Supporting Information

Kinetic Resolution of 2-Aryl-4-methylenepiperidines towards Enantioenriched Functionalisable Piperidine Fragments

Anthony Choi, Anthony J. H. M. Meijer, Ilaria Proietti Silvestri, and Iain Coldham*

Contents

1.	General procedures	S-2
2.	Experimental procedures and characterization data	S-4
	2.1 General procedures	S-4
	2.2 Preparation of enones 1b-h	S-6
	2.3 Preparation of 2-aryl-4-piperidones 2a-h	S-11
	2.4 Preparation of 2-aryl-4-methylenepiperidines 3a-h	S-17
	2.5 Preparation of racemic 2,2-disubstituted products	S-25
	2.6 Kinetic resolution of racemic substrates 3a-h	S-37
	2.7 Further functionalization of 3a and (<i>S</i>)- 3a	S-48
3.	References	S-58
4.	¹ H, ¹⁹ F and ¹³ C{1H} NMR spectra	S-6 0
5.	HPLC traces	S-107
6.	X-ray data for ester $(2S, 4R)$ -13	S-133
7.	Variable temperature ¹ H NMR spectra for carbamate 3a	S-140
8.	DFT data	S-143

1. General procedures

Reagents were obtained from commercial suppliers and were used without further purification or after distillation; *n*-BuLi was titrated before use. Solvents were obtained from a Grubbs dry solvent system. tert-Butyl 4-oxopyridine-1(4H)-carboxylate and compound 1a were synthesised using the methods reported by Dieter and co-workers.¹ LiBH(^sBu)₃ was obtained as a solution of L-Selectride® (1 M in THF) from Sigma Aldrich. Thin layer chromatography was performed on Merck silica gel 60F254 plates and visualised by UV irradiation at 254 nm or by staining with an alkaline KMnO4 dip. Flash column chromatography was performed using DAVISIL or Geduran silica gel (40-63 micron mesh). Melting points were recorded on a Gallenkamp hot stage and were uncorrected. InfraRed spectra were recorded on a Perkin Elmer Spectrum RX Fourier Transform – IR System and only selected peaks are reported. ¹H NMR spectra were recorded on a Bruker AC400 (400 MHz) instrument. Chemical shifts are reported in ppm with respect to the residual solvent peaks, with multiplicities given as s =singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. Coupling constants (J values) are quoted to the nearest 0.5 Hz with values in Hertz (Hz). ¹³C{1H} NMR spectra (proton-decoupled) were recorded on the above instrument at 100 MHz. Low and high resolution (accurate mass) mass spectra were recorded on a Walters LCT instrument for Electro-Spray (ES).

Intensity data for X-ray crystal structures were collected at 100 K on a Bruker D8 Venture diffractometer using a Cu K α microfocus X-ray source. Suitable crystals were mounted on a MiTiGen microloop using fomblin oil and transferred directly to the cold nitrogen stream at 100 K for data collection on a Bruker D8 VENTURE diffractometer equipped with an Oxford 700+ cryostream, a PHOTON 100 CMOS detector and using Cu-K α micro-focus X-ray source. Intensity data was collected in shutterless mode with a final fast scan collected at lower incident beam intensity to enable correction for any detector saturation for low-angle data. Data

reduction was performed using the Bruker Apex3 software.¹ Intensity data were corrected for absorption using empirical methods (SADABS) based upon symmetry equivalent reflections combined with measurements at different azimuthal angles.² The crystal structure was solved using ShelXT³ and refined against all F² values using the SHELXL⁴ accessed via the Olex2 program.⁵ Non-hydrogen atoms were refined anisotropically. Hydrogen atoms were placed in calculated positions with idealized geometries and then refined by employing a riding model and isotropic displacement parameters.

The selectivity factors (S) in the manuscript were calculated using the formula

$$S = \ln[(1-C)(1-ee)] / \ln[(1-C)(1+ee)]$$

where C is the conversion based on the amount of recovered starting material (e.g. for 46% recovered starting material, C = 0.54) and ee is the enantiomeric excess of the recovered starting material (e.g. enantiomer ratio, er 90:10 is 80% ee, so ee = 0.8).

All calculations were performed using density functional theory, employing the B3LYP⁶ functional as implemented in the D.01 version of Gaussian 09.⁷ Calculations included dispersion corrections using the GD3-BJ⁸ method. Calculations used the def2TZVP⁹ basis set. Solvent was included via the PCM method¹⁰ as implemented in Gaussian with the default parameters for THF.

2. Experimental Procedures and Characterization Data

2.1 General Procedures

General Procedure A: Synthesis of enones 1b-h

Following methods reported by Dieter and co-workers.¹¹

To a solution of aryl magnesium halide (1.2 equiv.) [PhMgCl (2 M in THF) or prepared from refluxing aryl bromide with magnesium turnings (1:1 molar ratio) in THF (2 M) for 30 min and cooling to rt] at –78 °C was added a mixture of *tert*-Butyl 4-oxopyridine-1(4*H*)-carboxylate (1 equiv.) and Me₃SiCl (3 equiv.) in THF (0.33 M). The mixture was warmed to rt over 16 h and quenched with saturated aq NH₄Cl. The mixture was diluted with water followed by Et₂O and the layers were separated. The organic layer was dried over anhydrous MgSO₄, filtered and the solvent was evaporated to give the crude product. The crude product was purified by column chromatography on silica gel to give the enone product.

General Procedure B: Synthesis of 2-aryl-4-piperidones 2a-h

To a solution of enone **1a–h** (1 equiv.) in THF (0.2 M) under an argon atmosphere at -78 °C was added LiBH(^sBu)₃ (1.1 equiv., 1 M in THF). After 2 h, the mixture was warmed to rt and quenched with quenched with saturated aq NaHCO₃. The mixture was diluted with water followed by Et₂O and the layers were separated. The organic layer was dried over anhydrous MgSO₄, filtered and the solvent was evaporated to give the crude product. The crude product was purified by column chromatography on silica gel to give the 2-aryl-4-piperidone product.

General Procedure C: Synthesis of 2-aryl-4-methylenepiperidines 3a-h

To a suspension of MePPh₃Br (4 equiv.) in THF was added KO'Bu (4 equiv.). The mixture was heated at 40 °C for 30 min and cooled to rt. 2-Aryl-4-piperidone **2a–h** (1 equiv.) in THF was added dropwise and the mixture was heated (stirrer hotplate and drysyn block) at 40 °C for 2–3 h. Upon cooling to rt, the mixture was diluted with water followed by Et₂O and the layers were separated. The organic layer was dried over anhydrous MgSO₄, filtered and the solvent was evaporated to give the crude product. The crude product was purified by column chromatography on silica gel to give the 2-aryl-4-methylenepiperidine product.

General Procedure D: Lithiation-trapping of 2-aryl-4-substituted-piperidines

To a solution of 2-aryl-4-substituted-piperidine (1 equiv.) in THF (0.25 M) under an argon atmosphere was added *n*-BuLi (1.2 equiv., 2.0–2.4 M in hexanes) at -40 °C or -78 °C. After 10 min the electrophile (2.0–3.5 equiv.) was added and the mixture was warmed to rt over 16 h. The reaction was quenched with MeOH (1 mL) and the solvent was evaporated to give the crude product.

2.2 Preparation of enones 1b-h

tert-Butyl 2-(4-Fluorophenyl)-4-oxo-3,4-dihydropyridine-1(2H)-carboxylate 1b

Using general procedure A, magnesium (0.15 g, 6.1 mmol), 1-bromo-4-fluorobenzene (0.68 mL, 6.1 mmol), *tert*-butyl 4-oxopyridine-1(4*H*)-carboxylate (1 g, 5.1 mmol) and Me₃SiCl (2.0 mL, 15 mmol) in THF (15 mL) gave the crude product. Purification by column chromatography on silica gel, eluting with CH₂Cl₂–MeOH (49:1) gave enone **1b** (1.4 g, 94%) as a white amorphous solid; mp 98–100 °C [CH₂Cl₂–MeOH] (no lit. mp reported); R_f 0.63 [CH₂Cl₂–MeOH (19:1)]; ¹H NMR (CDCl₃, 400 MHz) δ = 7.96 (d, 1H, *J* = 8.0 Hz), 7.26–7.17 (m, 2H), 7.08–6.96 (m, 2H), 5.66 (d, 1H, *J* = 8.0 Hz), 5.38 (d, 1H, *J* = 8.0 Hz), 3.16 (dd, 1H, *J* = 16.5, 8.0 Hz), 2.76 (d, 1H, *J* = 16.5 Hz), 1.49 (s, 9H); ¹³C{1H} NMR (CDCl₃, 100 MHz) δ = 191.9, 162.3 (d, *J* = 247.0 Hz), 151.3, 142.8, 134.8, 127.63 (d, *J* = 8.0 Hz), 115.7 (d, *J* = 21.5 Hz), 107.0, 83.9, 55.1, 41.9, 28.0; ¹⁹F NMR (CDCl₃, 377 MHz) δ = -114.31; Data as reported.¹²

tert-Butyl 2-(4-Chlorophenyl)-4-oxo-3,4-dihydropyridine-1(2*H*)-carboxylate 1c

Using general procedure A, magnesium (0.15 g, 6.1 mmol), 1-bromo-4-chlorobenzene (1.2 g, 6.1 mmol), *tert*-butyl 4-oxopyridine-1(4*H*)-carboxylate (1 g, 5.1 mmol) and Me₃SiCl (2.0 mL, 15 mmol) in THF (15 mL) gave the crude product. Purification by column chromatography on

silica gel, eluting with CH₂Cl₂–MeOH (49:1) gave enone **1c** (1.2 g, 76%) as a white amorphous solid; mp 106–108 °C [CH₂Cl₂–MeOH] (no lit. mp reported); R_f 0.68 [CH₂Cl₂–MeOH (19:1)]; ¹H NMR (CDCl₃, 400 MHz) δ = 7.97 (d, 1H, *J* = 7.5 Hz), 7.36–7.24 (m, 2H), 7.22–7.13 (m, 2H), 5.65 (d, 1H, *J* = 7.5 Hz), 5.38 (d, 1H, *J* = 7.5 Hz), 3.17 (dd, 1H, *J* = 16.5, 7.5 Hz), 2.75 (d, 1H, *J* = 16.5 Hz), 1.49 (s, 9H); ¹³C{1H} NMR (CDCl₃, 100 MHz) δ = 191.7, 151.3, 142.8, 137.4, 133.8, 129.0, 127.3, 107.0, 84.0, 55.1, 41.7, 28.0; Data as reported.¹²

