Supplementary file 2

This word file inculdes:

- Table S1Quality assessment of the included observational studies by Newcastle-Ottawa scale
- Figure S1 Sensitivity analysis of pooled analysis
- Figure S2 Subgroup analysis of the included studies based on original effect size
- Figure S3 Subgroup analysis of the included studies based on study center
- Figure S4 Subgroup analysis of the included studies based on illness severity
- Figure S5 Subgroup analysis of the included studies based on antiplatelet agents
- Figure S6 Subgroup analysis of the included studies based on treatment timing
- Figure S7 Subgroup analysis of the included studies based on anticoagulants use
- Figure S8 Funnel plot for publication bias tests

Supplementary Table and Figures

Table S1 | Quality assessment of the included observational studies by the Newcastle–Ottawa scale

Cohort Studies											
	Selection					Outcome					
Study	Exposed	Nonexposed	Ascertainment	Outcome	Comparability	Assessment	Length of	Adequacy of	Total score		
	Cohort	Cohort	of exposure	of interest		of outcome	follow-up	follow-up			
Aydınyılmaz (41)	1	1	0	1	1	1	1	1	7		
Chow (42)	1	1	1	1	1	1	1	1	8		
Corrochano (43)	1	1	1	1	1	1	1	1	8		
Fröhlich (44)	1	1	1	1	1	1	1	1	8		
Gupta (45)	1	1	0	1	1	1	1	1	7		
Aghajani (46)	1	1	1	1	1	1	0	1	7		
Ho (47)	1	1	1	1	1	1	1	1	8		
Izzi-Engbeaya (48)	1	0	0	1	1	1	1	1	6		
Liu (49)	1	1	1	1	1	1	1	1	8		
Matli (50)	1	1	1	1	1	1	1	1	8		
Meizlish (51)	1	1	1	1	1	1	1	1	8		
Merzon (52)	1	1	1	1	1	1	0	1	7		
Mura (53)	1	1	1	1	1	1	0	0	6		
Osborne (54)	1	1	1	1	1	1	1	1	8		
Pan (55)	1	1	1	1	1	1	1	1	8		
Russo (56)	1	1	1	1	1	1	1	1	8		
Sahai (57)	1	1	1	1	1	1	0	1	7		
Santoro (58)	1	1	1	1	1	1	1	1	8		
Sisinni (59)	1	1	1	1	1	1	1	1	8		
Soldevila (60)	1	1	1	1	1	1	1	1	8		
Terlecki (61)	1	1	1	1	1	1	1	1	8		
Tremblay (62)	1	1	1	1	1	1	1	1	8		
Zhao (63)	1	1	1	1	1	1	1	1	8		

References

- Aydınyılmaz F, Aksakal E, Pamukcu HE, Aydemir S, Doğan R, Saraç İ, et al. Significance of MPV, RDW and PDW with the Severity and Mortality of COVID-19 and Effects of Acetylsalicylic Acid Use. *Clin Appl Thromb Hemost*. (2021) 27: 10760296211048808. doi:10.1177/10760296211048808
- 42. Chow JH, Yin Y, Yamane DP, Davison D, Keneally RJ, Hawkins K, et al. Association of prehospital antiplatelet therapy with survival in patients hospitalized with COVID-19: A propensity score-matched analysis. *J Thromb Haemost.* (2021) 19: 2814-24. doi:10.1111/jth.15517
- 43. Corrochano M, Acosta-Isaac R, Mojal S, Miqueleiz S, Rodriguez D, Quijada-Manuitt M, et al. Impact of pre-admission antithrombotic therapy on disease severity and mortality in patients

hospitalized for COVID-19. *J Thromb Thrombolysis*. (2021): 1-7. doi:10.1007/s11239-021-02507-2

