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Annotation of luminal and immune cell subclusters 

 

Luminal subcluster annotation – nomenclature was based on a combination of sample origin 
and gene expression signatures. Clusters L1-5 highly expressed genes involved in hormone 
receptor signaling (ESR1, PGR, AR, TFF1, ANKRD30A), cell proliferation (TOP2A, BIRC5), and/or 
known breast cancer (BC) genes (GATA3 and MUC1)1,2 (Supplementary Fig. 5a), suggestive of 
their malignant nature. Interestingly, subcluster L5 showed a gene expression signature 
resembling malignant epithelial cells in our dataset but was predominantly derived from peri-
tumoral mammary tissue (Supplementary Fig. 5a-d), raising the question of whether this 
subcluster may consist of breast cancer cells that invaded the surrounding peri-tumoral 
tissue. Luminal subclusters L6-8, on the other hand, expressed genes known to be expressed 
in secretory and mature ‘healthy’ luminal cells (SLPI, ELF5, KIT)3,4, with a low or absent 
expression of hormone receptor signaling (Supplementary Fig. 5a). Cluster L6 was 
predominantly derived from the tumoral tissue (Supplementary Fig. 5c) but closely resembled 
the secretory and mature luminal phenotype (Supplementary Fig. 5a), indicating that non-
cancerous ‘healthy’ luminal cells may exist within the TME. This finding is also observed by 
other groups, but with unclear biological relevance5.  
 
We further explored these findings by inferring chromosomal copy number variations (CNVs) 
from the gene-expression data using the inferCNV algorithm, as described in the previous 
studies6,7. We selected all immune, fibroblast, myoepithelial and (peri-)vascular cells detected 
in our dataset as a normal (non-malignant) reference to estimate the presence of CNVs 
(indicative of malignant cells) in all luminal subclusters. This analysis revealed a dominant gain 
of the long (q) arm of chromosome 1 in clusters L1 and L2, largely derived from tumoral 
tissues (Supplementary Fig. 5d). Previous work indeed identified gain of 1q as the most 
frequent chromosomal arm-level event in gynecologic and breast cancers, occurring in almost 
50% of analyzed samples8, suggesting that the L1 and L2 subclusters in our dataset are indeed 
of malignant nature. Other frequently observed CNVs are gain of 8q and loss of 13q8, both of 
which we observed in clusters L3 and L4 (derived largely from tumoral tissue) (Supplementary 
Fig. 5b,c) again suggesting their likely cancerous phenotype. 
 
Clusters L6-8 did not share these CNVs and instead largely resembled the reference cells, 
suggestive of their non-malignant nature, and in line with their predominant peri-tumoral 
origin (Supplementary Fig. 5b,c). The only exception was an observed gain of 11p, uniquely 
detected in cells derived from peri-tumoral tissues. This particular CNV has also been 
observed in non-malignant epithelial cells in other studies profiling breast cancer tissue 
CNVs9,10, and is thus unlikely to reflect a malignant nature of these cells. 
 
Lastly, approximately half of cluster L5 presented with a mixture of CNVs resembling clusters 
L1-4, whereas the remaining cells resembled clusters L6-8, indeed suggesting this cluster may 
harbor cancerous cells invading peri-tumoral tissue, as described above.  

 

Immune subcluster annotation – clusters of myeloid or lymphoid immune cells were 
annotated using canonical marker genes of major immune cell populations and 
subpopulations, marker genes from other studies employing scRNA-seq on (breast) tumor 
immune cells, and other available literature11-20. In brief, major myeloid subpopulations in the 
myeloid cell subclusters, containing macrophages, neutrophils, and conventional dendritic 



cells, were identified by examining the expression of CD14, CD68, C1QA (macrophages); 
S100A8, S100A9, CXCL2 (neutrophils) and HLA-genes, CD1C, CCR7 (dendritic cells). 
Subpopulations of macrophages were annotated using literature and gene sets for tissue-
resident-like, TAM, M1- and M2-like macrophages from15,16,21-23. The presence of subtypes of 
conventional dendritic cells or neutrophils was assessed using literature18,24.  