tert-Butyl 2-(4-Methylphenyl)-4-oxo-3,4-dihydropyridine-1(2H)-carboxylate 1d

Using general procedure A, magnesium (0.15 g, 6.1 mmol), 1-bromo-4-methylbenzene (1 g, 6.1 mmol) dropwise, *tert*-butyl 4-oxopyridine-1(4*H*)-carboxylate (1 g, 5.1 mmol) and Me₃SiCl (2.0 mL, 15 mmol) in THF (15 mL) gave the crude product. Purification by column chromatography on silica gel, eluting with CH₂Cl₂–MeOH (49:1) to give enone **1d** (1.3 g, 89%) as a clear oil; R_f 0.65 [CH₂Cl₂–MeOH (19:1)]; ¹H NMR (CDCl₃, 400 MHz) δ = 7.96 (d, 1H, *J* = 7.5 Hz), 7.18–7.03 (m, 4H), 5.65 (d, 1H, *J* = 7.5 Hz), 5.36 (d, 1H, *J* = 7.5 Hz), 3.14 (dd, 1H, *J* = 16.5, 7.5 Hz), 2.79 (d, 1H, *J* = 16.5 Hz), 2.33 (s, 3H), 1.49 (s, 9H); ¹³C{1H} NMR (CDCl₃, 41.9, 28.0, 21.0; Data as reported.¹³

tert-Butyl 2-(4-Methoxyphenyl)-4-oxo-3,4-dihydropyridine-1(2H)-carboxylate 1e

Using general procedure A, magnesium (0.15 g, 6.1 mmol), 1-bromo-4-methoxybenzene (0.76 mL, 6.1 mmol), *tert*-butyl 4-oxopyridine-1(4*H*)-carboxylate (1 g, 5.1 mmol) and Me₃SiCl (2.0 mL, 15 mmol) in THF (15 mL) gave the crude product. Purification by column chromatography on silica gel, eluting with CH₂Cl₂–MeOH (49:1) gave enone **1e** (1.5 g, 97%) as a clear oil; $R_f 0.69$ [CH₂Cl₂–MeOH (19:1)]; ¹H NMR (CDCl₃, 400 MHz) δ = 7.94 (d, 1H, *J* = 7.5 Hz), 7.17 (d, 2H, *J* = 8.5 Hz), 6.84 (d, 2H, *J* = 8.5 Hz), 5.64 (d, 1H, *J* = 7.5 Hz), 5.37 (d, 1H, *J* = 7.5 Hz), 3.79 (s, 3H), 3.14 (dd, 1H, *J* = 16.5, 7.5 Hz), 2.77 (d, 1H, *J* = 16.5 Hz), 1.49 (s, 9H); ¹³C{1H} NMR (CDCl₃, 100 MHz) δ = 192.5, 159.2, 151.5, 142.9, 131.0, 127.2, 114.1, 106.9, 83.7, 55.3, 55.1, 41.9, 28.0. Data as reported.¹³

tert-Butyl 2-(4-Trifluoromethylphenyl)-4-oxo-3,4-dihydropyridine-1(2H)-carboxylate 1f

Using general procedure A, magnesium (0.15 g, 6.1 mmol), 1-bromo-4-trifluoromethylbenzene (0.85 mL, 6.1 mmol), *tert*-butyl 4-oxopyridine-1(4*H*)-carboxylate (1 g, 5.1 mmol) and Me₃SiCl (2.0 mL, 15 mmol) in THF (15 mL) gave the crude product. Purification by column chromatography on silica gel, eluting with CH₂Cl₂–MeOH (49:1) gave enone **1f** (1.7 g, 98%) as a pale yellow oil; R_f 0.56 [CH₂Cl₂–MeOH (19:1)]; FT-IR v_{max} (film)/cm⁻¹ 1723 (C=O), 1668

(C=O), 1605 (C=C); ¹H NMR (CDCl₃, 400 MHz) $\delta = 8.01$ (d, 1H, J = 8.5 Hz), 7.62–7.51 (m, 1H), 7.50–7.39 (m, 3H), 5.72 (d, 1H, J = 7.5 Hz), 5.41 (d, 1H, J = 8.5 Hz), 3.21 (dd, 1H, J = 16.5, 7.5 Hz), 2.81 (d, 1H, J = 16.5 Hz), 1.49 (s, 9H); ¹³C{1H} NMR (CDCl₃, 100 MHz, one quaternary carbon not observed) $\delta = 191.4$, 151.2, 142.8, 140.0, 131.61–130.85 (m), 129.5, 129.0, 125.07–124.64 (m), 123.19–122.59 (m), 107.2, 84.3, 55.3, 41.5, 27.9; ¹⁹F NMR (CDCl₃, 377 MHz) $\delta = -62.78$; HRMS (ESI-TOF) *m*/*z*: [M+Na]⁺ Calcd for C₁₇H₁₈F₃NO₃Na 364.1131; Found 364.1134; LRMS *m*/*z* (ES) 286 (100%), 364 (20%, MNa⁺).

tert-Butyl 2-(3-Methoxyphenyl)-4-oxo-3,4-dihydropyridine-1(2H)-carboxylate 1g

Using general procedure A, magnesium (0.15 g, 6.1 mmol), 1-bromo-3-methoxybenzene (0.77 mL, 6.1 mmol), *tert*-butyl 4-oxopyridine-1(4*H*)-carboxylate (1 g, 5.1 mmol) and Me₃SiCl (2.0 mL, 15 mmol) in THF (15 mL) gave the crude product. Purification by column chromatography on silica gel, eluting with CH₂Cl₂–MeOH (49:1) gave enone **1g** (1.3 g, 84%) as a clear oil; R_f 0.69 [CH₂Cl₂–MeOH (19:1)]; FT-IR v_{max} (film)/cm⁻¹ 1753 (C=O), 1665 (C=O), 1602 (C=C); ¹H NMR (CDCl₃, 400 MHz) δ = 7.98 (d, 1H, *J* = 8.5 Hz), 7.32–7.18 (m, 1H), 6.84–6.78 (m, 2H), 6.78–6.74 (m, 1H), 5.64 (d, 1H, *J* = 7.5 Hz), 5.37 (d, 1H, *J* = 8.5 Hz), 3.78 (s, 3H), 3.15 (dd, 1H, *J* = 16.5, 7.5 Hz), 2.80 (d, 1H, *J* = 16.5 Hz), 1.49 (s, 9H); ¹³C{1H} NMR (CDCl₃, 100 MHz) δ = 192.1, 159.9, 151.4, 143.0, 140.5, 129.9, 118.0, 112.9, 111.9, 107.0, 83.7, 55.6, 55.2, 41.9, 28.0; HRMS (ESI-TOF) *m*/*z*: [M+Na]⁺ Calcd for C₁₇H₂₁NO₄Na 326.1363; Found 326.1379; LRMS *m*/*z* (ES) 248 (100%), 304 (15%), 326 (50%, MNa⁺).

tert-Butyl 2-(3,4-Dimethoxyphenyl)-4-oxo-3,4-dihydropyridine-1(2H)-carboxylate 1h

Using general procedure A, magnesium (0.15 g, 6.1 mmol), 4-bromo-1,2-dimethoxybenzene (0.88 mL, 6.1 mmol), *tert*-butyl 4-oxopyridine-1(4*H*)-carboxylate (1 g, 5.1 mmol) and Me₃SiCl (2.0 mL, 15 mmol) in THF (15 mL) gave the crude product. Purification by column chromatography on silica gel, eluting with CH₂Cl₂–MeOH (49:1) gave enone **1h** (0.68 g, 40%) as a clear oil; R_f 0.56 [CH₂Cl₂–MeOH (19:1)]; FT-IR v_{max} (film)/cm⁻¹ 1720 (C=O), 1665 (C=O), 1602 (C=C); ¹H NMR (CDCl₃, 400 MHz) δ = 7.92 (d, 1H, *J* = 7.5 Hz), 6.86–6.72 (m, 3H), 5.65 (d, 1H, *J* = 7.5 Hz), 5.37 (d, 1H, *J* = 7.5 Hz), 3.87 (s, 3H), 3.85 (s, 3H), 3.14 (dd, 1H, *J* = 16.5, 7.5 Hz), 2.81 (d, 1H, *J* = 16.5 Hz), 1.51 (s, 9H); ¹³C{1H} NMR (CDCl₃, 100 MHz) δ = 192.5, 151.5, 149.1, 148.7, 142.7, 131.5, 118.3, 111.0, 109.5, 106.8, 83.7, 55.9, 55.8, 55.2, 41.7, 28.0; HRMS (ESI-TOF) *m*/*z*: [M+Na]⁺ Calcd for C₁₈H₂₃NO₅Na 356.1468; Found 356.1462; LRMS *m*/*z* (ES) 278 (100%), 334 (30%), 356 (40%, MNa⁺).

2.3 Preparation of 2-aryl-4-piperidones 2a-h

tert-Butyl 4-Oxo-2-phenylpiperidine-1-carboxylate 2a

Using general procedure B, enone **1a** (2 g, 7.3 mmol) and LiBH(^sBu)₃ (8 mL, 8 mmol, 1 M in THF) in THF (37 mL) gave the crude product. Purification by column chromatography on silica gel, eluting with petrol–EtOAc (9:1), gave piperidone **2a** (1.7 g, 85%) as a clear oil; R_f 0.63 [petrol–EtOAc (1:1)]; ¹H NMR (CDCl₃, 400 MHz) δ = 7.41–7.18 (m, 5H), 5.74 (br s, 1H), 4.25 (br, 1H), 3.17 (br t, 1H, *J* = 11.0 Hz), 2.99 (dd, 1H, *J* = 15.5, 2.5 Hz), 2.87 (dd, 1H, *J* = 15.5, 7.0 Hz), 2.62–2.46 (m, 1H), 2.44–2.30 (m, 1H), 1.50 (s, 9H); ¹³C{1H} NMR (CDCl₃, 100 MHz) δ = 207.9, 154.8, 140.5, 128.8, 127.6, 126.6, 80.8, 54.4, 44.4, 40.7, 38.7, 28.4. Data as reported.¹⁴

Resolution between the enantiomers of piperidone **2a** was achieved using a Beckman system fitted with a Phenomenex Cellulose-1 column (250 mm × 4.60 mm i.d.) as the stationary phase with a mixture of *n*-hexane:isopropanol (97:3 v/v) as the mobile phase at a flow rate of 1 mL·min⁻¹; ambient temperature, detection by UV absorbance at 210 nm. Injection volume was 10 μ L of the sample prepared in a 2 g·L⁻¹ solution of the eluent. Under these conditions, the components were eluted at 12.1 min and 14.1 min. tert-Butyl 2-(4-Fluorophenyl)-4-oxopiperidine-1-carboxylate 2b