- 44. Fröhlich GM, Jeschke E, Eichler U, Thiele H, Alhariri L, Reinthaler M, et al. Impact of oral anticoagulation on clinical outcomes of COVID-19: a nationwide cohort study of hospitalized patients in Germany. *Clin Res Cardiol*. (2021) 110: 1041-50. doi:10.1007/s00392-020-01783-x
- 45. Gupta A, Madhavan MV, Poterucha TJ, Defilippis EM, Hennessey JA, Redfors B, et al. Association between antecedent statin use and decreased mortality in hospitalized patients with COVID-19. *Nat Commun.* (2021) 12: 1325. doi:10.1038/s41467-021-21553-1
- Haji Aghajani M, Moradi O, Amini H, Azhdari Tehrani H, Pourheidar E, Rabiei MM, et al. Decreased in-hospital mortality associated with aspirin administration in hospitalized patients due to severe COVID-19. *J Med Virol.* (2021) 93: 5390-5. doi:10.1002/jmv.27053
- Ho G, Dusendang JR, Schmittdiel J, Kavecansky J, Tavakoli J, Pai A. Association of chronic anticoagulant and antiplatelet use on disease severity in SARS-COV-2 infected patients. J Thromb Thrombolysis. (2021) 52: 476-81. doi:10.1007/s11239-021-02383-w
- Izzi-Engbeaya C, Distaso W, Amin A, Yang W, Idowu O, Kenkre JS, et al. Adverse outcomes in COVID-19 and diabetes: a retrospective cohort study from three London teaching hospitals. *BMJ Open Diabetes Res Care*. (2021) 9. doi:10.1136/bmjdrc-2020-001858
- 49. Liu Q, Huang N, Li A, Zhou Y, Liang L, Song X, et al. Effect of low-dose aspirin on mortality and viral duration of the hospitalized adults with COVID-19. *Medicine (Baltimore)*. (2021) 100: e24544. doi:10.1097/md.00000000024544
- Matli K, Chamoun N, Fares A, Zibara V, Al-Osta S, Nasrallah R, et al. Combined anticoagulant and antiplatelet therapy is associated with an improved outcome in hospitalised patients with COVID-19: a propensity matched cohort study. *Open Heart*. (2021) 8. doi:10.1136/openhrt-2021-001785
- 51. Meizlish ML, Goshua G, Liu Y, Fine R, Amin K, Chang E, et al. Intermediate-dose anticoagulation, aspirin, and in-hospital mortality in COVID-19: A propensity score-matched analysis. *Am J Hematol.* (2021) 96: 471-9. doi:10.1002/ajh.26102
- 52. Merzon E, Green I, Vinker S, Golan-Cohen A, Gorohovski A, Avramovich E, et al. The use of aspirin for primary prevention of cardiovascular disease is associated with a lower likelihood of COVID-19 infection. *Febs j.* (2021) 288: 5179-89. doi:10.1111/febs.15784
- Mura C, Preissner S, Nahles S, Heiland M, Bourne PE, Preissner R. Real-world evidence for improved outcomes with histamine antagonists and aspirin in 22,560 COVID-19 patients. *Signal Transduct Target Ther.* (2021) 6: 267. doi:10.1038/s41392-021-00689-y
- Osborne TF, Veigulis ZP, Arreola DM, Mahajan SM, Roosli E, Curtin CM. Association of mortality and aspirin prescription for COVID-19 patients at the Veterans Health Administration. *PLoS ONE*. (2021) 16. doi:10.1371/journal.pone.0246825
- 55. Pan D, Ip A, Zhan S, Wasserman I, Snyder DJ, Agathis AZ, et al. Pre-hospital antiplatelet medication use on COVID-19 disease severity. *Heart Lung.* (2021) 50: 618-21. doi:10.1016/j.hrtlng.2021.04.010
- Russo V, Di Maio M, Attena E, Silverio A, Scudiero F, Celentani D, et al. Clinical impact of pre-admission antithrombotic therapy in hospitalized patients with COVID-19: A multicenter observational study. *Pharmacol Res.* (2020) 159: 104965. doi:10.1016/j.phrs.2020.104965
- 57. Sahai A, Bhandari R, Godwin M, Mcintyre T, Chung MK, Iskandar JP, et al. Effect of aspirin on short-term outcomes in hospitalized patients with COVID-19. *Vasc Med.* (2021):

