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cells in healthy and malignant breast
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Annotation of luminal and immune cell subclusters

Luminal subcluster annotation — nomenclature was based on a combination of sample origin
and gene expression signatures. Clusters L1-5 highly expressed genes involved in hormone
receptor signaling (ESR1, PGR, AR, TFF1, ANKRD30A), cell proliferation (TOP2A, BIRC5), and/or
known breast cancer (BC) genes (GATA3 and MUC1)Y? (Supplementary Fig. 5a), suggestive of
their malignant nature. Interestingly, subcluster L5 showed a gene expression signature
resembling malignant epithelial cells in our dataset but was predominantly derived from peri-
tumoral mammary tissue (Supplementary Fig. 5a-d), raising the question of whether this
subcluster may consist of breast cancer cells that invaded the surrounding peri-tumoral
tissue. Luminal subclusters L6-8, on the other hand, expressed genes known to be expressed
in secretory and mature ‘healthy’ luminal cells (SLPI, ELF5, KIT)>* with a low or absent
expression of hormone receptor signaling (Supplementary Fig. 5a). Cluster L6 was
predominantly derived from the tumoral tissue (Supplementary Fig. 5¢) but closely resembled
the secretory and mature luminal phenotype (Supplementary Fig. 5a), indicating that non-
cancerous ‘healthy’ luminal cells may exist within the TME. This finding is also observed by
other groups, but with unclear biological relevance®.

We further explored these findings by inferring chromosomal copy number variations (CNVs)
from the gene-expression data using the inferCNV algorithm, as described in the previous
studies®’. We selected all immune, fibroblast, myoepithelial and (peri-)vascular cells detected
in our dataset as a normal (non-malignant) reference to estimate the presence of CNVs
(indicative of malignant cells) in all luminal subclusters. This analysis revealed a dominant gain
of the long (q) arm of chromosome 1 in clusters L1 and L2, largely derived from tumoral
tissues (Supplementary Fig. 5d). Previous work indeed identified gain of 1q as the most
frequent chromosomal arm-level event in gynecologic and breast cancers, occurring in almost
50% of analyzed samples®, suggesting that the L1 and L2 subclusters in our dataset are indeed
of malighant nature. Other frequently observed CNVs are gain of 8q and loss of 13qg%, both of
which we observed in clusters L3 and L4 (derived largely from tumoral tissue) (Supplementary
Fig. 5b,c) again suggesting their likely cancerous phenotype.

Clusters L6-8 did not share these CNVs and instead largely resembled the reference cells,
suggestive of their non-malignant nature, and in line with their predominant peri-tumoral
origin (Supplementary Fig. 5b,c). The only exception was an observed gain of 11p, uniquely
detected in cells derived from peri-tumoral tissues. This particular CNV has also been
observed in non-malignant epithelial cells in other studies profiling breast cancer tissue
CNVs>10 and is thus unlikely to reflect a malignant nature of these cells.

Lastly, approximately half of cluster L5 presented with a mixture of CNVs resembling clusters
L1-4, whereas the remaining cells resembled clusters L6-8, indeed suggesting this cluster may
harbor cancerous cells invading peri-tumoral tissue, as described above.

Immune subcluster annotation — clusters of myeloid or lymphoid immune cells were
annotated using canonical marker genes of major immune cell populations and
subpopulations, marker genes from other studies employing scRNA-seq on (breast) tumor
immune cells, and other available literature!'-?9, In brief, major myeloid subpopulations in the
myeloid cell subclusters, containing macrophages, neutrophils, and conventional dendritic



cells, were identified by examining the expression of CD14, CD68, C1QA (macrophages);
S100A8, S100A9, CXCL2 (neutrophils) and HLA-genes, CD1C, CCR7 (dendritic cells).
Subpopulations of macrophages were annotated using literature and gene sets for tissue-
resident-like, TAM, M1- and M2-like macrophages from?*>1621-23 The presence of subtypes of
conventional dendritic cells or neutrophils was assessed using literature'®24,