Using general procedure B, enone **1b** (1.3 g, 4.5 mmol) and LiBH(^sBu)₃ (5 mL, 5 mmol, 1 M in THF) in THF (23 mL) gave the crude product. Purification by column chromatography on silica gel, eluting with petrol–EtOAc (4:1), gave piperidone **2b** (0.94 g, 71%) as a clear oil; R_f 0.30 [petrol–EtOAc (7:3)]; FT-IR v_{max} (film)/cm⁻¹ 1717 (C=O), 1691 (C=O); ¹H NMR (CDCl₃, 400 MHz) δ = 7.25–7.17 (m, 2H), 7.07–6.94 (m, 2H), 5.73 (br, 1H), 4.24 (br, 1H), 3.14 (br t, 1H, *J* = 11.0 Hz), 2.99–2.79 (m, 2H), 2.63–2.47 (m, 1H), 2.47–2.30 (m, 1H), 1.50 (s, 9H); ¹³C{1H} NMR (CDCl₃, 100 MHz) δ =207.7, 162.1 (d, *J* = 246.5 Hz), 154.7, 136.2, 128.3 (d, *J* = 8.0 Hz), 115.6 (d, *J* = 21.5 Hz), 80.9, 53.9, 44.5, 40.7, 38.7, 28.4; ¹⁹F NMR (CDCl₃, 377 MHz) δ = -114.77; HRMS (ESI-TOF) *m*/*z*: [M+Na]⁺ Calcd for C₁₆H₂₀FNO₃Na 316.1319; Found 316.1325; LRMS *m*/*z* (ES) 142 (30%), 194 (25%), 238 (100%), 316 (45%, MNa⁺).

tert-Butyl 2-(4-Chlorophenyl)-4-oxopiperidine-1-carboxylate 2c

Using general procedure B, enone **1c** (0.85 g, 2.8 mmol) and LiBH(^sBu)₃ (3.1 mL, 3.0 mmol, 1 M in THF) in THF (14 mL) gave the crude product. Purification by column chromatography on silica gel, eluting with petrol–EtOAc (4:1), gave piperidone **2c** (0.69 g, 81%) as a clear oil; R_f 0.28 [petrol–EtOAc (7:3)]; FT-IR v_{max} (film)/cm⁻¹ 1727 (C=O), 1691 (C=O); ¹H NMR

(CDCl₃, 400 MHz) $\delta = 7.38-7.25$ (m, 2H), 7.25–7.11 (m, 2H), 5.70 (br, 1H), 4.38–4.11 (m, 1H), 3.16 (t, 1H, *J* = 11.5 Hz), 2.99–2.81 (m, 2H), 2.61–2.47 (m, 1H), 2.47–2.30 (m, 1H), 1.49 (s, 9H); ¹³C{1H} NMR (CDCl₃, 100 MHz) $\delta = 207.5$, 154.7, 139.1, 133.5, 128.9, 128.0, 81.0, 54.0, 44.4, 40.6, 38.8, 28.4; HRMS (ESI-TOF) *m*/*z*: [M+Na]⁺ Calcd for C₁₆H₂₀³⁵ClNO₃Na 332.1024; Found 332.1033; LRMS *m*/*z* (ES) 332 (100%, MNa⁺ for ³⁵Cl), 333 (15%), 334 (35%, MNa⁺ for ³⁷Cl), 335 (5%).

tert-Butyl 2-(4-Methylphenyl)-4-oxopiperidine-1-carboxylate 2d

Using general procedure B, enone **1d** (1.3 g, 4.5 mmol) and LiBH(^sBu)₃ (5 mL, 5 mmol, 1 M in THF) in THF (23 mL) gave the crude product. Purification by column chromatography on silica gel, eluting with petrol–EtOAc (4:1), gave piperidone **2d** (1.1 g, 84%) as a clear oil; R_f 0.23 [petrol–EtOAc (4:1)]; FT-IR v_{max} (film)/cm⁻¹ 1720 (C=O), 1688 (C=O); ¹H NMR (CDCl₃, 400 MHz) δ = 7.21–7.08 (m, 4H), 5.74 (br, 1H), 4.23 (br, 1H), 3.20–3.06 (m, 1H), 2.97 (dd, 1H, *J* = 15.5, 2.0 Hz), 2.85 (dd, 1H, *J* = 15.5, 7.0 Hz), 2.61–2.46 (m, 1H), 2.43–2.27 (m, 4H), 1.51 (s, 9H); ¹³C{1H} NMR (CDCl₃, 100 MHz, one quaternary carbon not observed) δ = 208.1, 154.8, 137.3, 129.4, 126.6, 80.7, 54.1, 44.4, 40.7, 38.6, 28.4, 21.0; HRMS (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₁₇H₂₃NO₃Na 312.1570; Found 312.1581; LRMS *m/z* (ES) 142 (65%), 190 (15%), 234 (75%), 312 (100%, MNa⁺).

tert-Butyl 2-(4-Methoxyphenyl)-4-oxopiperidine-1-carboxylate 2e

Using general procedure B, enone **1e** (1.5 g, 4.9 mmol) and LiBH(^sBu)₃ (5.4 mL, 5.4 mmol, 1 M in THF) in THF (25 mL) gave the crude product. Purification by column chromatography on silica gel, eluting with petrol–EtOAc (17:3), gave piperidone **2e** (1.2 g, 80%) as a clear oil; R_f 0.30 [petrol–EtOAc (7:3)]; FT-IR v_{max} (film)/cm⁻¹ 1718 (C=O), 1687 (C=O); ¹H NMR (CDCl₃, 400 MHz) δ = 7.18 (d, 2H, *J* = 8.5 Hz), 6.87 (d, 2H, *J* = 8.5 Hz), 5.74 (br, 1H), 4.21 (br, 1H), 3.80 (s, 3H), 3.18–3.03 (m, 1H), 2.95 (dd, 1H, *J* = 15.5, 1.5 Hz), 2.84 (dd, 1H, *J* = 15.5, 6.5 Hz), 2.63–2.45 (m, 1H), 2.42–2.29 (m, 1H), 1.51 (s, 9H); ¹³C{1H} NMR (CDCl₃, 100 MHz) δ = 208.1, 158.9, 154.8, 132.3, 127.9, 114.1, 80.7, 55.3, 53.8, 44.4, 40.8, 38.5, 28.4; HRMS (ESI-TOF) *m*/z: [M+Na]⁺ Calcd for C₁₇H₂₃NO₄Na 328.1519; Found 328.1534; LRMS *m*/z (ES) 328 (100%, MNa⁺).

tert-Butyl 2-(3-Trifluoromethylphenyl)-4-oxopiperidine-1-carboxylate 2f

Using general procedure B, enone **1f** (1.7 g, 5.0 mmol) and LiBH(^sBu)₃ (5.5 mL, 5.5 mmol, 1 M in THF) in THF (25 mL) gave the crude product. Purification by column chromatography on silica gel, eluting with petrol–EtOAc (3:1), gave piperidone **2f** (1.2 g, 70%) as a clear oil; $R_f 0.29$ [petrol–EtOAc (1:1)]; FT-IR v_{max} (film)/cm⁻¹ 1686 (C=O); ¹H NMR (CDCl₃, 400 MHz)

δ = 7.61-7.42 (m, 4H), 5.71 (br, 1H), 4.29 (br d, 1H, J = 12.0 Hz), 3.33–3.18 (m, 1H), 3.01– 2.86 (m, 2H), 2.66–2.52 (m, 1H), 2.42 (dt, 1H, J = 16.5, 3.5 Hz), 1.47 (s, 9H); ¹³C{1H} NMR (CDCl₃, 100 MHz) δ = 207.2, 154.7, 131.7–130.9 (m), 129.6, 129.3, 125.3, 124.8–124.2 (m), 123.7–123.0 (m), 122.6, 81.2, 54.4, 44.4, 40.5, 39.0, 28.3; ¹⁹F NMR (CDCl₃, 377 MHz) δ =-62.72; HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd for C₁₇H₂₀F₃NO₃Na 366.1287; Found 366.1302; LRMS m/z (ES) 244 (20%), 288 (100%), 366 (30%, MNa⁺).

tert-Butyl 2-(3-Methoxyphenyl)-4-oxopiperidine-1-carboxylate 2g

Using general procedure B, enone **1g** (1.3 g, 4.3 mmol) and LiBH(^sBu)₃ (4.7 mL, 4.7 mmol, 1 M in THF) in THF (22 mL) gave the crude product. Purification by column chromatography on silica gel, eluting with petrol–EtOAc (3:1), gave piperidone **2g** (1 g, 76%) as a clear oil; R_{*f*} 0.26 [petrol–EtOAc (7:3)]; FT-IR v_{max} (film)/cm⁻¹ 1723 (C=O), 1686 (C=O); ¹H NMR (CDCl₃, 400 MHz) δ = 7.32–7.19 (m, 1H), 6.90–6.77 (m, 3H), 5.71 (br, 1H), 4.23 (br, 1H), 3.80 (s, 3H), 3.26–3.08 (m, 1H), 2.97 (dd, 1H, *J* = 15.5, 3.5 Hz), 2.85 (dd, 1H, *J* = 15.5, 7.0 Hz), 2.60–2.46 (m, 1H), 2.42–2.33 (m, 1H), 1.50 (s, 9H); ¹³C{1H} NMR (CDCl₃, 100 MHz) δ = 207.8, 160.0, 154.8, 142.1, 129.8, 118.8, 112.9, 112.4, 80.7, 55.2, 54.3, 44.4, 40.6, 38.8, 28.4; HRMS (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₁₇H₂₃NO4Na 328.1519; Found 328.1530; LRMS *m/z* (ES) 188 (75%), 232 (100%), 328 (90%, MNa⁺).

tert-Butyl 2-(3,4-Dimethoxyphenyl)-4-oxopiperidine-1-carboxylate 2h

Using general procedure B, enone **1h** (0.67 g, 2.0 mmol) and LiBH(^sBu)₃ (2.2 mL, 2.2 mmol, 1 M in THF) in THF (20 mL) gave the crude product. Purification by column chromatography on silica gel, eluting with petrol–EtOAc (1:1), gave piperidone **2h** (0.39 g, 58%) as a clear oil; R_f 0.14 [petrol–EtOAc (7:3)]; FT-IR v_{max} (film)/cm⁻¹ 1713 (C=O), 1687 (C=O); ¹H NMR (CDCl₃, 400 MHz) δ = 6.92–6.68 (m, 3H), 5.77 (br, 1H), 4.21 (br, 1H), 3.88 (s, 3H), 3.87 (s, 3H), 3.07 (t, 1H, *J* = 11.5 Hz), 2.97 (d, 1H, *J* = 15.5 Hz), 2.85 (dd, 1H, *J* = 15.5, 7.0 Hz), 2.61–2.47 (m, 1H), 2.36 (d, 1H, *J* = 15.5 Hz), 1.53 (s, 9H); ¹³C{1H} NMR (CDCl₃, 100 MHz) δ = 208.1, 154.8, 149.2, 148.5, 132.8, 118.9, 110.9, 110.0, 80.7, 55.9, 55.8, 54.0, 44.2, 40.8, 38.6, 28.4; HRMS (ESI-TOF) *m*/*z*: [M+Na]⁺ Calcd for C1₈H₂₅NO₅Na 358.1625; Found 358.1635; LRMS *m*/*z* (ES) 98 (20%), 236 (15%), 358 (100%, MNa⁺).