1358863x211012754. doi:10.1177/1358863x211012754

- Santoro F, Nuñez-Gil IJ, Vitale E, Viana-Llamas MC, Reche-Martinez B, Romero-Pareja R, et al. Antiplatelet therapy and outcome in COVID-19: the Health Outcome Predictive Evaluation Registry. *Heart*. (2021). doi:10.1136/heartjnl-2021-319552
- 59. Sisinni A, Rossi L, Battista A, Poletti E, Battista F, Battista RA, et al. Pre-admission acetylsalicylic acid therapy and impact on in-hospital outcome in COVID-19 patients: The ASA-CARE study. *Int J Cardiol.* (2021) 344: 240-5. doi:10.1016/j.ijcard.2021.09.058
- Soldevila L, Valerio-Sallent L, Roure S, Pérez-Quílez O, Mas M, Miralles R, et al. Drug exposure may have a substantial influence on COVID-19 prognosis among residents of long-term care facilities: an exploratory analysis. *Int J Infect Dis.* (2021) 109: 192-4. doi:10.1016/j.ijid.2021.07.007
- Terlecki M, Wojciechowska W, Klocek M, Olszanecka A, Stolarz-Skrzypek K, Grodzicki T, et al. Association between cardiovascular disease, cardiovascular drug therapy, and in-hospital outcomes in patients with COVID-19: Data from a large single-center registry in Poland. *Kardiologia Polska*. (2021) 79: 773-80. doi:10.33963/KP.15990
- Tremblay D, Van Gerwen M, Alsen M, Thibaud S, Kessler A, Venugopal S, et al. Impact of anticoagulation prior to COVID-19 infection: a propensity score-matched cohort study. *Blood*. (2020) 136: 144-7. doi:10.1182/blood.2020006941
- Zhao X, Gao C, Dai F, Treggiari MM, Deshpande R, Meng L. Treatments Associated with Lower Mortality among Critically III COVID-19 Patients. *Anesthesiology*. (2021). doi:10.1097/aln.00000000003999

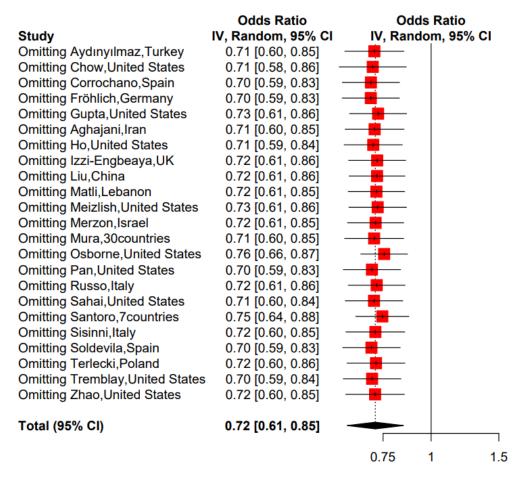


Figure S1 | Sensitivity analysis of the pooled analysis

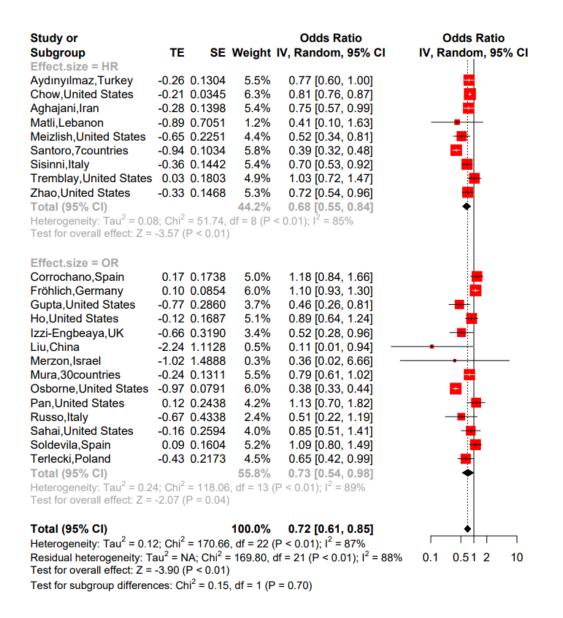


Figure S2 | Subgroup analysis of the included studies based on the original effect size