Even though NK cells can originate from lymphoid and myeloid precursors, NK cells and T cells
were subclustered together as performed by others?®. afiT cells were identified by CD3D,
CD3E, TRAC, TRBC2, and absence of TRD/TRC genes. CD4 and CD8A expression was used to
annotate CD4" or CD8" T cells. CD4* T cell subclusters were identified by assessing expression
of markers indicating a naive/activated/memory phenotype (e.g. IL2RA, IL7R, CD44, CD69,
CCR7, SELL), regulatory T cells (e.g. IL2RA, TIGIT, FOXP3), T helper cell genes (Th1/Th2/Th17
canonical transcription factors/cytokines) and using scRNA-seq literature describing T cell
heterogeneity in breast cancer!?. Similarly, CD8* T cell subclusters were annotated by
assessing  expression of markers indicating a naive/memory  phenotype
(IL2RA/CD44/CD69/CCR7/SELL), effector phenotype (cytotoxic T cell markers, such as GZMB,
PRF1, IFNG, TNF), or markers whose high expression is associated with an exhausted state
(e.g. PDCD1, HAVCR2, LAG3). Tissue-resident memory T cells were identified using
literature?®?’, and by assessing the expression of ZNF683, PRDM1, ITGA1, CXCR6, ITGAE, CD69
and downregulated expression of CD28%’. NK cell subclusters, lacking T cell genes, were
annotated based on the expression of NKG7, KLRB1, KLRF1, NCAM1, and FCGR3A and gene
expression of cytolytic effector molecules such as GZMB and PRF1, chemokine expression
(XCL1, XCL2) and using a cross-species NK cell taxonomy*4.



Supplementary Figures

Supplementary Fig. 1
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Supplementary Fig. 1: Single cell taxonomy of endothelial cells in the breast. a UMAP-plots,
color-coded for the expression of representative marker genes in EC subclusters. Red arrows
indicate cells highly expressing the marker gene. Color scale: red — high expression, blue — low
expression. b Composition of EC subtypes in peri-tumoral (pEC) and tumoral (TEC) breast
samples per patient. To correct for differences in absolute numbers of tumoral versus peri-
tumoral cells, numbers in each subcluster were divided by the total number of tumoral and
peri-tumoral cells, respectively (relative representation). Left: Relative contribution of each
phenotype scaled to 100%. Right: Contribution of each phenotype in absolute numbers; the
total number of analyzed ECs on the right. Bottom panel: relative contribution of ECs per
condition, color coded per subcluster. EC— endothelial cell, LS — lower sequencing depth, PCV
— post-capillary venule. ¢ Pseudotime trajectory of arteries, capillaries, and veins, color coded
according to cluster origin. PC — principal component. d Pseudotime analysis represented by
loess regression-smoothened gene expression of indicated marker genes of arteries,
capillaries, and veins, color coded according to subcluster. e Representative micrographs of
human breast peri-tumoral (top) and tumoral (bottom) tissue sections, immunostained for
CD105, INSR and counterstained with Hoechst (n=3). Lower panels: magnifications of the
boxed areas in the upper panels. Scale bar: 50 um. f Representative micrographs of human
breast peri-tumoral (top) and tumoral (bottom) tissue sections, immunostained for CD105,
CD36, and counterstained with Hoechst (n=3). Lower panels: magnifications of the boxed
areas in the upper panels. Scale bar: 50 um. g Representative micrographs of human breast
peri-tumoral (top) and tumoral (bottom) tissue sections, immunostained for CD105, ACKR1,
smooth muscle actin (SMA) and counterstained with Hoechst (n=3). ACKR1 is detectable in
thin-walled SMA-negative (presumably) veins/venules. Lower panels: magnifications of the
boxed areas in the upper panels. Scale bar: 50 um.



Supplementary Fig. 2

a
0
o
-
=]
o
N
Q

b
Te)
o
-
(]
(&)
N
Q

Cc

7
=
o
(&)
N
Q

Supplementary Fig. 2: Expression of microvascular mutually exclusive markers. a-c Spatially
restricted expression of /D2 and FABP4, top-ranking marker genes of capillary i (EC11) and
capillary ii (EC12) subclusters, respectively. Representative images of a human breast tissue
section are shown, immunostained for CD105 (green) and counterstained with Hoechst
(blue). Microvascular ECs exclusively expressing FABP4 (a; red, RNAscope) or /D2 (b; white,
RNAscope), or expressing both FABP4 and ID2 (c) are shown. Right panels: magnifications of
the boxed areas in the left panels. Arrows point at ID2*FABP4 ECs. Scale bar: 25 um, n=8.