2.4 Preparation of 2-aryl-4-methylenepiperidines 3a-h

tert-Butyl 4-Methylidene-2-phenylpiperidine-1-carboxylate 3a

Using general procedure C, MePPh₃Br (26 g, 73 mmol), KO'Bu (8 g, 73 mmol) and piperidone **2a** (5 g, 18 mmol) in THF (130 mL) gave the crude product. Purification by column chromatography on silica gel, eluting with petrol–EtOAc (9:1), gave alkene **3a** (3.5 g, 71%) as a clear oil; R_f 0.52 [petrol–EtOAc (4:1)]; ¹H NMR (CDCl₃, 400 MHz) δ = 7.38–7.20 (m, 5H), 5.51 (br, 1H), 4.98–4.77 (m, 2H), 4.17–3.99 (m, 1H), 2.95–2.74 (m, 2H), 2.72–2.61 (m, 1H), 2.42–2.13 (m, 2H), 1.50 (s, 9H); ¹³C{1H} NMR (CDCl₃, 100 MHz) δ = 155.3, 142.4, 140.8, 128.3, 127.2, 126.7, 111.4, 79.9, 53.9, 40.1, 36.6, 33.8, 28.5. Data as reported.¹⁵

Resolution between the enantiomers of alkene **3a** was achieved using a Beckman system fitted with a Phenomenex Cellulose-2 column (250 mm × 4.60 mm i.d.) as the stationary phase with a mixture of *n*-hexane:isopropanol (99:1 v/v) as the mobile phase at a flow rate of 1 mL·min⁻¹; ambient temperature, detection by UV absorbance at 210 nm. Injection volume was 10 μ L of the sample prepared in a 2 g·L⁻¹ solution of the eluent. Under these conditions, the components were eluted at 5.6 min and 12.3 min. tert-Butyl 2-(4-Fluorophenyl)-4-methylidenepiperidine-1-carboxylate 3b

Using general procedure C, MePPh₃Br (4.3 g, 12 mmol), KOⁱBu (1.3 g, 12 mmol) and piperidone **2b** (0.92 g, 3.1 mmol) in THF (22 mL) gave the crude product. Purification by column chromatography on silica gel, eluting with petrol–EtOAc (9:1), gave alkene **3b** (0.73 g, 81 %) as a clear oil; R_f 0.58 [petrol–EtOAc (4:1)]; FT-IR v_{max} (film)/cm⁻¹ 1687 (C=O), 1652 (C=C); ¹H NMR (CDCl₃, 400 MHz) δ = 7.35–7.26 (m, 2H), 7.05–6.95 (m, 2H), 5.48 (br d, 1H, J = 6.0 Hz), 4.88 (br s, 2H), 4.07 (dd, 1H, J = 13.0, 4.0 Hz), 2.87–2.71 (m, 2H), 2.67 (dd, 1H, J = 14.5, 6.0 Hz), 2.38–2.18 (m, 2H), 1.50 (s, 9H); ¹³C{1H} NMR (CDCl₃, 100 MHz) δ = 161.7 (d, J = 245.0 Hz), 155.1, 142.2, 136.6, 128.8 (d, J = 8.0 Hz), 115.1 (d, J = 21.0 Hz), 111.6, 80.0, 53.2, 39.9, 36.7, 33.7, 28.5; ¹⁹F NMR (CDCl₃, 377 MHz) δ = –116.28; HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd for C₁₇H₂₂FNO₂Na 314.1527; Found 314.1535; LRMS m/z (ES) 140 (15%), 236 (100%), 314 (25%, MNa⁺).

Resolution between the enantiomers of alkene **3b** was achieved using a Beckman system fitted with a Phenomenex Cellulose-2 column (250 mm × 4.60 mm i.d.) as the stationary phase with a mixture of *n*-hexane:isopropanol (99:1 v/v) as the mobile phase at a flow rate of 1 mL·min⁻¹; ambient temperature, detection by UV absorbance at 210 nm. Injection volume was 10 μ L of the sample prepared in a 2 g·L⁻¹ solution of the eluent. Under these conditions, the components were eluted at 5.2 min and 11.2 min.

Alternatively, resolution between the enantiomers of alkene **3b** was achieved using a Agilent system fitted with a Chiralcel OX-H column (250 mm \times 4.60 mm i.d.) as the stationary phase with a mixture of *n*-hexane:isopropanol (99:1 v/v) as the mobile phase at a flow rate of

1 mL·min⁻¹; ambient temperature, detection by UV absorbance at 210 nm. Injection volume was 5 μ L of the sample prepared in a 2 g·L⁻¹ solution of the eluent. Under these conditions, the components were eluted at 5.4 min and 6.0 min.

tert-Butyl 2-(4-Chlorophenyl)-4-methylidenepiperidine-1-carboxylate 3c

Using general procedure C, MePPh₃Br (3.1 g, 8.7 mmol), KO'Bu (1.0 g, 8.7 mmol) and piperidone **2c** (0.68 g, 2.2 mmol) in THF (16 mL) gave the crude product. Purification by column chromatography on silica gel, eluting with petrol–EtOAc (9:1), gave alkene **3c** (0.58 g, 86%) as a clear oil; R_f 0.48 [petrol–EtOAc (4:1)]; FT-IR v_{max} (film)/cm⁻¹ 1685 (C=O); ¹H NMR (CDCl₃, 400 MHz) δ = 7.40–7.22 (m, 4H), 5.46 (br d, 1H, *J* = 4.5 Hz), 4.87 (br s, 2H), 4.08 (dd, 1H, *J* = 13.0, 4.0 Hz), 2.86–2.72 (m, 2H), 2.72–2.60 (m, 1H), 2.39–2.15 (m, 2H), 1.50 (s, 9H); ¹³C{1H} NMR (CDCl₃, 100 MHz) δ = 155.1, 142.0, 139.4, 132.5, 128.6, 128.4, 111.6, 80.1, 53.4, 40.1, 36.6, 33.7, 28.4; HRMS (ESI-TOF) *m*/*z*: [M+Na]⁺ Calcd for C₁₇H₂₂³⁵ClNO₂Na 330.1123; Found 330.1238; LRMS *m*/*z* (ES) 330 (100%, MNa⁺ for ³⁵Cl), 331 (15%), 332 (35%, MNa⁺ for ³⁷Cl), 333 (10%).

Resolution between the enantiomers of alkene **3c** was achieved using a Beckman system fitted with a Phenomenex Cellulose-2 column (250 mm × 4.60 mm i.d.) as the stationary phase with a mixture of *n*-hexane:isopropanol (99:1 v/v) as the mobile phase at a flow rate of 1 mL·min⁻¹; ambient temperature, detection by UV absorbance at 210 nm. Injection volume was 10 μ L of the sample prepared in a 2 g·L⁻¹ solution of the eluent. Under these conditions, the components were eluted at 4.9 min and 6.4 min. tert-Butyl 2-(4-Methylphenyl)-4-methylidenepiperidine-1-carboxylate 3d

Using general procedure C, MePPh₃Br (5.4 g, 15 mmol), KO^tBu (1.7 g, 15 mmol) and piperidone **2d** (1.1 g, 3.7 mmol) in THF (27 mL) gave the crude product. Purification by column chromatography on silica gel, eluting with petrol–EtOAc (9:1), gave alkene **3d** (0.81 g, 76%) as a clear oil; R/ 0.54 [petrol–EtOAc (4:1)]; FT-IR v_{max} (film)/cm⁻¹ 1689 (C=O), 1652 (C=C); ¹H NMR (CDCl₃, 400 MHz) δ = 7.23 (d, 2H, *J* = 8.0 Hz), 7.14 (d, 2H, *J* = 8.0 Hz), 5.49 (br, 1H), 4.94–4.78 (m, 2H), 4.08 (d, 1H, *J* = 9.0 Hz), 2.92–2.73 (m, 2H), 2.65 (dd, 1H, *J* = 14.0, 5.5 Hz), 2.40–2.13 (m, 5H), 1.51 (s, 9H); ¹³C{1H} NMR (CDCl₃, 100 MHz) δ = 155.3, 142.5, 137.6, 136.3, 129.0, 127.1, 111.3, 79.8, 53.6, 40.0, 36.6, 33.9, 28.5, 21.0; HRMS (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₁₈H₂₅NO₂Na 310.1778; Found 310.1792; LRMS *m/z* (ES) 140 (40%), 232 (100%), 310 (50%, MNa⁺).

Resolution between the enantiomers of alkene **3d** was achieved using a Beckman system fitted with a Phenomenex Cellulose-2 column (250 mm × 4.60 mm i.d.) as the stationary phase with a mixture of *n*-hexane:isopropanol (99:1 v/v) as the mobile phase at a flow rate of 1 mL·min⁻¹; ambient temperature, detection by UV absorbance at 210 nm. Injection volume was 10 μ L of the sample prepared in a 2 g·L⁻¹ solution of the eluent. Under these conditions, the components were eluted at 5.3 min and 9.3 min. tert-Butyl 2-(4-Methoxyphenyl)-4-methylidenepiperidine-1-carboxylate 3e

Using general procedure C, MePPh₃Br (5.7 g, 16 mmol), KO^tBu (1.8 g, 16 mmol) and piperidone **2e** (1.2 g, 3.9 mmol) in THF (28 mL) gave the crude product. Purification by column chromatography on silica gel, eluting with petrol–EtOAc (9:1), gave alkene **3e** (0.89 g, 73%) as a clear oil; R_f 0.57 [petrol–EtOAc (4:1)]; FT-IR v_{max} (film)/cm⁻¹ 1685 (C=O), 1654 (C=C); ¹H NMR (CDCl₃, 400 MHz) δ = 7.27 (d, 2H, *J* = 9.0 Hz), 6.86 (d, 2H, *J* = 9.0 Hz), 5.47 (br d, 1H, *J* = 5.5 Hz), 4.93-4.81 (m, 2H), 4.06 (dd, 1H, *J* = 13.0, 4.5 Hz), 3.81 (s, 3H), 2.89–2.72 (m, 2H), 2.70–2.60 (m, 1H), 2.37–2.18 (m, 2H), 1.51 (s, 9H); ¹³C{1H} NMR (CDCl₃, 100 MHz) δ =158.3, 155.2, 142.6, 132.9, 128.4, 113.6, 111.3, 79.8, 55.2, 53.2, 39.8, 36.6, 33.9, 28.5; HRMS (ESI-TOF) *m*/*z*: [M+Na]⁺ Calcd for C₁₈H₂₅NO₃Na 326.1727; Found 326.1718; LRMS *m*/*z* (ES) 140 (100%), 248 (100%), 326 (90%, MNa⁺).