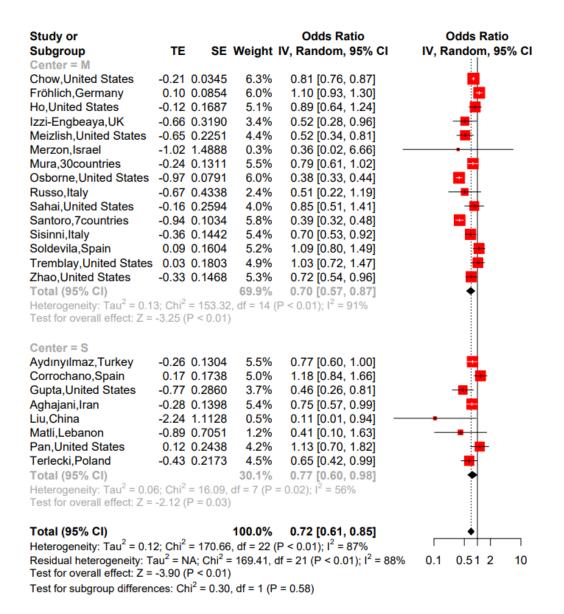


Figure S3 | Subgroup analysis of the included studies based on the study center

Study or Subgroup Illness.severity = All	TE S	SE Weight	Odds Ratio IV, Random, 95% CI	Odds Ratio IV, Random, 95% Cl					
Chow, United States	-0.21 0.03	45 6.3%	0.81 [0.76, 0.87]	-					
Corrochano,Spain	0.17 0.17			=					
Fröhlich,Germany	0.10 0.08			=					
Gupta, United States	-0.77 0.28								
Ho,United States	-0.12 0.16			_=					
Izzi-Engbeaya,UK	-0.66 0.31								
Liu,China Matli,Lebanon	-2.24 1.11								
Meizlish, United States	-0.65 0.22								
Merzon, Israel	-1.02 1.48								
Osborne, United States				—					
Pan, United States	0.12 0.24								
Russo,Italy	-0.67 0.43	38 2.4%							
Sahai, United States	-0.16 0.25	94 4.0%	0.85 [0.51, 1.41]	-#-					
Santoro,7countries	-0.94 0.10								
Sisinni,Italy	-0.36 0.14			.					
Soldevila,Spain	0.09 0.16			= ==					
Terlecki,Poland	-0.43 0.21								
Tremblay, United States	0.03 0.18								
Total (95% CI) Heterogeneity: Tau ² = 0.1	5. $Chi^2 = 170$	78.2%		•					
Test for overall effect: Z =	-3.32 (P < 0.		(P < 0.01); 1 = 89%						
Illness.severity = Seve			0.77.00.00.4.001	<u></u>					
Aydınyılmaz,Turkey	-0.26 0.13								
Aghajani,Iran Mura,30countries	-0.28 0.13 -0.24 0.13			1					
Zhao,United States	-0.24 0.13								
Total (95% CI)	-0.00 0.14	21.8%		• • • • • • • • • • • • • • • • • • •					
Heterogeneity: $Tau^2 = 0$;	$Chi^2 = 0.24. d$								
Test for overall effect: Z =									
Total (95% Cl)	0.01/2	100.0%		→					
Heterogeneity: Tau ² = 0.12; Chi ² = 170.66, df = 22 (P < 0.01); $l^2 = 87\%$ Residual heterogeneity: Tau ² = NA; Chi ² = 170.47, df = 21 (P < 0.01); $l^2 = 88\%$ 0.1 0.51 2 10									
Test for overall effect: $Z = -3.90 (P < 0.01)$									
			P = 0.51						
Test for subgroup differences: $Chi^2 = 0.42$, df = 1 (P = 0.51)									