 

Even though NK cells can originate from lymphoid and myeloid precursors, NK cells and T cells 
were subclustered together as performed by others25. abT cells were identified by CD3D, 
CD3E, TRAC, TRBC2, and absence of TRD/TRC genes. CD4 and CD8A expression was used to 
annotate CD4+ or CD8+ T cells. CD4+ T cell subclusters were identified by assessing expression 
of markers indicating a naïve/activated/memory phenotype (e.g. IL2RA, IL7R, CD44, CD69, 
CCR7, SELL), regulatory T cells (e.g. IL2RA, TIGIT, FOXP3), T helper cell genes (Th1/Th2/Th17 
canonical transcription factors/cytokines) and using scRNA-seq literature describing T cell 
heterogeneity in breast cancer12. Similarly, CD8+ T cell subclusters were annotated by 
assessing expression of markers indicating a naïve/memory phenotype 
(IL2RA/CD44/CD69/CCR7/SELL), effector phenotype (cytotoxic T cell markers, such as GZMB, 
PRF1, IFNG, TNF), or markers whose high expression is associated with an exhausted state 
(e.g. PDCD1, HAVCR2, LAG3). Tissue-resident memory T cells were identified using 
literature26,27. and by assessing the expression of ZNF683, PRDM1, ITGA1, CXCR6, ITGAE, CD69 
and downregulated expression of CD2827. NK cell subclusters, lacking T cell genes, were 
annotated based on the expression of NKG7, KLRB1, KLRF1, NCAM1, and FCGR3A and gene 
expression of cytolytic effector molecules such as GZMB and PRF1, chemokine expression 
(XCL1, XCL2) and using a cross-species NK cell taxonomy14. 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Figures 



Supplementary Fig. 1: Single cell taxonomy of endothelial cells in the breast. a UMAP-plots, 
color-coded for the expression of representative marker genes in EC subclusters. Red arrows 
indicate cells highly expressing the marker gene. Color scale: red – high expression, blue – low 
expression. b Composition of EC subtypes in peri-tumoral (pEC) and tumoral (TEC) breast 
samples per patient. To correct for differences in absolute numbers of tumoral versus peri-
tumoral cells, numbers in each subcluster were divided by the total number of tumoral and 
peri-tumoral cells, respectively (relative representation). Left: Relative contribution of each 
phenotype scaled to 100%. Right: Contribution of each phenotype in absolute numbers; the 
total number of analyzed ECs on the right. Bottom panel: relative contribution of ECs per 
condition, color coded per subcluster. EC – endothelial cell, LS – lower sequencing depth, PCV 
– post-capillary venule. c Pseudotime trajectory of arteries, capillaries, and veins, color coded 
according to cluster origin. PC – principal component. d Pseudotime analysis represented by 
loess regression-smoothened gene expression of indicated marker genes of arteries, 
capillaries, and veins, color coded according to subcluster. e Representative micrographs of 
human breast peri-tumoral (top) and tumoral (bottom) tissue sections, immunostained for 
CD105, INSR and counterstained with Hoechst (n=3). Lower panels: magnifications of the 
boxed areas in the upper panels. Scale bar: 50 µm. f Representative micrographs of human 
breast peri-tumoral (top) and tumoral (bottom) tissue sections, immunostained for CD105, 
CD36, and counterstained with Hoechst (n=3). Lower panels: magnifications of the boxed 
areas in the upper panels. Scale bar: 50 µm. g Representative micrographs of human breast 
peri-tumoral (top) and tumoral (bottom) tissue sections, immunostained for CD105, ACKR1, 
smooth muscle actin (SMA) and counterstained with Hoechst (n=3). ACKR1 is detectable in 
thin-walled SMA-negative (presumably) veins/venules. Lower panels: magnifications of the 
boxed areas in the upper panels. Scale bar: 50 µm.  

 

 



Supplementary Fig. 2: Expression of microvascular mutually exclusive markers. a-c Spatially 
restricted expression of ID2 and FABP4, top-ranking marker genes of capillary i (EC11) and 
capillary ii (EC12) subclusters, respectively. Representative images of a human breast tissue 
section are shown, immunostained for CD105 (green) and counterstained with Hoechst 
(blue). Microvascular ECs exclusively expressing FABP4 (a; red, RNAscope) or ID2 (b; white, 
RNAscope), or expressing both FABP4 and ID2 (c) are shown. Right panels: magnifications of 
the boxed areas in the left panels. Arrows point at ID2+FABP4- ECs. Scale bar: 25 µm, n=8. 