Resolution between the enantiomers of alkene **3e** was achieved using a Beckman system fitted with a Daicel Chiralpak-IA column (250 mm × 4.60 mm i.d.) as the stationary phase with a mixture of *n*-hexane:isopropanol (99:1 v/v) as the mobile phase at a flow rate of 1 mL·min⁻¹; ambient temperature, detection by UV absorbance at 210 nm. Injection volume was 10 μ L of the sample prepared in a 2 g·L⁻¹ solution of the eluent. Under these conditions, the components were eluted at 10.7 min and 13.1 min. tert-Butyl 2-(3-Trifluoromethylphenyl)-4-methylidenepiperidine-1-carboxylate 3f

Using general procedure C, MePPh₃Br (5.0 g, 14 mmol), KO^tBu (1.6 g, 14 mmol) and piperidone **2f** (1.2 g, 3.5 mmol) in THF (25 mL) gave the crude product. Purification by column chromatography on silica gel, eluting with petrol–EtOAc (9:1), gave alkene **3f** (0.91 g, 76%) as a clear oil; R_f 0.48 [petrol–EtOAc (4:1)]; FT-IR v_{max} (film)/cm⁻¹ 1695 (C=O); ¹H NMR (CDCl₃, 400 MHz) δ = 7.63–7.40 (m, 4H), 5.51 (br, 1H), 4.89 (br s, 2H), 4.10 (d, 1H, *J* = 13.5 Hz), 2.93–2.63 (m, 3H), 2.40–2.20 (m, 2H), 1.50 (s, 9H); ¹³C{1H} NMR (CDCl₃, 100 MHz) δ = 155.2, 142.0, 141.8, 130.5, 128.8, 126.9 (q, *J* = 267.0 Hz), 124.23–123.85 (m), 123.85–123.44 (m), 111.8, 80.3, 53.7, 40.2, 36.6, 33.6, 28.4; ¹⁹F NMR (CDCl₃, 377 MHz) δ = -62.67; HRMS (ESI-TOF) *m*/*z*: [M+Na]⁺ Calcd for C₁₈H₂₂F₃NO₂Na 364.1495; Found 364.1512; LRMS *m*/*z* (ES) 242 (10%), 286 (100%), 364 (15%, MNa⁺).

Resolution between the enantiomers of alkene **3f** was achieved using a Beckman system fitted with a Phenomenex Amylose-2 column (250 mm × 4.60 mm i.d.) as the stationary phase with a mixture of *n*-hexane:isopropanol (99:1 v/v) as the mobile phase at a flow rate of 1 mL·min⁻ ¹; ambient temperature, detection by UV absorbance at 210 nm. Injection volume was 10 μ L of the sample prepared in a 2 g·L⁻¹ solution of the eluent. Under these conditions, the components were eluted at 6.0 min and 6.5 min. tert-Butyl 2-(3-Methoxyphenyl)-4-methylidenepiperidine-1-carboxylate 3g

Using general procedure C, MePPh₃Br (4.6 g, 13 mmol), KO⁴Bu (1.5 g, 13 mmol) and piperidone **2g** (0.95 g, 3.1 mmol) in THF (22 mL) gave the crude product. Purification by column chromatography on silica gel, eluting with petrol–EtOAc (9:1), gave alkene **3g** (0.79 g, 84%) as a clear oil; R/ 0.50 [petrol–EtOAc (4:1)]; FT-IR v_{max} (film)/cm⁻¹ 1689 (C=O); ¹H NMR (CDCl₃, 400 MHz) δ = 7.32–7.20 (m, 1H), 6.97–6.88 (m, 2H), 6.82–6.76 (m, 1H), 5.48 (br, 1H), 4.94–4.82 (m, 2H), 4.09 (br d, 1H, *J* = 10.0 Hz), 3.80 (s, 3H), 2.94–2.75 (m, 2H), 2.66 (dd, 1H, *J* = 14.0, 6.0 Hz), 2.40–2.17 (m, 2H), 1.51 (s, 9H); ¹³C{1H} NMR (CDCl₃, 100 MHz) δ = 159.6, 155.2, 142.54, 142.47, 129.3, 119.6, 113.2, 111.9, 111.4, 79.9, 55.1, 53.8, 40.1, 36.6, 33.8, 28.5; HRMS (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₁₈H₂₅NO₃Na 326.1727; Found 326.1720; LRMS *m/z* (ES) 161 (35%), 204 (15%), 248 (100%), 326 (45%, MNa⁺).

Resolution between the enantiomers of alkene **3g** was achieved using a Beckman system fitted with a Phenomenex Cellulose-2 column (250 mm × 4.60 mm i.d.) as the stationary phase with a mixture of *n*-hexane:isopropanol (99:1 v/v) as the mobile phase at a flow rate of 1 mL·min⁻ ¹; ambient temperature, detection by UV absorbance at 210 nm. Injection volume was 10 μ L of the sample prepared in a 2 g·L⁻¹ solution of the eluent. Under these conditions, the components were eluted at 9.6 min and 18.6 min. tert-Butyl 2-(3,4-Dimethoxyphenyl)-4-methylidenepiperidine-1-carboxylate 3h

Using general procedure C, MePPh₃Br (1.7 g, 4.6 mmol), KO^tBu (0.52 g, 4.6 mmol) and piperidone **2h** (0.39 g, 1.2 mmol) in THF (8.4 mL) gave the crude product. Purification by column chromatography on silica gel, eluting with petrol–EtOAc (7:3), gave alkene **3h** (0.33 g, 85%) as a clear oil; R/ 0.29 [petrol–EtOAc (4:1)]; FT-IR v_{max} (film)/cm⁻¹ 1690 (C=O), 1650 (C=C); ¹H NMR (CDCl₃, 400 MHz) δ = 6.98–6.89 (m, 2H), 6.82 (d, 1H, *J* = 8.0 Hz), 5.48 (d, 1H, *J* = 5.0 Hz), 4.90 (br s, 2H), 4.06 (d, 1H, *J* = 10.0 Hz), 3.88 (s, 3H), 3.86 (s, 3H), 2.92–2.59 (m, 3H), 2.39–2.16 (m, 2H), 1.52 (s, 9H); ¹³C{1H} NMR (CDCl₃, 100 MHz) δ = 155.2, 148.8, 147.8, 143.0, 133.5, 119.6, 111.2, 110.8, 110.7, 79.8, 55.84, 55.78, 53.2, 39.9, 36.6, 33.9, 28.5; HRMS (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₁₉H₂₇NO₄Na 356.1832; Found 356.1841; LRMS *m/z* (ES) 96 (5%), 140 (35%), 191 (20%), 278 (25%), 356 (100%, MNa⁺).

Resolution between the enantiomers of alkene **3h** was achieved using a Beckman system fitted with a Phenomenex Cellulose-1 column (250 mm × 4.60 mm i.d.) as the stationary phase with a mixture of *n*-hexane:isopropanol (97:3 v/v) as the mobile phase at a flow rate of 1 mL·min⁻¹; ambient temperature, detection by UV absorbance at 210 nm. Injection volume was 10 μ L of the sample prepared in a 2 g·L⁻¹ solution of the eluent. Under these conditions, the components were eluted at 8.1 min and 9.3 min.

2.5 Preparation of racemic 2,2-disubstituted products

1-tert-Butyl 2-Methyl 4-Methylidene-2-phenylpiperidine-1,2-dicarboxylate 4a

Using general procedure D, *n*-BuLi (0.18 mL, 0.44 mmol, 2.4 M in hexanes) and alkene **3a** (100 mg, 0.366 mmol) in THF (1.5 mL) at -40 °C and MeOCOCl (0.1 mL, 1.28 mmol) gave the crude product. Purification by column chromatography on silica gel, eluting with pentane–EtOAc (9:1), gave carbamate **4a** (106 mg, 87%) as a clear oil; R_f 0.41 [petrol–EtOAc (4:1)]; FT-IR v_{max} (film)/cm⁻¹ 1744 (C=O), 1696 (C=O), 1654 (C=C); ¹H NMR (CDCl₃, 400 MHz) δ = 7.46 (d, 2H, *J* = 7.5 Hz), 7.34 (t, 2H, *J* = 7.5 Hz), 7.30–7.23 (m, 1H), 4.82–4.70 (m, 2H), 4.01–3.87 (m, 1H), 3.72 (s, 3H), 3.54 (br, 1H), 3.13–2.88 (m, 2H), 2.57–2.21 (m, 2H), 1.34 (br s, 9H); ¹³C{1H} NMR (CDCl₃, 100 MHz, two quaternary carbon signals and one CH₂ signal not observed) δ = 172.7, 140.0, 127.7, 127.3, 127.0, 112.1, 80.8, 52.2, 41.8, 31.0, 28.1; HRMS (ESI-TOF) *m*/*z*: [M+Na]⁺ Calcd for C₁₉H₂₅NO₄Na 354.1676; Found 354.1691; LRMS *m*/*z* (ES) 232 (100%), 354 (55%, MNa⁺).

Resolution between the enantiomers of carbamate **4a** was achieved using a Beckman system fitted with a Phenomenex Cellulose-2 column (250 mm × 4.60 mm i.d.) as the stationary phase with a mixture of *n*-hexane:isopropanol (99:1 v/v) as the mobile phase at a flow rate of 1 mL·min⁻¹; ambient temperature, detection by UV absorbance at 210 nm. Injection volume was 10 μ L of the sample prepared in a 2 g·L⁻¹ solution of the eluent. Under these conditions, the components were eluted at 10.9 min and 12.6 min. 1-tert-Butyl 2-Methyl 2-(4-Fluorophenyl)-4-methylidenepiperidine-1,2-dicarboxylate 4b

Using general procedure D, *n*-BuLi (0.18 mL, 0.44 mmol, 2.4 M in hexanes) and alkene **3b** (108 mg, 0.366 mmol) in THF (1.5 mL) at -40 °C and MeOCOCI (0.1 mL, 1.28 mmol) gave the crude product. Purification by column chromatography on silica gel, eluting with pentane–EtOAc (93:7) gave carbamate **4b** (116 mg, 90%) as a clear oil; R_f 0.23 [petrol–EtOAc (4:1)]; FT-IR v_{max} (film)/cm⁻¹ 1744 (C=O), 1696 (C=O); ¹H NMR (CDCl₃, 400 MHz) δ = 7.50–7.37 (m, 2H), 7.07–6.95 (m, 2H), 4.75 (br s, 2H), 3.97–3.86 (m, 1H), 3.73 (s, 3H), 3.54 (br, 1H), 3.04 (d, 1H, *J* = 14.5 Hz), 2.98–2.79 (m, 1H), 2.59–2.21 (m, 2H), 1.34 (br s, 9H); ¹³C{1H} NMR (CDCl₃, 100 MHz, three quaternary carbon signals & three CH₂ signals not observed) δ = 172.7, 161.8 (d, *J* = 246.0 Hz), 139.6, 129.0, 114.5 (d, *J* = 21.0 Hz), 112.3, 81.0, 52.3, 28.1; ¹⁹F NMR (CDCl₃, 377 MHz) δ = -116.13; HRMS (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₁₉H₂₄FNO₄Na 372.1582; Found 372.1596; LRMS *m/z* (ES) 187 (10%), 250 (100%), 372 (90%, MNa⁺).

Resolution between the enantiomers of carbamate **4b** was achieved using a Beckman system fitted with a Phenomenex Cellulose-2 column (250 mm × 4.60 mm i.d.) as the stationary phase with a mixture of *n*-hexane:isopropanol (99:1 v/v) as the mobile phase at a flow rate of 1 mL·min⁻¹; ambient temperature, detection by UV absorbance at 210 nm. Injection volume was 10 μ L of the sample prepared in a 2 g·L⁻¹ solution of the eluent. Under these conditions, the components were eluted at 11.4 min and 12.6 min.