Figure S4 | Subgroup analysis of the included studies based on illness severity

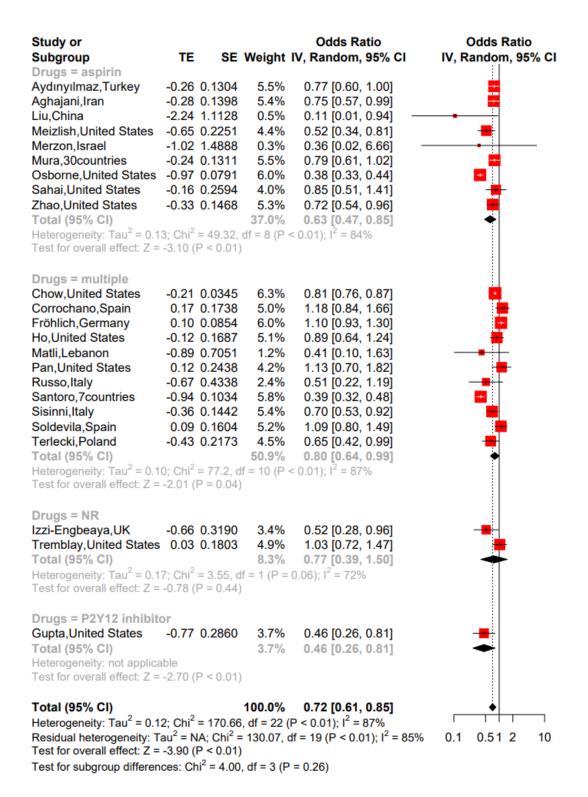


Figure S5 | Subgroup analysis of the included studies based on antiplatelet agents

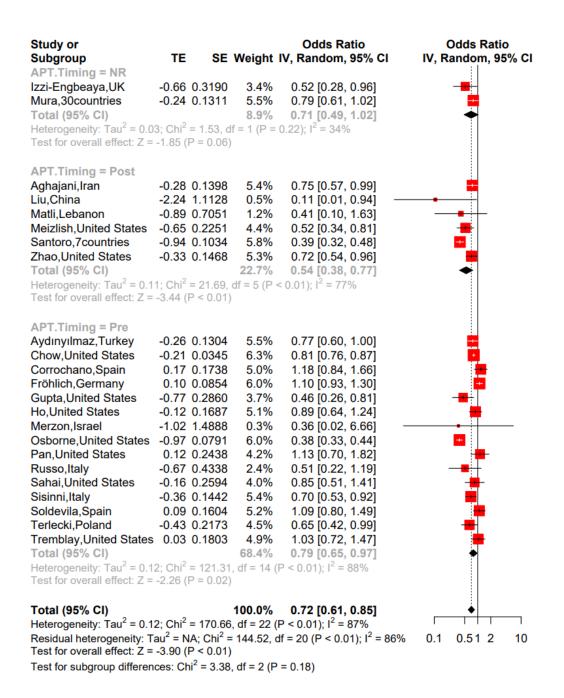


Figure S6 | Subgroup analysis of the included studies based on treatment timing

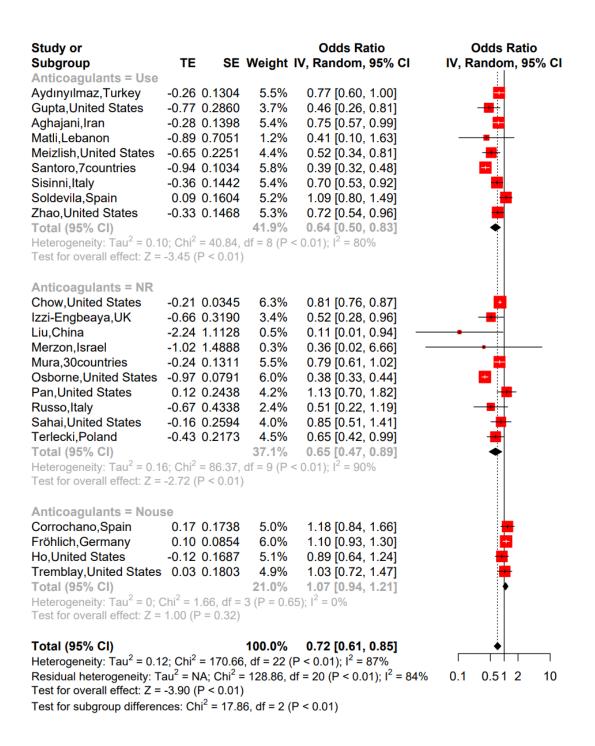


Figure S7 | Subgroup analysis of the included studies based on anticoagulant use

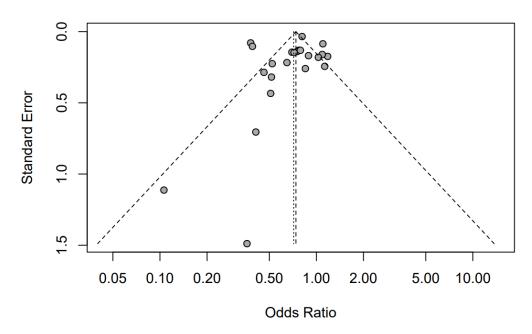


Figure ${\bf S8}$ | Funnel plot for the publication bias tests