 



Supplementary Fig. 3: EC transcriptomic heterogeneity & congruency. a Dot plot of top-25 
most upregulated pathways per EC subcluster, as calculated by GO enrichment analysis 
(ClusterProfiler), using a p-value cut-off of < 0.01, and a q-value (Benjamini-Hochberg) cut-off 
of < 0.05. Color scale indicates adjusted p-value; dot size depicts the number of enriched 
genes within each GO term; GO terms associated with distinct clusters are shown in bold. 
Abbreviations: Ag – antigen, APP – antigen processing and presentation, cell. – cellular, detox. 
– detoxification, EC – endothelial cell, EP – epithelial, FA – fatty acid, IFN – interferon, LDL – 
low-density lipoprotein, LP – lipoprotein, LS – lower sequencing depth, MHC-II – MHC class II, 
morphog. – morphogenesis, neg. – negative, PCV – post-capillary venule, pos. – positive, PS – 
polysaccharide, reg. – regulation, resp. – response. b Subcluster identity of breast ECs (n=850) 
that were unassigned by the scmap projection in Fig. 2a. LS – lower sequencing depth. c 
Volcano plot showing differential gene expression analysis of pEC veins versus TEC veins. Key 
pEC-enriched marker genes involved in immunoregulation are indicated. Gray, significant 
(adjusted p-value < 0.05); dark blue, not significant.  Differential expression analysis was 
performed using limma, the magnitude of differential expression (log2 fold change) and false 
discovery rate adjusted p-values (calculated with the Benjamini-Hochberg method) are 
provided on the x- and y-axis, respectively.  

 



 



Supplementary Fig. 4: The breast microenvironment. a UMAP-plots of representative 
marker genes in the different major cell types. Red arrowheads indicate cells highly expressing 
the marker gene. Color scale: red – high expression, blue – low expression. b UMAP-plots of 
all 18,082 cells, color-coded by condition (peri-tumor (gray), tumor (red)). c Abundances of 
major cell types across conditions (peri-tumor (gray), tumor (red)), x-axis depicts major cell 
types color coded as in Fig. 3c. pDC – plasmacytoid dendritic cells, PV – perivascular, NK – 
natural killer. Data are mean ± SEM, n=8 for peri-tumoral samples and n=9 for TME samples, 
**p<0.01 (exact p-value=0.0053), a separate paired t-test (two-tailed) per major cell type 
(considering the 8 complete pairs). d Composition of major cell types in peri-tumoral (top 
panel) and tumoral (bottom panel) breast samples from individual patients. Left: Relative 
contribution of each phenotype scaled to 100%. Right: Contribution of each phenotype in 
absolute numbers; the total number of analyzed cells on the right. EC – endothelial cell, NK – 
natural killer, DC – dendritic cell. e Representative micrographs of human breast peri-tumoral 
and tumoral tissue sections, stained with hematoxylin and eosin (n=8). Scale bar: 100 µm. 
Arrowheads indicate cell types (blue, lymphocytes; purple, myeloid cells; red, blood vessels; 
green, myoepithelial cells; yellow, fibroblasts; gray, adipocytes). f Representative 
micrographs of human breast peri-tumoral and tumoral tissue sections, immunostained for 
breast epithelium (CK8/18), myoepithelial cells (CK5/6), T cells (CD3), and macrophages 
(CD68). Scale bar: 100 µm (n=8). g Abundances of major cell types in peri-tumoral and tumor 
tissue from BC patients, as quantified on H&E and immunostained sections; color coded per 
condition. Data are mean ± SEM, n=8, *p<0.05, **p<0.01 (exact p-values= 0.0029, 0.0335 and 
0.0228, respectively), separate paired t-test (two-tailed) per cell type.  



 



Supplementary Fig. 5: transcriptomic heterogeneity in the breast: epithelial cells. a Violin 
plots of the expression level of the indicated genes involved in hormone receptor and 
signaling pathways (ESR1, PGR, AR, TFF1, ANKRD30A); proliferation (TOP2A, BIRC5), BC 
markers (GATA3, MUC1), and breast maturation (SLPI, ELF5, KIT) in luminal subclusters. b Pie 
chart showing the sample origin (tumor- or peritumor) of luminal subclusters. Annotation is 
based on expression profile as indicated in panel a. c Composition of luminal subclusters in 
peri-tumoral and tumoral breast samples per patient. d Copy number profiles estimated from 
the scRNA-seq data (inferCNV analysis). Columns correspond to genes, ordered by 
chromosome position, rows correspond to cells. Top heatmap: reference cells, used to define 
baseline expression; all immune, fibroblast, myoepithelial and (peri-)vascular cells detected 
in our dataset were selected as a normal (non-malignant) reference. Bottom heatmap: 
reference cell expression data (top heatmap) is subtracted from the luminal cell expression 
data to yield differential/residual expression values; red indicates chromosomal region 
amplification; blue indicates chromosomal region deletion. Cells are clustered by luminal 
subcluster. e UMAP-plot of myoepithelial cells, color-coded by subcluster. f Heatmap of the 
expression levels of the top 10 marker genes in myoepithelial cell subclusters. Color scale: red 
– high expression, blue – low expression. g UMAP-plots of representative marker genes in the 
different myoepithelial cell subclusters. Red arrowheads indicate cells highly expressing the 
marker gene. Color scale: red – high expression, blue – low expression. Abbreviations: NK – 
natural killer, Myo – myoepithelial. 