Supplementary Fig. 3
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Supplementary Fig. 3: EC transcriptomic heterogeneity & congruency. a Dot plot of top-25
most upregulated pathways per EC subcluster, as calculated by GO enrichment analysis
(ClusterProfiler), using a p-value cut-off of < 0.01, and a g-value (Benjamini-Hochberg) cut-off
of < 0.05. Color scale indicates adjusted p-value; dot size depicts the number of enriched
genes within each GO term; GO terms associated with distinct clusters are shown in bold.
Abbreviations: Ag —antigen, APP —antigen processing and presentation, cell. — cellular, detox.
— detoxification, EC — endothelial cell, EP — epithelial, FA — fatty acid, IFN — interferon, LDL —
low-density lipoprotein, LP — lipoprotein, LS — lower sequencing depth, MHC-Il = MHC class I,
morphog. — morphogenesis, neg. — negative, PCV — post-capillary venule, pos. — positive, PS —
polysaccharide, reg. — regulation, resp. — response. b Subcluster identity of breast ECs (n=850)
that were unassigned by the scmap projection in Fig. 2a. LS — lower sequencing depth. ¢
Volcano plot showing differential gene expression analysis of pEC veins versus TEC veins. Key
pEC-enriched marker genes involved in immunoregulation are indicated. Gray, significant
(adjusted p-value < 0.05); dark blue, not significant. Differential expression analysis was
performed using limma, the magnitude of differential expression (log2 fold change) and false
discovery rate adjusted p-values (calculated with the Benjamini-Hochberg method) are
provided on the x- and y-axis, respectively.
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Supplementary Fig. 4: The breast microenvironment. a UMAP-plots of representative
marker genes in the different major cell types. Red arrowheads indicate cells highly expressing
the marker gene. Color scale: red — high expression, blue — low expression. b UMAP-plots of
all 18,082 cells, color-coded by condition (peri-tumor (gray), tumor (red)). ¢ Abundances of
major cell types across conditions (peri-tumor (gray), tumor (red)), x-axis depicts major cell
types color coded as in Fig. 3c. pDC — plasmacytoid dendritic cells, PV — perivascular, NK —
natural killer. Data are mean + SEM, n=8 for peri-tumoral samples and n=9 for TME samples,
**p<0.01 (exact p-value=0.0053), a separate paired t-test (two-tailed) per major cell type
(considering the 8 complete pairs). d Composition of major cell types in peri-tumoral (top
panel) and tumoral (bottom panel) breast samples from individual patients. Left: Relative
contribution of each phenotype scaled to 100%. Right: Contribution of each phenotype in
absolute numbers; the total number of analyzed cells on the right. EC — endothelial cell, NK —
natural killer, DC — dendritic cell. e Representative micrographs of human breast peri-tumoral
and tumoral tissue sections, stained with hematoxylin and eosin (n=8). Scale bar: 100 um.
Arrowheads indicate cell types (blue, lymphocytes; purple, myeloid cells; red, blood vessels;
green, myoepithelial cells; yellow, fibroblasts; gray, adipocytes). f Representative
micrographs of human breast peri-tumoral and tumoral tissue sections, immunostained for
breast epithelium (CK8/18), myoepithelial cells (CK5/6), T cells (CD3), and macrophages
(CD68). Scale bar: 100 um (n=8). g Abundances of major cell types in peri-tumoral and tumor
tissue from BC patients, as quantified on H&E and immunostained sections; color coded per
condition. Data are mean + SEM, n=8, *p<0.05, **p<0.01 (exact p-values=0.0029, 0.0335 and
0.0228, respectively), separate paired t-test (two-tailed) per cell type.
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Supplementary Fig. 5: transcriptomic heterogeneity in the breast: epithelial cells. a Violin
plots of the expression level of the indicated genes involved in hormone receptor and
signaling pathways (ESR1, PGR, AR, TFF1, ANKRD30A); proliferation (TOP2A, BIRC5), BC
markers (GATA3, MUC1), and breast maturation (SLPI, ELF5, KIT) in luminal subclusters. b Pie
chart showing the sample origin (tumor- or peritumor) of luminal subclusters. Annotation is
based on expression profile as indicated in panel a. ¢ Composition of luminal subclusters in
peri-tumoral and tumoral breast samples per patient. d Copy number profiles estimated from
the scRNA-seq data (inferCNV analysis). Columns correspond to genes, ordered by
chromosome position, rows correspond to cells. Top heatmap: reference cells, used to define
baseline expression; all immune, fibroblast, myoepithelial and (peri-)vascular cells detected
in our dataset were selected as a normal (non-malignant) reference. Bottom heatmap:
reference cell expression data (top heatmap) is subtracted from the luminal cell expression
data to yield differential/residual expression values; red indicates chromosomal region
amplification; blue indicates chromosomal region deletion. Cells are clustered by luminal
subcluster. e UMAP-plot of myoepithelial cells, color-coded by subcluster. f Heatmap of the
expression levels of the top 10 marker genes in myoepithelial cell subclusters. Color scale: red
— high expression, blue — low expression. g UMAP-plots of representative marker genes in the
different myoepithelial cell subclusters. Red arrowheads indicate cells highly expressing the
marker gene. Color scale: red — high expression, blue — low expression. Abbreviations: NK —
natural killer, Myo — myoepithelial.