Alternatively, resolution between the enantiomers of carbamate **4b** was achieved using a Agilent system fitted with a Chiral Art Cellulose-C column (250 mm \times 4.60 mm i.d.) as the

stationary phase with a mixture of *n*-hexane:isopropanol (99:1 v/v) as the mobile phase at a flow rate of 1 mL·min⁻¹; ambient temperature, detection by UV absorbance at 210 nm. Injection volume was 5 μ L of the sample prepared in a 2 g·L⁻¹ solution of the eluent. Under these conditions, the components were eluted at 7.7 min and 8.4 min.

1-tert-Butyl 2-Methyl 2-(4-Chlorophenyl)-4-methylidenepiperidine-1,2-dicarboxylate 4c

Using general procedure D, *n*-BuLi (0.20 mL, 0.44 mmol, 2.2 M in hexanes) and alkene **3c** (114 mg, 0.366 mmol) in THF (1.5 mL) at –40 °C and MeOCOCI (0.1 mL, 1.28 mmol) gave the crude product. Purification by column chromatography on silica gel, eluting with pentane–EtOAc (93:7), gave carbamate **4c** (106 mg, 78%) as a clear oil; R_f 0.32 [petrol–EtOAc (4:1)]; FT-IR v_{max} (film)/cm⁻¹ 1744 (C=O), 1698 (C=O); ¹H NMR (CDCl₃, 400 MHz) δ = 7.45–7.37 (m, 2H), 7.34–7.27 (m, 2H), 4.75 (br s, 2H), 3.95–3.84 (m, 1H), 3.73 (s, 3H), 3.54 (br, 1H), 3.04 (d, 1H, *J* = 14.5 Hz), 2.96–2.79 (m, 1H), 2.59–2.18 (m, 2H), 1.34 (br s, 9H); ¹³C{1H} NMR (CDCl₃, 100 MHz, two quaternary carbon signals & three CH₂ signals not observed) δ = 172.5, 139.3, 132.9, 128.8, 127.8, 112.4, 81.1, 67.6, 52.4, 28.1; HRMS (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₁₉H₂₄³⁵CINO₄Na 388.1287; Found 388.1300; LRMS *m/z* (ES) 388 (100%, MNa⁺ for ³⁵Cl), 389 (20%), 390 (35%, MNa⁺ for ³⁷Cl), 391 (5%).

Resolution between the enantiomers of carbamate **4c** was achieved using a Beckman system fitted with a Phenomenex Cellulose-2 column (250 mm × 4.60 mm i.d.) as the stationary phase with a mixture of *n*-hexane:isopropanol (99:1 v/v) as the mobile phase at a flow rate of 1 mL·min⁻¹; ambient temperature, detection by UV absorbance at 210 nm. Injection volume

was 10 μ L of the sample prepared in a 2 g·L⁻¹ solution of the eluent. Under these conditions, the components were eluted at 8.5 min and 10.0 min.

1-tert-Butyl 2-Methyl 2-(4-Methylphenyl)-4-methylidenepiperidine-1,2-dicarboxylate 4d

Using general procedure D, *n*-BuLi (0.18 mL, 0.44 mmol, 2.4 M in hexanes) and alkene **3d** (106 mg, 0.366 mmol) in THF (1.5 mL) at –40 °C and MeOCOCI (0.1 mL, 1.28 mmol) gave the crude product. Purification by column chromatography on silica gel, eluting with pentane–EtOAc (93:7), gave carbamate **4d** (117 mg, 92%) as a clear oil; R_f 0.47 [petrol–EtOAc (4:1)]; FT-IR v_{max} (film)/cm⁻¹ 1741 (C=O), 1693 (C=O), 1655 (C=C); ¹H NMR (CDCl₃, 400 MHz) δ = 7.32 (d, 2H, *J* = 8.0 Hz), 7.14 (d, 2H, *J* = 8.0 Hz), 4.84–4.67 (m, 2H), 3.99–3.88 (m, 1H), 3.71 (s, 3H), 3.44 (br, 1H), 3.07–2.91 (m, 2H), 2.52–2.18 (m, 5H), 1.37 (br s, 9H); ¹³C{1H} NMR (CDCl₃, 100 MHz, one quaternary carbon signal & one CH₂ signal not observed) δ = 172.8, 155.8, 140.2, 136.7, 128.5, 127.3, 112.0, 80.8, 67.7, 52.2, 42.0, 31.1, 28.1, 21.0; HRMS (ESI-TOF) *m*/*z*: [M+Na]⁺ Calcd for C₂₀H₂₇NO₄Na 368.1832; Found 368.1839; LRMS *m*/*z* (ES) 185 (10%), 246 (100%), 368 (90%, MNa⁺).

Resolution between the enantiomers of carbamate **4d** was achieved using a Beckman system fitted with a Phenomenex Cellulose-2 column (250 mm × 4.60 mm i.d.) as the stationary phase with a mixture of *n*-hexane:isopropanol (99:1 v/v) as the mobile phase at a flow rate of 1 mL·min⁻¹; ambient temperature, detection by UV absorbance at 210 nm. Injection volume was 10 μ L of the sample prepared in a 2 g·L⁻¹ solution of the eluent. Under these conditions, the components were eluted at 10.3 min and 12.2 min. 1-tert-Butyl 2-Methyl 2-(4-Methoxyphenyl)-4-methylidenepiperidine-1,2-dicarboxylate 4e

Using general procedure D, *n*-BuLi (0.18 mL, 0.44 mmol, 2.4 M in hexanes) and alkene **3e** (112 mg, 0.366 mmol) in THF (1.5 mL) at -40 °C and MeOCOCI (0.1 mL, 1.28 mmol) gave the crude product. Purification by column chromatography on silica gel, eluting with pentane–EtOAc (93:7), gave carbamate **4e** (80 mg, 60%) as a clear oil; R_f 0.29 [petrol–EtOAc (4:1)]; FT-IR ν_{max} (film)/cm⁻¹ 1744 (C=O), 1698 (C=O); ¹H NMR (CDCl₃, 400 MHz) δ = 7.36 (d, 2H, J = 9.0 Hz), 6.86 (d, 2H, J = 9.0 Hz), 4.85–4.68 (m, 2H), 3.98–3.87 (m, 1H), 3.82 (s, 3H), 3.71 (s, 3H), 3.42 (br, 1H), 3.10–2.86 (m, 2H), 2.51–2.18 (m, 2H), 1.37 (br s, 9H); ¹³C{1H} NMR (CDCl₃, 100 MHz, CDCl₃, three quaternary carbon signals & one CH₂ signal not observed) δ = 172.9, 158.5, 140.2, 128.7, 113.1, 112.1, 80.8, 55.2, 52.2, 41.9, 31.2, 28.1; HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd for C₂₀H₂₇NO₅Na 384.1781; Found 384.1799; LRMS m/z (ES) 384 (100%, MNa⁺).

Resolution between the enantiomers of carbamate **4e** was achieved using a Beckman system fitted with a Phenomenex Cellulose-2 column (250 mm × 4.60 mm i.d.) as the stationary phase with a mixture of *n*-hexane:isopropanol (99:1 v/v) as the mobile phase at a flow rate of 1 mL·min⁻¹; ambient temperature, detection by UV absorbance at 210 nm. Injection volume was 10 μ L of the sample prepared in a 2 g·L⁻¹ solution of the eluent. Under these conditions, the components were eluted at 18.2 min and 23.7 min. 1-*tert*-Butyl 2-Methyl 2-(3-Trifluoromethylphenyl)-4-methylidenepiperidine-1,2dicarboxylate **4f**

CO₂Me CO₂Me N Boc

Using general procedure D, *n*-BuLi (0.19 mL, 0.44 mmol, 2.3 M in hexanes) and alkene **3f** (126 mg, 0.366 mmol) in THF (1.5 mL) at –40 °C and MeOCOCl (0.1 mL, 1.28 mmol) gave the crude product. Purification by column chromatography on silica gel, eluting with pentane–EtOAc (93:7), gave carbamate **4f** (139 mg, 94%) as a clear oil; R_f 0.30 [petrol–EtOAc (4:1)]; FT-IR v_{max} (film)/cm⁻¹ 1747 (C=O), 1698 (C=O), 1656 (C=C); ¹H NMR (CDCl₃, 400 MHz) δ = 7.78–7.64 (m, 2H), 7.59–7.41 (m, 2H), 4.75 (br s, 2H), 4.00–3.85 (m, 1H), 3.82–3.40 (m, 4H), 3.08 (d, 1H, *J* = 14.5 Hz), 2.94–2.80 (m, 1H), 2.61–2.22 (m, 2H), 1.31 (br s, 9H); ¹³C{1H} NMR (CDCl₃, 100 MHz, four quaternary carbon signals, three CH₂ signals & one CH signal not observed) δ = 172.4, 139.0, 131.0–130.6 (m), 128.1, 124.22–123.61 (m), 112.5, 81.2, 52.5, 28.0; ¹⁹F NMR (CDCl₃, 377 MHz) δ = –62.50; HRMS (ESI-TOF) *m*/*z*: [M+Na]⁺ Calcd for C₂₀H₂₄F₃NO₄Na 422.1550; Found 422.1571; LRMS *m*/*z* (ES) 300 (100%), 422 (50%, MNa⁺).

Resolution between the enantiomers of carbamate **4f** was achieved using a Beckman system fitted with a Phenomenex Cellulose-2 column (250 mm × 4.60 mm i.d.) as the stationary phase with a mixture of *n*-hexane:isopropanol (99:1 v/v) as the mobile phase at a flow rate of 1 mL·min⁻¹; ambient temperature, detection by UV absorbance at 210 nm. Injection volume was 10 μ L of the sample prepared in a 2 g·L⁻¹ solution of the eluent. Under these conditions, the components were eluted at 6.9 min and 7.5 min. 1-tert-Butyl 2-Methyl 2-(3-Methoxyphenyl)-4-methylidenepiperidine-1,2-dicarboxylate 4g

Using general procedure D, *n*-BuLi (0.19 mL, 0.44 mmol, 2.3 M in hexanes) and alkene **3g** (112 mg, 0.366 mmol) in THF (1.5 mL) at -40 °C and MeOCOCl (0.1 mL, 1.28 mmol) gave the crude product. Purification by column chromatography on silica gel, eluting with pentane–EtOAc (93:7), gave carbamate **4g** (93 mg, 70%) as a clear oil; R_f 0.24 [petrol–EtOAc (4:1)]; FT-IR v_{max} (film)/cm⁻¹ 1747 (C=O), 1698 (C=O); ¹H NMR (CDCl₃, 400 MHz) δ = ¹H NMR (400 MHz, CDCl₃) δ 7.28–7.20 (m, 1H), 7.10–7.01 (m, 2H), 6.83–6.77 (m, 1H), 4.82–4.72 (m, 2H), 4.00–3.86 (m, 1H), 3.82 (s, 3H), 3.72 (s, 3H), 3.50 (br, 1H), 3.09–2.84 (m, 2H), 2.57–2.16 (m, 2H), 1.35 (br s, 9H); ¹³C{1H} NMR (CDCl₃, 100 MHz, three quaternary carbon signals & one CH₂ signal not observed) δ = 172.5, 159.2, 140.0, 128.6, 119.8, 113.6, 112.2, 112.1, 80.8, 55.2, 52.2, 41.9, 30.8, 28.1; HRMS (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₂₀H₂₇NO₅Na 384.1781; Found 384.1792; LRMS *m/z* (ES) 384 (100%, MNa⁺).

