Such 

findings suggest that oscillometry might be a useful adjunct for the diagnosis of bronchial 

hyperreactivity.  The relationship between volume-dependent indexes and asthma control may 

also prove to be clinically useful, with earlier closure associated with worse control  (24). The 

volume at which Xrs suddenly becomes more negative is higher in asthma, indicating earlier 

airway closure (5).  Nilsen and colleagues (7) proposed a simple and easily performed technique 

using a slow vital capacity manoeuvre, in conjunction with Xrs measurements, to identify the 

critical volume resulting in apparent closure of airspaces (derecruitment) in asthma. 

Derecruitment is the effective closure of airways to the oscillatory flow, which prevents 

transmission of flow beyond the occlusion and results in an apparent stiffening of the respiratory 

system, manifested as a more negative Xrs at low frequency.   More recent work identified lung 
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derecruitment patterns (8) and relationship to closing volume as measured by single breath gas 

washout (25).  Airway re-opening during large tidal manouevres is a modulator of airway 

obstruction in adult asthmatics (26).  These mechanisms may be even more relevant in children, 

in whom FRC and airway closing volume have closer proximity. 

 

Short and Long-Term Variability of Oscillometry in Asthma 

Short-term variability (e.g., within-test or between-session on the same day) of oscillometry is 

greater than that seen with spirometry in children and adults (27, 28).  As asthma is characterized 

by spontaneous variation in lung function over time (i.e., variable airflow obstruction), greater 

variability detected by oscillometry may have important clinical consequences.    Que and 

colleagues showed greater variability of Zrs during a single 15 minute recording in adult 

asthmatics compared to healthy controls (29), and these findings have been replicated in some 

studies (30) but not others when log transformed (31).  Veiga and colleagues (32) and Que and 

colleagues (29) demonstrated that this variability is proportional to airway obstruction.  Gonem 

and colleagues (30), using a single 150-s recording of oscillometry, also reported higher Rrs and 

Rrs5-20 variability in asthmatics at Global Initiative for Asthma (GINA) (33) treatment steps 4 

and 5, and with asthma exacerbation risk.   

 

Longer time scale variation in lung function (i.e., over days or months) may also provide 

information on asthma control. Previous studies demonstrated that unsupervised home 

monitoring using oscillometry in adults yielded accurate and reproducible data (34-36), and that 

either the coefficient of variation or individualized standard deviations could be used to define 

day-to-day variability (28).  In school-aged children, the variability of laboratory-measured Rrs 
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and Xrs over 5 days correlated with asthma control (37). More advanced methods may enable us 

to more adequately capture day-to-day variability of Rrs and Xrs obtained from home 

monitoring. Such analyses have predicted future deterioration in lung function, providing a 

potential measure of exacerbation risk (38, 39).  Case studies provide promising evidence that 

home-based, parent-supervised, daily oscillometric measurements are predictive of future 

exacerbations in paediatric patients (40).  Continuous, home-based monitoring with oscillometry 

to assess asthma control and to detect exacerbations is feasible and reliable in adults (39, 41).  

Greater day-to-day variability of Rrs and Xrs has been observed in mild-intermittent asthma 

versus health over days (28) as well as up to 6 months (42).  The between-day variability of 

measurements is greater than that of FEV1 (28, 43), which may reflect disease activity and the 

underlying physiological differences between oscillometry and spirometry (28, 43).    These 

observations suggest a role for oscillometry as an objective and sensitive detector of asthma 

control and exacerbation, as well as a clinical indicator of exacerbation phenotype. 

 

Upper Airway Shunt During Bronchial Challenge Testing 

Upper airway shunting dampens any increase in Rrs during bronchial challenge testing, an effect 

that increases with greater lung impedance, such as in the presence of airway obstruction or in 

young children. This effect may be compensated for in part by using a “head generator”, or a 

different parameter derived from Zrs known as respiratory system admittance (Ars; the 

reciprocal of impedance i.e., 1/Zrs ) (44, 45).  Ars represents the flow conductance of the total 

respiratory system, and corresponds closely to its predominating component, the bronchial 

conductance, especially when measured near resonant frequency.   
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Home Monitoring of Oscillometry in Patients with COPD 

As with asthma, home monitoring of COPD patients with oscillometry is feasible (34, 43, 46, 47) 

and has been used to try to identify clinical deterioration in patients at risk of exacerbation (48).  

Although there was no difference in the overall risk of hospitalization compared to usual care, 

patients with a prior history of hospitalization and/or severe COPD benefitted from daily 

oscillometry monitoring linked to clinical intervention as lung function deterioration was 

detected. Whether the sensitivity and specificity of this approach can be improved by including 

symptomatic monitoring in this process remains to be tested. 