 



 

 

 

  



Supplementary Fig. 6: transcriptomic heterogeneity: perivascular and other stromal cells. a 
UMAP-plot of perivascular stromal cells, color-coded by subcluster. LS – lower sequencing 
depth. b Heatmap of the expression levels of the top 10 marker genes in perivascular stromal 
cell subclusters. Color scale: red – high expression, blue – low expression. LS – lower 
sequencing depth, PV – perivascular. c UMAP-plots of representative marker genes in the 
different subclusters in perivascular stromal cells. Red arrowheads indicate cells highly 
expressing the marker gene. Color scale: red – high expression, blue – low expression. d 
UMAP-plot of other stromal cells annotated as fibroblasts, color-coded by subcluster. ASC – 
adipocyte stem cell, LS – lower sequencing depth. e Heatmap of the expression levels of the 
top 10 marker genes in fibroblast subclusters. Color scale: red – high expression, blue – low 
expression. f UMAP-plots, showing expression of representative marker genes in the different 
subclusters of other stromal cells. Red arrowheads indicate cells highly expressing the marker 
gene. Color scale: red – high expression, blue – low expression.  

 



 



Supplementary Fig. 7: Details on immune cell subclustering and RLI prediction. a UMAP-
plots showing expression of representative marker genes in the different T-/NK cell 
subclusters. Color scale: red – high expression, blue – low expression. Red arrowheads 
indicate cells highly expressing the marker gene. b Contribution of tumoral and peri-tumoral 
cells to each T-/NK cell subcluster. Left: Relative contribution of each phenotype scaled to 
100%. Right panel: contribution of tumoral and peri-tumoral cells in absolute numbers 
(absolute representation); total number of analyzed cells on the right. NK – natural killer. c 
UMAP-plots of peri-tumoral and tumoral T-/NK cells, color-coded by condition. d Contribution 
of individual patient samples to each T-/NK cell subcluster. Left: relative. Right: absolute. e 
UMAP-plots showing expression of representative marker genes in the different myeloid 
subclusters. Color scale: red – high expression, blue – low expression. Red arrowheads 
indicate cells highly expressing the marker gene. f Contribution of tumoral and peri-tumoral 
cells to each myeloid cell subcluster. Left: relative. Right: absolute; total number of analyzed 
cells on the right. TAM – tumor associated macrophages, TR – tissue resident, LS – lower 
sequencing depth. g UMAP-plots of peri-tumoral and tumoral myeloid cells, color-coded by 
condition. h Contribution of individual patient samples to each myeloid cell subcluster. Left: 
relative. Right: absolute. i (Top panel) NicheNet analysis showing prioritized ligands (left) 
expressed in angiogenic ECs predicted to regulate target genes in myeloid cells. Ligands were 
ranked by their likelihood of regulating target genes in tumoral versus peri-tumoral samples. 
Predicted ligand–target matrix denoting the regulatory potential between ligands (y-axis) 
expressed in angiogenic ECs, and target genes (x-axis) expressed in tumoral myeloid cells is 
shown on the right. Color scale: dark red/brown, high regulatory potential score; light 
red/brown, low regulatory potential score. (Bottom panel) NicheNet analysis showing 
prioritized ligands (left) expressed in conventional DCs (cDCs) predicted to regulate target 
genes in angiogenic ECs. Ligands were ranked by their likelihood of regulating target genes in 
tumoral versus peri-tumoral samples. Predicted ligand–target matrix denoting the regulatory 
potential between ligands (y-axis) expressed in cDCs, and target genes (x-axis) expressed in 
tumoral angiogenic ECs is shown on the right. Color scale: dark red/brown, high regulatory 
potential score; light red/brown, low regulatory potential score.  
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Supplementary Fig. 8: Additional information to the receptor ligand interaction predictions.  
a Representative micrographs of human breast tumoral tissue sections, immunostained for 
CD105 (magenta), FOXP3 (white), INSR (yellow), PODXL (green), SELL (red) and 
counterstained with Hoechst using Akoya’s Opal™ Multiplex IHC system (n=9). Dotted 
green line delineates ECs, dotted white lines surround FOXP3+ cells. Scale bar: 25 µm. Right 
panels show magnifications of boxed areas. b Quantitative real-time PCR showing CLEC2B KD 
efficiency in HUVECs. Color-coded per control or KD-construct (gray PLKO, green CLEC2BKD, 
blue CLEC2BKD2). Data are mean ± SEM, n=3, ***p<0.001 (exact p-values = 0.0007 and 0.0005, 
respectively). One-way ANOVA with correction for multiple comparisons (Dunnett’s). KD – 
knock down. c Densiometric quantification (left) and representative immunoblot (right) 
showing CLEC2B KD efficiency at the protein level in HUVECs. Color-coded per control or KD-
construct (gray PLKO, green CLEC2BKD, blue CLEC2BKD2). For calculation of the % reduction in 
CLEC2B expression relative to CTRL, the CLEC2B/housekeeping gene ratio in the CLEC2BKD 
conditions was determined separately for every HUVEC donor analyzed, and normalized to 
the CLEC2B/housekeeping gene ratio in the CTRL condition (in the same donor); alpha-Tubulin 
or GAPDH were used as housekeeping genes. Data are mean ± SEM, n=4, ***p<0.001, 
****p<0.0001 (exact p-values= <0.0001 and 0.0003, respectively). One-way ANOVA with 
correction for multiple comparisons (Dunnett’s). d Quantitative real-time PCR showing 
CLEC2B expression in HUVECs upon treatment with LPS (pink) and LPS+IFNγ (blue). Data are 
mean ± SEM, n=3, *p<0.05 (exact p-value=0.0445). One-way ANOVA with correction for 
multiple comparisons (Dunnett’s). e Quantification of NK degranulation (as measured by the 
percentage of CD107a+ NK cells) after co-culture for 24h with LPS-IFNγ-treated HUVECs. 
Color-coded per control or KD-construct (gray PLKO, green CLEC2BKD, blue CLEC2BKD2). Data 
are mean ± SEM, represented as a fold change, n=6, ****p<0.0001 (exact p-values= <0.0001). 
One-way ANOVA with correction for multiple comparisons (Dunnett’s). f Circos plots 
representing RLI analysis between immune cells and angiogenic/venous ECs. Ligand is 
expressed on immune cell subclusters, receptor is expressed on angiogenic (left panel) or 
venous ECs (right panel). Plots are color-coded for receptor-ligand pairs (inner circle, arrows, 
gene names) and immune cell subclusters expressing the ligand (bars perpendicular to the 
inner circle). RLI pairs considered novel between ECs and specific immune cell 
clusters/subtypes are indicated in bold (genes) and with asterisks (subclusters).  