Resolution between the enantiomers of carbamate **4g** was achieved using a Beckman system fitted with a Phenomenex Cellulose-2 column (250 mm × 4.60 mm i.d.) as the stationary phase with a mixture of *n*-hexane:isopropanol (99:1 v/v) as the mobile phase at a flow rate of 1 mL·min⁻¹; ambient temperature, detection by UV absorbance at 210 nm. Injection volume was 10 μ L of the sample prepared in a 2 g·L⁻¹ solution of the eluent. Under these conditions, the components were eluted at 18.6 min and 22.5 min. 1-*tert*-Butyl 2-Methyl 2-(3,4-Dimethoxyphenyl)-4-methylidenepiperidine-1,2-dicarboxylate **4h**

Using general procedure D, *n*-BuLi (0.19 mL, 0.44 mmol, 2.3 M in hexanes) and alkene **3h** (123 mg, 0.366 mmol) in THF (1.5 mL) at -40 °C and MeOCOCl (0.1 mL, 1.28 mmol) gave the crude product. Purification by column chromatography on silica gel, eluting with pentane–EtOAc (3:1), gave carbamate **4h** (96 mg, 66%) as a clear oil; R/ 0.54 [petrol–EtOAc (1:1)]; FT-IR v_{max} (film)/cm⁻¹ 1735 (C=O), 1699 (C=O), 1656 (C=C); ¹H NMR (CDCl₃, 400 MHz) δ = 7.06 (d, 1H, *J* = 2.0 Hz), 6.99 (dd, 1H, *J* = 8.5, 2.0 Hz), 6.82 (d, 1H, *J* = 8.5 Hz), 4.78 (br s, 2H), 4.00–3.81 (m, 7H), 3.71 (s, 3H), 3.41 (br, 1H), 3.08–2.92 (m, 2H), 2.58–2.14 (m, 2H), 1.38 (br s, 9H); ¹³C{1H} NMR (CDCl₃, 100 MHz, one quaternary carbon signal & one CH₂ signal not observed) δ = 172.8, 155.8, 148.2, 148.0, 140.3, 120.0, 112.1, 111.2, 110.3, 80.8, 67.4, 55.9, 55.8, 52.2, 42.1, 31.2, 28.2; HRMS (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₂₁H₂₉NO₆Na 414.1887; Found 414.1902; LRMS *m*/*z* (ES) 208 (5%), 292 (50%), 414 (100%, MNa⁺).

Resolution between the enantiomers of carbamate **4h** was achieved using a Beckman system fitted with a Phenomenex Cellulose-1 column (250 mm × 4.60 mm i.d.) as the stationary phase with a mixture of *n*-hexane:isopropanol (97:3 v/v) as the mobile phase at a flow rate of 1 mL·min⁻¹; ambient temperature, detection by UV absorbance at 210 nm. Injection volume was 10 μ L of the sample prepared in a 2 g·L⁻¹ solution of the eluent. Under these conditions, the components were eluted at 14.1 min and 17.5 min.

tert-Butyl 2-Methyl-4-methylidene-2-phenylpiperidine-1-carboxylate 5a

Using general procedure D, *n*-BuLi (0.18 mL, 0.44 mmol, 2.4 M in hexanes) and alkene **3a** (100 mg, 0.366 mmol) in THF (1.5 mL) at -40 °C and MeI (0.08 mL, 1.28 mmol) gave the crude product. Purification by column chromatography on silica gel, eluting with pentane–EtOAc (9:1), gave carbamate **5a** (96 mg, 90%) as a clear oil; R_f 0.28 [petrol–EtOAc (9:1)]; FT-IR v_{max} (film)/cm⁻¹ 1683 (C=O), 1651 (C=C); ¹H NMR (CDCl₃, 400 MHz) δ = 7.34–7.27 (m, 4H), 7.24–7.18 (m, 1H), 4.86 (s, 1H), 4.80 (s, 1H), 4.07–3.93 (m, 1H), 3.81–3.69 (m, 1H), 2.70 (d, 1H, *J* = 14.5 Hz), 2.64–2.55 (m, 2H), 2.30 (d, 1H, *J* = 14.5 Hz), 1.76 (s, 3H), 1.10 (s, 9H); ¹³C{1H} NMR (100 MHz, CDCl₃) δ = 155.4, 149.4, 141.4, 127.9, 125.9, 124.4, 111.3, 79.6, 60.3, 49.7, 40.9, 30.4, 28.0, 25.0; HRMS (ESI-TOF) *m*/*z*: [M+Na]⁺ Calcd for C₁₈H₂₅NO₂Na 310.1778; Found 310.1789; LRMS *m*/*z* (ES) 145 (20%), 232 (100%), 310 (30%, MNa⁺).

tert-Butyl 2-(3-Methylbut-2-en-1-yl)-4-methylidene-2-phenylpiperidine-1-carboxylate 6a

Using general procedure D, *n*-BuLi (0.18 mL, 0.44 mmol, 2.4 M in hexanes) and alkene **3a** (100 mg, 0.366 mmol) in THF (1.5 mL) at –40 °C and prenyl bromide (0.15 mL, 1.28 mmol) gave the crude product. Purification by column chromatography on silica gel, eluting with pentane–EtOAc (19:1) gave carbamate **6a** (112 mg, 89%) as a clear oil; $R_f 0.52$ [petrol–EtOAc

(4:1)]; FT-IR v_{max} (film)/cm⁻¹ 1687 (C=O), 1654 (C=C); ¹H NMR (CDCl₃, 400 MHz) δ = 7.37– 7.14 (m, 5H), 5.33–5.23 (m, 1H), 4.72 (s, 1H), 4.54 (s, 1H), 4.27–4.13 (m, 1H), 3.43–3.31 (m, 1H), 3.14 (dd, 1H, *J* = 14.0, 6.0 Hz), 2.96 (d, 1H, *J* = 14.5 Hz), 2.83 (dd, 1H, *J* = 14.0, 9.0 Hz), 2.71–2.45 (m, 2H), 2.12 (d, 1H, *J* = 14.5 Hz), 1.79 (s, 3H), 1.72 (s, 3H), 1.14 (s, 9H); ¹³C{1H} NMR (CDCl₃, 100 MHz) δ = 155.4, 148.1, 141.0, 134.8, 127.5, 125.7, 125.0, 119.6, 111.6, 79.6, 63.6, 45.6, 41.0, 37.4, 30.1, 28.1, 26.2, 18.3; HRMS (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₂₂H₃₁NO₂Na 364.2247; Found 364.2263; LRMS *m/z* (ES) 286 (100%), 364 (35%, MNa⁺).

tert-Butyl 2-(3-Bromopropyl)-4-methylidene-2-phenylpiperidine-1-carboxylate 7a

Using general procedure D, *n*-BuLi (0.18 mL, 0.44 mmol, 2.4 M in hexanes) and alkene **3a** (100 mg, 0.366 mmol) in THF (1.5 mL) at -40 °C and 1,3-dibromopropane (0.13 mL, 1.28 mmol) gave the crude product. Purification by column chromatography on silica gel, eluting with pentane–EtOAc (93:7), gave carbamate **7a** (102 mg, 70%) as a clear oil; R_f 0.61 [petrol–EtOAc (4:1)]; FT-IR v_{max} (film)/cm⁻¹ 1681 (C=O); ¹H NMR (CDCl₃, 400 MHz) δ = 7.37–7.13 (m, 5H), 4.75 (s, 1H), 4.63 (s, 1H), 4.20–4.06 (m, 1H), 3.58–3.44 (m, 3H), 2.87 (d, 1H, *J* = 14.5 Hz), 2.74–2.45 (m, 3H), 2.31 (d, 1H, *J* = 14.5 Hz), 2.20 (td, 1H, *J* = 12.5, 4.0 Hz), 2.16–1.88 (m, 2H), 1.17 (s, 9H); ¹³C{1H} NMR (CDCl₃, 100 MHz) δ = 155.4, 148.1, 140.6, 127.7, 126.0, 124.8, 112.0, 79.9, 62.8, 46.6, 41.1, 39.1, 34.3, 30.2, 28.1, 27.8; HRMS (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₂₀H₂₈⁷⁹BrNO₂Na 416.1196; Found 416.1204; LRMS *m/z* (ES) 416 (100%, MNa⁺ for ⁷⁹Br), 417 (20%), 418 (100%, MNa⁺ for ⁸¹Br), 419 (20%).

tert-Butyl 2-(Tributylstannyl)-4-methylidene-2-phenylpiperidine-1-carboxylate 8a

Using general procedure D, *n*-BuLi (0.18 mL, 0.44 mmol, 2.4 M in hexanes) and alkene **3a** (100 mg, 0.366 mmol) in THF (1.5 mL) at -40 °C and Bu₃SnCl (0.20 mL, 0.73 mmol) gave the crude product. Purification by column chromatography on a mixture of silica gel and K₂CO₃ (10% w/w), eluting with pentane–EtOAc (99:1), gave carbamate **8a** (181 mg, 87%) as a clear oil; R_f 0.59 [petrol–EtOAc (19:1)]; FT-IR v_{max} (film)/cm⁻¹ 1667 (C=O); ¹H NMR (CDCl₃, 400 MHz) δ = 7.32–7.21 (m, 2H), 7.08–6.92 (m, 3H), 4.84–4.72 (m, 2H), 4.07–3.90 (m, 1H), 3.23–3.09 (m, 1H), 2.89–2.63 (m, 2H), 2.25 (dt, 1H, *J* = 13.0, 6.5 Hz), 2.04 (d, 1H, *J* = 13.0 Hz), 1.53 (s, 9H), 1.41–1.16 (m, 12H), 0.85 (t, 9H, *J* = 7.5 Hz), 0.80–0.58 (m, 6H); ¹³C{1H} NMR (CDCl₃, 100 MHz) δ = 157.3, 144.8, 143.0, 128.1, 125.0, 123.7, 110.6, 80.1, 58.8, 42.1, 40.6, 34.3, 29.0, 28.4, 27.7, 13.7, 13.2; HRMS (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₂₉H₄₉NO₂SnNa 586.2677; Found 586.2682; LRMS *m/z* (ES) 360 (100%), 381 (30%), 586 (30%, MNa⁺).