Supplementary Figure 6
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Supplementary Fig. 6: transcriptomic heterogeneity: perivascular and other stromal cells. a
UMAP-plot of perivascular stromal cells, color-coded by subcluster. LS — lower sequencing
depth. b Heatmap of the expression levels of the top 10 marker genes in perivascular stromal
cell subclusters. Color scale: red — high expression, blue — low expression. LS — lower
sequencing depth, PV — perivascular. ¢ UMAP-plots of representative marker genes in the
different subclusters in perivascular stromal cells. Red arrowheads indicate cells highly
expressing the marker gene. Color scale: red — high expression, blue — low expression. d
UMAP-plot of other stromal cells annotated as fibroblasts, color-coded by subcluster. ASC —
adipocyte stem cell, LS — lower sequencing depth. e Heatmap of the expression levels of the
top 10 marker genes in fibroblast subclusters. Color scale: red — high expression, blue — low
expression. f UMAP-plots, showing expression of representative marker genes in the different
subclusters of other stromal cells. Red arrowheads indicate cells highly expressing the marker
gene. Color scale: red — high expression, blue — low expression.
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Supplementary Fig. 7: Details on immune cell subclustering and RLI prediction. a UMAP-
plots showing expression of representative marker genes in the different T-/NK cell
subclusters. Color scale: red — high expression, blue — low expression. Red arrowheads
indicate cells highly expressing the marker gene. b Contribution of tumoral and peri-tumoral
cells to each T-/NK cell subcluster. Left: Relative contribution of each phenotype scaled to
100%. Right panel: contribution of tumoral and peri-tumoral cells in absolute numbers
(absolute representation); total number of analyzed cells on the right. NK — natural killer. ¢
UMAP-plots of peri-tumoral and tumoral T-/NK cells, color-coded by condition. d Contribution
of individual patient samples to each T-/NK cell subcluster. Left: relative. Right: absolute. e
UMAP-plots showing expression of representative marker genes in the different myeloid
subclusters. Color scale: red — high expression, blue — low expression. Red arrowheads
indicate cells highly expressing the marker gene. f Contribution of tumoral and peri-tumoral
cells to each myeloid cell subcluster. Left: relative. Right: absolute; total number of analyzed
cells on the right. TAM — tumor associated macrophages, TR — tissue resident, LS — lower
sequencing depth. g UMAP-plots of peri-tumoral and tumoral myeloid cells, color-coded by
condition. h Contribution of individual patient samples to each myeloid cell subcluster. Left:
relative. Right: absolute. i (Top panel) NicheNet analysis showing prioritized ligands (left)
expressed in angiogenic ECs predicted to regulate target genes in myeloid cells. Ligands were
ranked by their likelihood of regulating target genes in tumoral versus peri-tumoral samples.
Predicted ligand—target matrix denoting the regulatory potential between ligands (y-axis)
expressed in angiogenic ECs, and target genes (x-axis) expressed in tumoral myeloid cells is
shown on the right. Color scale: dark red/brown, high regulatory potential score; light
red/brown, low regulatory potential score. (Bottom panel) NicheNet analysis showing
prioritized ligands (left) expressed in conventional DCs (cDCs) predicted to regulate target
genes in angiogenic ECs. Ligands were ranked by their likelihood of regulating target genes in
tumoral versus peri-tumoral samples. Predicted ligand—target matrix denoting the regulatory
potential between ligands (y-axis) expressed in cDCs, and target genes (x-axis) expressed in
tumoral angiogenic ECs is shown on the right. Color scale: dark red/brown, high regulatory
potential score; light red/brown, low regulatory potential score.