 



Supplementary Fig. 9: Transcriptomic heterogeneity of breast EC metabolism. a 
Representative micrographs of human breast tissue on the interphase between tumor (left) 
and peri-tumor (right), immunostained for CD105, FABP4 and counterstained with Hoechst 
(n=7). Yellow dotted line indicates putative tumor border. Lower panels: magnifications of 
the boxed areas in the upper panels. Light blue asterisks indicate representative putative 
adipocytes, which (besides LIPECs) are also positive for FABP4. Light blue arrows indicate 
FABP4+ ECs. Scale bar: 100 µm. b UMAP-plot of marker gene expression (LPL, NR1C3 (PPARG)) 
(left two panels) or NR1C3 (PPARG) and LXRA (NR1H3) regulon activity predicted by SCENIC 
analysis (right two panels; numbers between brackets indicate the number of genes within 
the regulons for the respective transcription factor). Color scale: red – high expression, blue 
– low expression. c Representative micrographs of human breast tumor tissue sections in non-
diabetic (left; n=8) or diabetic (middle; n=8) control BC patients and in (diabetic; n=9) BC 
patients pre-treated with metformin (right), showing combined immunostaining for CD105 
with in situ hybridization (RNAscope) for FABP4 and PPARG and counterstaining with Hoechst. 
Right & bottom panels: magnifications of the boxed areas in the main left panels. Orange 
arrowheads indicate (nuclear) PPARG in FABP4+ ECs. Scale bar: 10 µm. d Sankey diagram (left 
panel), showing the assignment of EC subclusters (identified in our in-house generated breast 
EC taxonomy) to unannotated breast cancer (BC), ovarian cancer (OVC) or colorectal cancer 
(CRC) tumoral (TEC) and normal (peri-tumoral, pEC) ECs from Qian et al. (2020)23 (n = 5438 
ECs). BC, OVC and CRC ECs are visualized on the left; cluster projections are visualized on the 
right (color-coded according to the breast EC taxonomy subclustering, see legend on the 
right). Box plots (right panel) depict the scmap similarity index. Boxes extend from the 25th to 
75th percentiles, line in the middle of the box is plotted at the median. Whiskers = min and 
max. LS – lower sequencing depth, PCV – post-capillary venules. 