 

The Use of Oscillometry in the Setting of CPAP for Obstructive Sleep Apnoea 

In clinical settings of using oscillometry to monitor response to CPAP in OSA, oscillations 

should be applied through a nasal mask and tubing, with pressure and flow sensors not placed 

directly at the upper airway opening.  Such technical modifications may require additional 

transducer calibrations and data corrections, as compared to conventional oscillometry delivered 

at the mouth in awake patients (49, 50).  Interestingly, it has been shown that generation of 

oscillation signals for such application does not require an apparatus specific for OSA 

measurement, since a CPAP device can easily be modified to incorporate oscillometric 

measurements (51).  Since appropriate application of oscillometry does not disturb sleep and 

does not modify upper airway tone (52), the technique has been incorporated into commercially 

available CPAP devices (53) to titrate the level of CPAP (54) either manually or as part of an 

automated control system (55). 

 

Technical Aspects Related to Oscillometry in Mechanically Ventilated Patients 
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The measurement of impedance over lower frequencies encompassing typical ventilator rates 

usually requires interruption of artificial ventilatory support, although attempts have been made 

to estimate impedance from spectral analysis of standard volume-cycled waveforms (56, 57)..  

Alternatively, various spectrally enhanced waveforms have been developed to allow for more 

robust and efficient measurement of low frequency impedance in ventilated patients (56, 58, 59).  

Some waveforms are even capable of maintaining gas exchange during the measurement (60, 

61).  If complete apnoea is required during measurement (to assess low frequency Zrs), the use 

of neuromuscular blockade may be considered in the patient who is appropriately sedated.  

Particular care must also be given to the instrumentation used for pressure and flow measurement 

at the airway, since it may easily become contaminated and non-functional due to secretions, 

especially mesh screen or capillary tube pneumotachographs (62).  Should oscillometric 

measurements be acquired under varying concentrations of inspired oxygen or volatile 

anaesthetics, several calibrations of the flow sensor may be required to account for alterations in 

gas density or viscosity (63-65).  The considerable nonlinear resistance of the endotracheal tube 

should be taken into account when measuring respiratory impedance in intubated patients (66-

68). 
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Supplementary Table S1.  Published reference values for Rrs and Zrs for healthy children and 

adults.  

 

 Author Year N Ethnicity 

or 

Country 

Age 

(yrs) 

Oscillometry  

Device 

Children      

 Preschool 

 Hellinckx (69) 1998 247 Cau 2-6 IOS 

 Malmberg(70) 2002 109 Cau 2-7 IOS 

 Shackleton(71) 2013 584 Mex 3-5 i2M 

 Er(72) 2019 151 Turkey 3-7 IOS 

 Duenas-Meza (73) 2019 96 Columbia 3-5 IOS 

 

 Older Children 

 Frei (74) 2005 222 Cau 2-10 IOS 

 Ducharme (75) 2005 197 Cau 3-17 Custovit 

 Dencker (76) 2006 360 Cau 2-11 IOS 

 Amra  (77) 2008 509 Iranian 5-19 IOS 

 Vu  (78) 2008 175 Viet 6-11 Custom 

 Nowowiejska (79) 2008 626 Cau 3-18 IOS 

 Hagiwara (80) 2013 537 Jpn 6-15 IOS 

 Calogero (81) 2013 760 Cau 2-13 i2M 

 Gochiocoa-Rangel (82) 2015 283 Mex 2-15 IOS 

 Kanokporn (83) 2017 233 Thai 3-7 i2M 

 AlBlooshi  2018 291 UAE 4-12 tremoFlo 

Adults      
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N: 

number 

of 

participants; Cau: Caucasians; Mex: Mexicans; Jpn: Japanese; Viet: Vietnamese; UAE: United 

Arab Emirates. *: IOS, I2M, Oscilink, 2 Custom setups. IOS: Impulse Oscillometry System.  

 

  

 Landser (84) 1982 407 Cau - Custom 

 Pasker (85) 1996 140 Cau 21-81 Custom 

 Guo (86) 

Shiota (87) 

2005 

2005 

223 

299 

Cau 

Jpn 

65-100 

20-83 

Oscilink 

IOS 

 Brown (88) 

Newbury (89) 

2007 

2008 

904 

125 

Cau 

Cau 

18-92 

25-74 

Custom 

IOS 

 Oostveen (90) 2013 368 Cau 18-84 multi*  

 Schulz (91) 

Abe (92) 

2013 

2016 

397 

784 

Cau 

Jpn 

45-91 

46-90 

IOS 

MostGraph 

 Ribeiro (93) 2018 288 Braz 20-86 Custom 

 Moitra (94) 

De (95) 

2020 

2020 

191 

253 

India 

India 

18-88 

18-81 

IOS 

IOS 

 Berger  (96)   2021 439 Cau, 

Black, 

Asian, 

Hispanic 

 

 

21-85 IOS 
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Supplementary Table S2. Threshold values for bronchodilator response derived from healthy 

children and adults.  