Supplementary Fig. 8
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Supplementary Fig. 8: Additional information to the receptor ligand interaction predictions.
a Representative micrographs of human breast tumoral tissue sections, immunostained for
CD105 (magenta), FOXP3 (white), INSR (yellow), PODXL (green), SELL (red) and
counterstained with Hoechst using Akoya’s Opal™ Multiplex IHC system (n=9). Dotted
green line delineates ECs, dotted white lines surround FOXP3* cells. Scale bar: 25 um. Right
panels show magnifications of boxed areas. b Quantitative real-time PCR showing CLEC2B KD
efficiency in HUVECs. Color-coded per control or KD-construct (gray PLKO, green CLEC2BXP,
blue CLEC2BXP?). Data are mean + SEM, n=3, ***p<0.001 (exact p-values = 0.0007 and 0.0005,
respectively). One-way ANOVA with correction for multiple comparisons (Dunnett’s). KD —
knock down. ¢ Densiometric quantification (left) and representative immunoblot (right)
showing CLEC2B KD efficiency at the protein level in HUVECs. Color-coded per control or KD-
construct (gray PLKO, green CLEC2B*®, blue CLEC2BXP?). For calculation of the % reduction in
CLEC2B expression relative to CTRL, the CLEC2B/housekeeping gene ratio in the CLEC2BXP
conditions was determined separately for every HUVEC donor analyzed, and normalized to
the CLEC2B/housekeeping gene ratio in the CTRL condition (in the same donor); alpha-Tubulin
or GAPDH were used as housekeeping genes. Data are mean = SEM, n=4, ***p<0.001,
****p<0.0001 (exact p-values= <0.0001 and 0.0003, respectively). One-way ANOVA with
correction for multiple comparisons (Dunnett’s). d Quantitative real-time PCR showing
CLEC2B expression in HUVECs upon treatment with LPS (pink) and LPS+IFNy (blue). Data are
mean + SEM, n=3, *p<0.05 (exact p-value=0.0445). One-way ANOVA with correction for
multiple comparisons (Dunnett’s). e Quantification of NK degranulation (as measured by the
percentage of CD107a* NK cells) after co-culture for 24h with LPS-IFNy-treated HUVECs.
Color-coded per control or KD-construct (gray PLKO, green CLEC2BXP, blue CLEC2BXP?). Data
are mean = SEM, represented as a fold change, n=6, ****p<0.0001 (exact p-values=<0.0001).
One-way ANOVA with correction for multiple comparisons (Dunnett’s). f Circos plots
representing RLI analysis between immune cells and angiogenic/venous ECs. Ligand is
expressed on immune cell subclusters, receptor is expressed on angiogenic (left panel) or
venous ECs (right panel). Plots are color-coded for receptor-ligand pairs (inner circle, arrows,
gene names) and immune cell subclusters expressing the ligand (bars perpendicular to the
inner circle). RLI pairs considered novel between ECs and specific immune cell
clusters/subtypes are indicated in bold (genes) and with asterisks (subclusters).
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Supplementary Fig. 9: Transcriptomic heterogeneity of breast EC metabolism. a
Representative micrographs of human breast tissue on the interphase between tumor (left)
and peri-tumor (right), immunostained for CD105, FABP4 and counterstained with Hoechst
(n=7). Yellow dotted line indicates putative tumor border. Lower panels: magnifications of
the boxed areas in the upper panels. Light blue asterisks indicate representative putative
adipocytes, which (besides LIPECs) are also positive for FABP4. Light blue arrows indicate
FABP4* ECs. Scale bar: 100 um. b UMAP-plot of marker gene expression (LPL, NR1C3 (PPARG))
(left two panels) or NR1C3 (PPARG) and LXRA (NR1H3) regulon activity predicted by SCENIC
analysis (right two panels; numbers between brackets indicate the number of genes within
the regulons for the respective transcription factor). Color scale: red — high expression, blue
—low expression. c Representative micrographs of human breast tumor tissue sections in non-
diabetic (left; n=8) or diabetic (middle; n=8) control BC patients and in (diabetic; n=9) BC
patients pre-treated with metformin (right), showing combined immunostaining for CD105
with in situ hybridization (RNAscope) for FABP4 and PPARG and counterstaining with Hoechst.
Right & bottom panels: magnifications of the boxed areas in the main left panels. Orange
arrowheads indicate (nuclear) PPARG in FABP4* ECs. Scale bar: 10 um. d Sankey diagram (left
panel), showing the assignment of EC subclusters (identified in our in-house generated breast
EC taxonomy) to unannotated breast cancer (BC), ovarian cancer (OVC) or colorectal cancer
(CRC) tumoral (TEC) and normal (peri-tumoral, pEC) ECs from Qian et al. (2020)?3 (n = 5438
ECs). BC, OVC and CRC ECs are visualized on the left; cluster projections are visualized on the
right (color-coded according to the breast EC taxonomy subclustering, see legend on the
right). Box plots (right panel) depict the scmap similarity index. Boxes extend from the 25" to
75t™ percentiles, line in the middle of the box is plotted at the median. Whiskers = min and
max. LS — lower sequencing depth, PCV — post-capillary venules.
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Supplementary Fig. 10: FACS gating strategy for sorting human breast tissue ECs.
Representative sequential FACS data and sorting gates for dissociated human breast (cancer)
cells. The final sort for the EC-enriched fractions was of viable single cells from the CD45
/EpCAM’/CD31*/CD102* compartment (right panel). For pME and TME (without EC-
enrichment) fractions, viable single cells were sorted (third panel, bold). Percentages reflect
the fraction of the (previous) parent population.