 

 

 

  



Supplementary Fig. 10: FACS gating strategy for sorting human breast tissue ECs. 
Representative sequential FACS data and sorting gates for dissociated human breast (cancer) 
cells. The final sort for the EC-enriched fractions was of viable single cells from the CD45-

/EpCAM-/CD31+/CD102+ compartment (right panel). For pME and TME (without EC-
enrichment) fractions, viable single cells were sorted (third panel, bold). Percentages reflect 
the fraction of the (previous) parent population.



Supplementary Table 1 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 
Anti-α-Smooth Muscle – FITC; dilution 1:100; 
clone FL-D6 Sigma-Aldrich Cat#F3777 

Anti-α-Tubulin; dilution 1:1000; clone DM1A Sigma-Aldrich Cat#T6199 
Anti-GAPDH; dilution 1:1000; clone 14C10 Cell Signaling Cat#2118 
Anti-ACKR1; dilution 1:100 (polyclonal) Sigma-Aldrich Cat#HPA016421 
Anti-AICL (Anti-CLEC2B); dilution 1:25; clone 
EPR22061 Abcam Cat#ab221158 

Alexa Fluor® 488; dilution 1:1000 
Donkey anti-Rabbit IgG (H+L) Highly 
CrossAdsorbed Secondary Antibody 

Thermo Fisher Scientific Cat# A21206 

Alexa Fluor® 647; dilution 1:1000 
Donkey anti-Rabbit IgG (H+L) Highly Cross-
Adsorbed Secondary Antibody 

Thermo Fisher Scientific Cat# A31573 

Anti-CD107a; dilution 1:100; clone H4A3 Biolegend Cat#328605 
Anti-CD16; dilution 1:50; clone 2Q1240 Santa Cruz Biotechnology Cat#sc-70548 
Anti-CD3; dilution 1:100; polyclonal  Agilent Dako Cat#GA503 
Anti-CD3; dilution 1:100; clone  
HIT3a Biolegend Cat#300323 

Anti-CD31 Antibody (FITC); dilution 1:100; 
clone 390 Thermo Fisher Scientific Cat#11-0311-82 

Anti-CD326 (EpCAM) Antibody (PE); dilution 
1:500; clone  
323/A3 

Thermo Fisher Scientific Cat#MA5-38717 

Anti-CD36; dilution 1:100; clone EPR6573 Abcam Cat#ab133625 
Anti-CD45; dilution 1:100; clone  
2D1 Biolegend Cat#368521 

Anti-CD45 Antibody (PE-Cy7); dilution 1:700; 
clone HI30 Thermo Fisher Scientific Cat#25-0459-42 

Anti-CD56; dilution 1:100; clone  
5.1H11 Biolegend Cat#362531 

Anti-CD68; dilution 1:100; clone KP1 Agilent Dako Cat#IR609 
Anti-CLEC2B; dilution 1:500; polyclonal Thermo Fisher Scientific Cat#PA5-24704 
Anti-Cytokeratin 5/6; dilution 1:100; clone  
D5/16 B4 Agilent Dako Cat#GA780 

Anti-Cytokeratin 18/8; dilution 1:100; clone  
EP17/EP30 Agilent Dako Cat#IR094 

Anti-Endoglin/CD105; dilution 1:100 for IF; 
1:300 for Multiplex Opal system; polyclonal  R&D Systems Cat#AF1097 

Anti-FABP4; dilution 1:500; polyclonal Abcam Cat#ab13979 
Anti-FOXP3; dilution 1:300; clone 236A/E7 Thermo Fisher Scientific  Cat#14-4777-82 
Anti-HLA-DR; dilution 1:100; clone EPR3692 Abcam Cat#ab92511 
Anti-INSR; dilution 1:100 for IF; 1:600 for 
Multiplex Opal system; polyclonal Thermo Fisher Scientific  Cat#PA5-27334 

Anti-ICAM-2 Antibody (CD102), Alexa Fluor 
647; dilution 1:50; clone 3C4 BD Pharmingen™ Cat#564677 