 

Author/Year Age 

(yrs) 

N* Drug (dose) Oscillometry Index Cut-off 

Helinckx 1998 (69) 3-7 228 Salbutamol 

(200 mcg) 

Rrs5: -41%  

Nielsen 2001 (97) 2-6 37 Terbutaline 

(500 mcg) 

Rrs5: -29%, Xrs5: +42% 

Malmberg 2002 (70) 2-7 89 Salbutamol 

(300 mcg) 

Rrs5: -37% 

Thamrin 2007 (98) 4-5 78 Salbutamol 

(600 mcg) 

Rrs6: -42%, Xrs6: +61% 

Oostveen 2010 (99) 4 144 Salbutamol 

(200 mcg) 

Rrs4: -43%, AX: -81%  

Shin YH 2012 (100) 2-6 29 Salbutamol 

(400 mcg) 

Rrs 5:  -19%, Xrs5:+24% 

Calogero 2013 (81) 2-13 508 Salbutamol 

(200 mcg) 

Rrs8: -32%, Xrs8: +65%, AX: -

81% 

Houghton 2004 

(101) 

adult 12 Salbutamol 

(800 mcg) 

Rrs5: -16%, Xrs5: +27% 

Houghton 2005 

(102) 

adult 12 Ipratropium 

(200 mcg) 

Rrs5: -23%, Xrs5: +19% 

Ostveen 2013 (90) adult 368 Salbutamol 

(400 mcg) 

Rrs5: -32%, Xrs: +44%, AX: -

65% 

Johansson 2021 

(103)        

adult 1495 Salbutamol 

(400 mcg) 

Rrs5: -29%; Xrs5: +45% 

Jetmalani  2021 

(104) 

adult 577 salbutamol 

   (200 mcg)  

Rrs6: -30%, -1.42 z-scores; 

Xrs6:0.57 cm H20/L/s, 1.36 z-

scores 

      

* N: the number who received bronchodilator 

Bronchodilator response is defined as ((post-pre)/pre)*100.  
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Supplementary Table S3. Studies comparing cut-offs during bronchial challenge testing using 

oscillometry vs spirometry.  

 

Author/Year Population Oscillometry 

device 

Oscillometry index 

cut-off 

Paediatric studies 

Lebecque 1987 

(105) 

17 children with 

AHR & 14 non-

AHR 

Oscillaire 50% increase R6 

with histamine 

Bouaziz 1996 

(106) 

38 asthmatic 

children 

Pulmosfor 4-

32Hz or 6 & 

12Hz 

70% change R12 and 

1 hPa.s.L-1 decrease 

in X12 with 

methacholine 

Jee 2010 (107) 50 asthmatic pre-

school children & 41 

children with cough 

IOS 80% decrease in X5 

with methacholine 

Bailly 2011(108) 227 children with 

suspected asthma 

IOS 50% decrease X5 

with methacholine 

Schulze 2012 

(109) 

48 children IOS 45% increase in R5 

or 0.69 kPa.s.L-1 

decrease in X5 to 

methacholine 

Jara-Gutierrez 

2018. (110) 

190 children IOS 22% increase in R5, 

41% decrease in X5, 

82% increase in AX 

(for methacholine); 

for mannitol:  18% 

increase in R5, 21% 

decrease in X5, 40% 

increase in AX; for 

EVH:  23% increase 

in R5, 29% decrease 

in X5, 40% increase 

in AX 

Adult studies 
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van Noord 1989 

(111) 

53 adults Custom 

device 

47% increase in R5 

detecting 15% 

decrease in FEV1 to 

histamine 

J. Pairon 1994 

(112) 

119 adults with 

normal FEV1 from 

occupational 

screening.  

Custom 

device 

65% increase in R0 

with methacholine 

A.B. Bohadana 

1999 (113) 

71 adults with 

suspected asthma 

Pulmosfor 4-

32Hz 

0.060 %rise 

Rmean(4-32Hz)/μg 

carbachol (DRS) or 

0.066 %rise R10/ μg 

carbachol 

M. McClean 

2011 (114) 

52 asthmatic and 15 

healthy adults 

Custom 

device 

27% decrease in 

Grs6 or 0.93 cm 

H2O.s.L-1 decrease in 

X6 with mannitol 

Seccombe 2019. 

(115) 

19 asthmatics and 10 

controls 

TremoFlo 27% increase in R5 

and 47% decrease in 

X5 relative to 10% 

fall in FEV1 post-

exercise 

IOS – impulse oscillometry system; R0, R5, R6, R10, R12, X5, X12 – respiratory system 

resistance at a specified oscillation frequency. 
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