Supplementary Table 1

HIT3a

REAGENT or RESOURCE SOURCE IDENTIFIER
Antibodies

Anti-a-Smooth Muscle — FITC; dilution 1:100; Sigma-Aldrich Cat#F3777
clone FL-D6

Anti-a-Tubulin; dilution 1:1000; clone DM1A | Sigma-Aldrich Cat#T6199
Anti-GAPDH; dilution 1:1000; clone 14C10 Cell Signaling Cat#2118
Anti-ACKR1; dilution 1:100 (polyclonal) Sigma-Aldrich Cat#HPA016421
Anti-AICL (Anti-CLEC2B); dilution 1:25; clone

EPR22061 Abcam Cat#ab221158
Alexa Fluor® 488; dilution 1:1000

Donkey anti-Rabbit 1gG (H+L) Highly | Thermo Fisher Scientific Cat# A21206
CrossAdsorbed Secondary Antibody

Alexa Fluor® 647; dilution 1:1000

Donkey anti-Rabbit 1gG (H+L) Highly Cross- | Thermo Fisher Scientific Cat# A31573
Adsorbed Secondary Antibody

Anti-CD107a; dilution 1:100; clone H4A3 Biolegend Cat#328605
Anti-CD16; dilution 1:50; clone 2Q1240 Santa Cruz Biotechnology Cat#tsc-70548
Anti-CD3; dilution 1:100; polyclonal Agilent Dako Cat#GA503
Anti-CD3; dilution 1:100; clone Biolegend Cat#300323

Anti-CD31 Antibody (FITC); dilution 1:100;
clone 390

Thermo Fisher Scientific

Cat#11-0311-82

Anti-CD326 (EpCAM) Antibody (PE); dilution
1:500; clone
323/A3

Thermo Fisher Scientific

Cat#MAS5-38717

Anti-CD36; dilution 1:100; clone EPR6573

Abcam

Cat#ab133625

Anti-CDA45; dilution 1:100; clone
2D1

Biolegend

Cat#368521

Anti-CD45 Antibody (PE-Cy7); dilution 1:700;
clone HI30

Thermo Fisher Scientific

Cat#25-0459-42

Anti-CD56; dilution 1:100; clone
5.1H11

Biolegend

Cat#362531

Anti-CD68; dilution 1:100; clone KP1

Agilent Dako

Cat#IR609

Anti-CLEC2B; dilution 1:500; polyclonal

Thermo Fisher Scientific

Cat#PA5-24704

Anti-Cytokeratin 5/6; dilution 1:100; clone

D5/16 B4 Agilent Dako Cat#GA780
Anti-Cytokeratin 18/8; dilution 1:100; clone .
EP17/EP30 Agilent Dako Cat#IR094
Anti-Endoglin/CD105; dilution 1:100 for IF;

R&D Cat#AF1097
1:300 for Multiplex Opal system; polyclonal &D Systems a
Anti-FABP4; dilution 1:500; polyclonal Abcam Cat#ab13979
Anti-FOXP3; dilution 1:300; clone 236A/E7 Thermo Fisher Scientific Cat#14-4777-82
Anti-HLA-DR; dilution 1:100; clone EPR3692 | Abcam Cat#ab92511