Anti-KLRF1; dilution 1:50; polyclonal Abcam Cat#ab198928 



Anti-L-Selectin/CD62L; dilution 1:100; 
polyclonal Abcam Cat#ab264045 

Anti- Podocalyxin; dilution 1:100; polyclonal R&D Systems Cat#AF1658 
Biological samples 
Human breast samples (obtained from UZ 
Leuven Biobank, post- surgical resection; 
Medical Ethics Committee UZ/KU Leuven 
under the protocol S57123) 

This paper N/A 

Human umbilical vein endothelial cells 
(HUVECs) 
Ethics Committee Research KU Leuven/UZ 
Leuven (approval number S571230) 

This paper N/A 

Chemicals, Peptides and Recombinant Proteins 
DNase I Sigma-Aldrich Cat#D4527-10KU 
ECGS (endothelial cell medium growth 
supplement mix) PromoCell Cat#C-39216 

EDTA Sigma-Aldrich Cat#ED2P-500G 
EGM2 (Endothelial growth medium)  PromoCell Cat#C-22011 
Endothelial cell growth factor supplements 
(ECGS/Heparin)  PromoCell Cat#C-30120 

Fixable Viability Dye eFluor™ 506 Thermo Fisher Scientific Cat#65-0866-14 
Gelatin from bovine skin  Sigma-Aldrich Cat#G9391 
Hoechst 33258 Sigma-Aldrich Cat#B2261 
IFNγ Peprotech Cat#300-02 
LPS (lipopolysaccharide) Sigma Cat#L2630 
Phosphatase inhibitors (PhosSTOP) Roche Cat#04906837001 
Protease inhibitors (cOmplete, EDTA-free 
Protease Inhibitor Cocktail) Roche  Cat#11873580001 

RIPA Lysis and Extraction Buffer Thermo Fisher Scientific Cat#89901 
RPMI Gibco Cat#21875034 
Sodium pyruvate Thermo Fisher Scientific Cat#1360070 
SuperSignal West Femto Maximum 
Sensitivity Substrate Thermo Fisher Scientific Cat#34095 

TaqMan Fast Universal PCR Master Mix (2X) Thermo Fisher Scientific Cat#4364103 
Trypsin-EDTA (0.25%), phenol red Thermo Fisher Scientific Cat#25200056 
Critical Commercial Assays 
Akoya’s Opal™ Multiplex IHC system Akoya Biosciences Cat#NEL821001KT 
Chromium i7 Multiplex Kit 10x Genomics Cat#PN-120262 
Chromium Single Cell 3’ Library, Gel Bead & 
Multiplex Kit and Chip Kit, v2 10x Genomics Cat#PN-120237 

Chromium Single Cell A Chip Kit 10x Genomics Cat#PN-120236 
DAB Substrate Kit Abcam Cat#ab64238 
NK Cell isolation kit, human Miltenyi Biotec Cat#130-092-657 
Pierce ECL Western Blotting Substrate  Thermo Fisher Scientific Cat#32106 
PureLink RNA Mini Kit  Thermo Fisher Scientific Cat#12183018A 
Multiplex Fluorescent Detection Kit v2 ACDBio Cat#323110 
Script cDNA synthesis kit  Bio-Rad Cat#1708891 
TSA Cyanine 3 (Cy3) System Perkin Elmer Cat#NEL704A001KT 
TSA Cyanine 5 (Cy5) System Perkin Elmer Cat#NEL705A001KT 
TSA Fluorescein System Perkin Elmer Cat# NEL701A001KT 
Deposited data 



RNA-sequencing raw and analyzed data 
human breast EC and ME cells This paper GEO: GSE155109 

Oligonucleotides 

Human CLEC2B qRT-PCR primers  IDT Integrated DNA 
Technologies  

NM_005127 
Hs.PT.58.39337866 

Human HPRT qRT-PCR primers IDT Integrated DNA 
Technologies 

NM_000194 
Hs.PT.58.2145446 

RNAscope Probe Hs ACKR1 ACDBio Cat#525131-C2 
RNAscope Probe Hs FABP4 ACDBio Cat#470641 
RNAscope Probe Hs ID2 ACDBio Cat#500901 
RNAscope Probe Hs PPARG ACDBio Cat#441691-C2 
RNAscope Probe 3-plex Negative Control 
Probe ACDBio Cat#320871 