Anti-INSR; dilution 1:100 for IF; 1:600 for
Multiplex Opal system; polyclonal

Thermo Fisher Scientific

Cat#PA5-27334

Anti-ICAM-2 Antibody (CD102), Alexa Fluor
647; dilution 1:50; clone 3C4

BD Pharmingen™

Cat#564677

Anti-KLRF1; dilution 1:50; polyclonal

Abcam

Cat#ab198928




Anti-L-Selectin/CD62L; dilution 1:100;

Abcam Cat#ab264045

polyclonal
Anti- Podocalyxin; dilution 1:100; polyclonal | R&D Systems Cat#AF1658
Biological samples
Human breast samples (obtained from UZ
Leuven Biobank, post- surgical resection; .

! " | Th N/A
Medical Ethics Committee UZ/KU Leuven 'S paper /
under the protocol $57123)
Human umbilical vein endothelial cells
(HUVECs) This paper N/A

Ethics Committee Research KU Leuven/UZ
Leuven (approval number S571230)

Chemicals, Peptides and Recombinant Proteins

DNase | Sigma-Aldrich Cat#D4527-10KU
ECGS (endothellal cell medium growth PromoCell Cat#C-39716
supplement mix)

EDTA Sigma-Aldrich Cat#ED2P-500G
EGM2 (Endothelial growth medium) PromoCell Cat#C-22011
Endothelial cell growth factor supplements PromoCell CathC-30120

(ECGS/Heparin)

Fixable Viability Dye eFluor™ 506

Thermo Fisher Scientific

Cat#65-0866-14

Gelatin from bovine skin Sigma-Aldrich Cat#G9391
Hoechst 33258 Sigma-Aldrich Cat#B2261

IFNy Peprotech Cat#300-02

LPS (lipopolysaccharide) Sigma Cat#L2630
Phosphatase inhibitors (PhosSTOP) Roche Cat#04906837001
Protease mh@tors (chpIete, EDTA-free Roche Cat#11873580001
Protease Inhibitor Cocktail)

RIPA Lysis and Extraction Buffer Thermo Fisher Scientific Cat#89901

RPMI Gibco Cat#21875034
Sodium pyruvate Thermo Fisher Scientific Cat#1360070
Supe'r‘Sl‘gnaI West  Femto  Maximum Thermo Fisher Scientific Cat#34095
Sensitivity Substrate

TagMan Fast Universal PCR Master Mix (2X) | Thermo Fisher Scientific Cat#4364103
Trypsin-EDTA (0.25%), phenol red Thermo Fisher Scientific Cat#25200056
Critical Commercial Assays

Akoya’s Opal™ Multiplex IHC system Akoya Biosciences Cat#NEL821001KT

Chromium i7 Multiplex Kit

10x Genomics

Cat#PN-120262

Chromium Single Cell 3’ Library, Gel Bead &
Multiplex Kit and Chip Kit, v2

10x Genomics

Cat#PN-120237

Chromium Single Cell A Chip Kit

10x Genomics

Cat#PN-120236

DAB Substrate Kit Abcam Cat#ab64238

NK Cell isolation kit, human Miltenyi Biotec Cat#130-092-657
Pierce ECL Western Blotting Substrate Thermo Fisher Scientific Cat#32106
PureLink RNA Mini Kit Thermo Fisher Scientific Cat#12183018A
Multiplex Fluorescent Detection Kit v2 ACDBio Cat#323110

Script cDNA synthesis kit Bio-Rad Cat#1708891

TSA Cyanine 3 (Cy3) System Perkin Elmer Cat#NEL704A001KT
TSA Cyanine 5 (Cy5) System Perkin Elmer Cat#NEL705A001KT

TSA Fluorescein System

Perkin Elmer

Cat# NEL701A001KT

Deposited data




RNA-sequencing raw and analyzed data
human breast EC and ME cells

This paper

GEO: GSE155109

Oligonucleotides

. IDT Integrated DNA NM_005127
Human CLEC2B qRT-PCR primers Technologies Hs.PT.58.39337866
IDT Integrated DNA NM_000194

Human HPRT gRT-PCR primers

Technologies

Hs.PT.58.2145446

RNAscope Probe Hs ACKR1 ACDBIo Cat#525131-C2
RNAscope Probe Hs FABP4 ACDBio Cat#470641
RNAscope Probe Hs ID2 ACDBIo Cat#500901
RNAscope Probe Hs PPARG ACDBIo Cat#441691-C2
RNAscope Probe 3-plex Negative Control ACDBio Cat#320871
Probe
RNAscope Probe 3-plex Positive Control ACDBio Cat#320881
Probe_Mm
shRNA CLEC2B (#1), Clone ID:
! Merck #NM_005127
TRCNO000056490 ere CatiNM_
shRNA CLEC2B (#2), Clone ID:
! Merck Cat#NM_005127
TRCNO000056492 ere atrN
Other
. . . Cat#CLS431750-
40 um cell strainer Sigma-Aldrich SOEA
. . . Cat#CLS431752-
100 pum cell strainer Sigma-Aldrich SOEA
Antibiotic-antimycotic Thermo Fisher Scientific Cat#15240062
Bovine serum albumin (BSA Fraction V) Sigma-Aldrich Cat#A3803-50G
Bovine serum albumin (UltraPure BSA) Thermo Fisher Scientific Cat#AM2616
Collagenase type | Thermo Fisher Scientific Cat#17018029
Collagenase type Il Thermo Fisher Scientific Cat#17101015
Dispase Thermo Fisher Scientific Cat#17105-041
Fetal bovine serum (FBS) Thermo Fisher Scientific Cat#16000044
Ficoll"-Paque Plus GE Life Sciences Cat#GE17-1440-02
KnockOut™ DMEM Thermo Fisher Scientific Cat#10829018
Luna Cell counting Slides Logos Biosystems Cat#L12001
MEM NEAA Thermo Fisher Scientific Cat#11140035
Nitrocellulose P.re-Cut Blotting Membranes, Thermo Fisher Scientific Cat#L.C2001
0.45 mm pore size
o RicTr -
T;'xjf 10% Bis-Tris Protein Gels, 1.5 mm, | 1o 5 Fisher Scientific Cat#NP0315B0X
90 Ric T .
T;';/Ajf 4-12% Bis-Tris Protein Gels, L5mm, | 1 1 Fisher Scientific Cat#NP0335BOX
NuPAGE LDS Sample Buffer (4X) Thermo Fisher Scientific Cat#NP0O007
NuPAGE MES SDS Running Buffer (20X) Thermo Fisher Scientific Cat#NP0002
NuPAGE MOPS SDS Running Buffer (20X) Thermo Fisher Scientific Cat#NP0O001
NuPAGE Sample Reducing Agent (10X) Thermo Fisher Scientific Cat#NPO009
NuPAGE Transfer Buffer (20X) Thermo Fisher Scientific Cat#NP00061
Penicillin/streptomycin Thermo Fisher Scientific Cat#15140122
Phosphate buffered saline (DPBS) Thermo Fisher Scientific Cat#14190094
ProLong Gold antifade reagent Thermo Fisher Scientific Cat#P36934
PVDF Pre-cut Blotting Membranes, 0.2.mm | o . Fisher Scientific Cat#59549
pore size
SOD-peg Thermo Fisher Scientific Cat#59549




Surgical Scalpel Blade No 10

Swann Morton

Cat#0201

Software and Algorithms

BIOMEX

28

https://www.vibcanc
er.be/software-
tools/BIOMEX

CellPhoneDB; version 2.0.0

29

https://www.cellpho
nedb.org/explore-sc-
rna-seq

Cell Ranger; version 2.2.0

10x Genomics

(tenx; RRID:
SCR_01695)

circlize; version 0.4.8

30

https://cran.r-
project.org/web/pac
kages/circlize/circlize
.pdf

clusterProfiler; version 3.6.0

Bioconductor®!

(clusterProfiler,
RRID: SCR_016884)

Fiji (Imagel)

Open source

https://fiji.sc

GraphPad Prism8, version 8.1.1

Graphpad

(GraphPad Prism;
RRID: SCR_002798)

InferCNV

6,7

R package (version
1.5.0)

NicheNet (nichenetr package)

32

https://github.com/s
aeyslab/nichenetr/bl
ob/master/vignettes
/seurat_steps.md.

gvalue: version 2.10.0

33

http://github.com/jd
storey/qvalue

pvclust: version 2.0.0

34

https://cran.r-
project.org/src/contr
ib/Archive/ pvclust/

) . 35 (scmap; RRID:
scmap; version 1.1.5 SCR_017338)
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