RNAscope Probe 3-plex Positive Control 
Probe_Mm ACDBio Cat#320881 

 
shRNA CLEC2B (#1), Clone ID: 
TRCN0000056490 Merck Cat#NM_005127 

shRNA CLEC2B (#2), Clone ID: 
TRCN0000056492  Merck Cat#NM_005127 

Other 

40 µm cell strainer Sigma-Aldrich Cat#CLS431750-
50EA 

100 µm cell strainer Sigma-Aldrich Cat#CLS431752-
50EA 

Antibiotic-antimycotic Thermo Fisher Scientific Cat#15240062 
Bovine serum albumin (BSA Fraction V) Sigma-Aldrich Cat#A3803-50G 
Bovine serum albumin (UltraPure BSA) Thermo Fisher Scientific Cat#AM2616 
Collagenase type I Thermo Fisher Scientific Cat#17018029 
Collagenase type II Thermo Fisher Scientific Cat#17101015 
Dispase Thermo Fisher Scientific Cat#17105-041 
Fetal bovine serum (FBS) Thermo Fisher Scientific Cat#16000044 
Ficoll"-Paque Plus  GE Life Sciences Cat#GE17-1440-02 
KnockOutTM DMEM Thermo Fisher Scientific Cat#10829018 
Luna Cell counting Slides Logos Biosystems Cat#L12001 
MEM NEAA Thermo Fisher Scientific Cat#11140035 
Nitrocellulose Pre-Cut Blotting Membranes, 
0.45 mm pore size  Thermo Fisher Scientific Cat#LC2001  

NuPAGE 10% Bis-Tris Protein Gels, 1.5 mm, 
10-well  Thermo Fisher Scientific Cat#NP0315BOX  

NuPAGE 4-12% Bis-Tris Protein Gels, 1.5 mm, 
10-well  Thermo Fisher Scientific Cat#NP0335BOX  

NuPAGE LDS Sample Buffer (4X)  Thermo Fisher Scientific Cat#NP0007  
NuPAGE MES SDS Running Buffer (20X)  Thermo Fisher Scientific Cat#NP0002  
NuPAGE MOPS SDS Running Buffer (20X)  Thermo Fisher Scientific Cat#NP0001  
NuPAGE Sample Reducing Agent (10X)  Thermo Fisher Scientific Cat#NP0009  
NuPAGE Transfer Buffer (20X)  Thermo Fisher Scientific Cat#NP00061  
Penicillin/streptomycin Thermo Fisher Scientific Cat#15140122 
Phosphate buffered saline (DPBS) Thermo Fisher Scientific Cat#14190094 
ProLong Gold antifade reagent Thermo Fisher Scientific Cat#P36934 
PVDF Pre-cut Blotting Membranes, 0.2 mm 
pore size  Thermo Fisher Scientific Cat#S9549  

SOD-peg  Thermo Fisher Scientific Cat#S9549  



 
 
 

Surgical Scalpel Blade No 10 Swann Morton Cat#0201 
Software and Algorithms 

BIOMEX 28 
https://www.vibcanc
er.be/software-
tools/BIOMEX 

CellPhoneDB; version 2.0.0 29 
https://www.cellpho
nedb.org/explore-sc-
rna-seq 

Cell Ranger; version 2.2.0 10x Genomics (tenx; RRID: 
SCR_01695) 

circlize; version 0.4.8 30 

https://cran.r-
project.org/web/pac
kages/circlize/circlize
.pdf 

clusterProfiler; version 3.6.0 Bioconductor31 (clusterProfiler, 
RRID: SCR_016884) 

Fiji (ImageJ) Open source https://fiji.sc 

GraphPad Prism8, version 8.1.1 Graphpad (GraphPad Prism; 
RRID: SCR_002798) 

InferCNV 6,7 R package (version 
1.5.0) 

NicheNet (nichenetr package) 32 

https://github.com/s
aeyslab/nichenetr/bl
ob/master/vignettes
/seurat_steps.md. 

qvalue: version 2.10.0 33 http://github.com/jd
storey/qvalue 

pvclust: version 2.0.0 34 
https://cran.r-
project.org/src/contr
ib/Archive/ pvclust/ 

scmap; version 1.1.5 35 (scmap; RRID: 
SCR_017338) 

Seurat; version 2.3.4 36 (Seurat; RRID: 
SCR_016341) 

R version 3.4.4  The R Foundation https://www.r-
project.org 

SCENIC; version 1.5.0 
 

37 https://aertslab.org/
#scenic 

SCORPIUS; version 1.0.2 38 

https://cran.r-
project.org/src/contr
ib/Archive/ 
SCORPIUS/ 

RStudio (1.1.456)  Open source https://rstudio.com 

umap: version 0.2.0.0 
 McInnes et al., 2018 

https://cran.r-
project.org/src/contr
ib/Archive/ umap/ 

VennDiagram; version 1.6. 39 20 (VennDiagram; 
RRID: SCR_002414)  



Supplementary Source Data File 
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