tert-Butyl 2-(Trimethylsilyl)-4-methylidene-2-phenylpiperidine-1-carboxylate 9a

Using general procedure D, *n*-BuLi (0.18 mL, 0.44 mmol, 2.4 M in hexanes) and alkene **3a** (100 mg, 0.366 mmol) in THF (1.5 mL) at -40 °C and Me₃SiCl (0.16 mL, 1.28 mmol) gave

the crude product. Purification by column chromatography on silica gel, eluting with pentane– EtOAc (19:1), gave carbamate **9a** (89 mg, 70%) as a clear oil; R_f 0.69 [petrol–EtOAc (4:1)]; FT-IR ν_{max} (film)/cm⁻¹ 1687 (C=O), 1652 (C=C); ¹H NMR (CDCl₃, 400 MHz) δ = 7.33–7.25 (m, 2H), 7.17–7.04 (m, 3H), 4.87–4.75 (m, 2H), 4.01–3.87 (m, 1H), 3.02 (d, 1H, *J* = 14.0 Hz), 2.73–2.54 (m, 2H), 2.29–2.16 (m, 1H), 2.03 (d, 1H, *J* = 14.0 Hz), 1.54 (s, 9H), -0.02 (s, 9H); ¹³C{1H} NMR (CDCl₃, 100 MHz) δ = 156.1, 142.9, 142.0, 127.7, 127.5, 125.0, 111.3, 79.7, 57.8, 42.5, 38.5, 34.1, 28.4, 0.9; HRMS (ESI-TOF) *m*/*z*: [M+H]⁺ Calcd for C₂₀H₃₂NO₂Si 346.2197; Found 346.2212; LRMS *m*/*z* (ES) 274 (80%), 346 (100%, MH⁺).
2.6 Kinetic resolution of racemic substrates 3a-h

Optimization of the kinetic resolution was carried out with substrate **3a** and (+)-sparteine:

n-BuLi (2.1 to 2.4 M in hexanes) was added to the alkene **3a** (1 eq) and (+)-sparteine (freshly distilled) in dry PhMe (0.25 M) at -78 °C (Table S1). After time t (h), MeOCOCl (2 eq) was added and the mixture was warmed to rt over 16 h. MeOH (1 mL) was added and the solvent was evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel, eluting with petrol–EtOAc (93:7), to give recovered alkene (*S*)-**3a** and carbamate (*R*)-**4a**. The enantiomeric ratio of both compounds was determined by CSP-HPLC as described above.

Table S1	Optimization	of the kinetic	resolution
----------	--------------	----------------	------------

Entry	(+)-sp eq	<i>n</i> -BuLi eq	t h	(S)- 3a % Yield	(S)- 3a er	(<i>R</i>)- 4a % Yield	(<i>R</i>)- 4a er	S
1	0.7	0.7	2 h	61%	88:12	35%	91:9	-
2	0.85	0.85	2 h	43%	94:6	43%	82:18	14
3	1	1	2 h	43%	90:10	24%	80:20	10
4	0.9	0.8	2 h	42%	96:4	54%	70:30	16
5	0.9	0.8	1 h	45%	92:8	35%	90:10	14
6 ^a	0.9	0.8	1 h	41%	97:3	58%	73:27	16

^aEntries 1–5 on 100 mg **3a**; entry 6 on 300 mg **3a** as detailed on page S-38

Resolution of alkene 3a with (+)-sparteine

tert-Butyl (2*S*)-4-Methylidene-2-phenylpiperidine-1-carboxylate (*S*)-**3a** and 1-*tert*-Butyl 2-Methyl (2*R*)-4-Methylidene-2-phenylpiperidine-1,2-dicarboxylate (R)-**4a**

Reaction with 300 mg of alkene 3a:

n-BuLi (0.40 mL, 0.88 mmol, 2.2 M in hexanes) was added to a mixture of (+)-sparteine (231 mg, 0.988 mmol) and the racemic alkene **3a** (300 mg, 1.10 mmol) in dry PhMe (4.4 mL) at –78 °C. After 1 h, MeOCOCl (0.17 mL, 2.2 mmol) was added and the mixture was allowed to warm to rt over 16 h then MeOH (3 mL) was added. The solvent was evaporated, and the residue was purified by column chromatography on silica gel, eluting with petrol–EtOAc (93:7), to give recovered alkene (*S*)-**3a** (122 mg, 41%) as a clear oil; data as above; the enantiomeric ratio was determined to be 97:3 by CSP-HPLC as described above (major component eluted at 12.6 min); $[\alpha]_D^{23}$ –70 (*c* 1.0, CHCl₃). In addition, the carbamate (*R*)-**4a** (210 mg, 58%) was isolated as a clear oil, data as above; the enantiomeric ratio was determined to be 73:27 by CSP-HPLC (major component eluted at 10.6 min); $[\alpha]_D^{23}$ +9 (*c* 1.0, CHCl₃).

Reaction with 2 g of alkene **3a**:

n-BuLi (2.4 mL, 5.8 mmol, 2.4 M in hexanes) was added to a mixture of (+)-sparteine (1.6 g, 6.6 mmol) and the racemic alkene **3a** (2.0 g, 7.3 mmol) in dry PhMe (29 mL) at -78 °C. After 1 h, MeOCOCl (1.1 mL, 15 mmol) was added and the mixture was allowed to warm to rt over 16 h then MeOH (15 mL) was added. The solvent was evaporated, and the residue was diluted with Et₂O (150 mL) and water (60 mL). The aqueous layer was adjusted to pH 1 using aq HCl

(2 M) and the organic layer was separated, dried over anhydrous MgSO₄, filtered and concentrated to give the crude product. Purification by column chromatography on silica gel, eluting with petrol–EtOAc (23:2), to give recovered alkene (*S*)-**3a** (0.6 g, 30%) as a clear oil; data as above; the enantiomeric ratio was determined to be 99:1 by CSP-HPLC as described above (major component eluted at 12.6 min); $[\alpha]_D^{23}$ –84 (*c* 1.0, CHCl₃). In addition, the carbamate (*R*)-**4a** (1.6 g, 66%) was isolated as a clear oil, data as above; the enantiomeric ratio was determined to be 72:28 by CSP-HPLC (major component eluted at 10.9 min); $[\alpha]_D^{23}$ +7 (*c* 1.0, CHCl₃).

NB - The aqueous layer from the extraction was adjusted to pH 14 using NaOH pellets and Et₂O (150 mL) was added. The organic layer was separated, dried over anhydrous MgSO₄, filtered and the solvent was evaporated to give crude recovered (+)-sparteine (1.5 g) as a yellow oil.

Resolution of alkene 3a with (-)-sparteine

tert-Butyl (2*R*)-4-Methylidene-2-phenylpiperidine-1-carboxylate (*R*)-**3a** and 1-*tert*-Butyl 2-Methyl (2*S*)-4-Methylidene-2-phenylpiperidine-1,2-dicarboxylate (*S*)-**4a**

n-BuLi (0.13 mL, 0.29 mmol, 2.3 M in hexanes) was added to a mixture of (–)-sparteine (77 mg, 0.33 mmol) and the racemic alkene **3a** (100 mg, 0.366 mmol) in dry PhMe (1.5 mL) at -78 °C. After 1 h, MeOCOCI (0.06 mL, 0.7 mmol) was added and the mixture was allowed to warm to rt over 16 h then MeOH (1 mL) was added. The solvent was evaporated, and the

residue was purified by column chromatography on silica gel, eluting with petrol–EtOAc (93:7), to give recovered alkene (*R*)-**3a** (39 mg, 39%) as a clear oil; data as above; the enantiomeric ratio was determined to be 99:1 by CSP-HPLC as described above (major component eluted at 5.6 min); $[\alpha]_D^{25}$ +81 (*c* 1.2, CHCl₃). In addition, the carbamate (*S*)-**4a** (70 mg, 57%) was isolated as a clear oil, data as above; the enantiomeric ratio was determined to be 81:19 by CSP-HPLC (major component eluted at 12.2 min); $[\alpha]_D^{25}$ –11 (*c* 1.1, CHCl₃).

Resolution of alkene 3b with (+)-sparteine

tert-Butyl (2*S*)-2-(4-Fluorophenyl)-4-methylidenepiperidine-1-carboxylate (*S*)-**3b** and 1-*tert*-Butyl 2-Methyl (2*R*)-2-(4-Fluorophenyl)-4-methylidenepiperidine-1,2-dicarboxylate (*R*)-**4b**

Reaction with 108 mg of alkene **3b**:

n-BuLi (0.13 mL, 0.29 mmol, 2.3 M in hexanes) was added to a mixture of (+)-sparteine (77 mg, 0.33 mmol) and the racemic alkene **3b** (108 mg, 0.366 mmol) in dry PhMe (1.5 mL) at –78 °C. After 1 h, MeOCOCI (0.06 mL, 0.7 mmol) was added and the mixture was allowed to warm to rt over 16 h then MeOH (1 mL) was added. The solvent was evaporated, and the residue was purified by column chromatography on silica gel, eluting with petrol–EtOAc (47:3), to give recovered alkene (*S*)-**3b** (51 mg, 47%) as a clear oil; data as above; the enantiomeric ratio was determined to be 94:6 by CSP-HPLC as described above (major component eluted at 11.2 min); $[\alpha]_D^{23}$ –60 (*c* 1.0, CHCl₃). In addition, the carbamate (*R*)-**4b**

(45 mg, 35%) was isolated as a clear oil, data as above; the enantiomeric ratio was determined to be 88:12 by CSP-HPLC (major component eluted at 11.4 min); $[\alpha]_D^{23}$ +8 (*c* 1.0, CHCl₃).

Reaction with 4 g of alkene **3b**:

n-BuLi (4.8 mL, 11 mmol, 2.3 M in hexanes) was added to a mixture of (+)-sparteine (2.9 g, 12 mmol) and the racemic alkene **3b** (4.0 g, 14 mmol) in dry PhMe (62 mL) at -78 °C. After 1 h, MeOCOCI (2.7 mL, 34 mmol) was added and the mixture was allowed to warm to rt over 16 h then MeOH (20 mL) was added. The solvent was evaporated, and the residue was diluted with Et₂O (150 mL) and water (75 mL). The aqueous layer was adjusted to pH 1 using aq HCl (2 M) and the organic layer was separated, dried over anhydrous MgSO₄, filtered and concentrated to give the crude product. Purification by column chromatography on silica gel, eluting with *n*-hexane–EtOAc (93:7), to give recovered alkene (*S*)-**3b** (1.4 g, 35%) as a clear oil; data as above; the enantiomeric ratio was determined to be 94:6 by CSP-HPLC as described above (major component eluted at 6.1 min on Agilent system fitted with a Chiralcel OX-H column). In addition, the carbamate (*R*)-**4b** (2.7 g, 56%) was isolated as a clear oil, data as above; the enantiomeric ratio was determined to be 75:25 by CSP-HPLC (major component eluted at 8.6 min on Agilent system fitted with a Chiral Art Cellulose-C column.

NB - The aqueous layer from the extraction was adjusted to pH 14 using NaOH pellets and Et₂O (150 mL) was added. The organic layer was separated, dried over anhydrous MgSO₄, filtered and the solvent was evaporated to give crude recovered (+)-sparteine (2.9 g) as a yellow oil.

Resolution of alkene 3c with (+)-sparteine

tert-Butyl (2*S*)-2-(4-Chlorophenyl)-4-methylidenepiperidine-1-carboxylate (*S*)-3c and 1-*tert*-Butyl 2-Methyl (2*R*)-2-(4-Chlorophenyl)-4-methylidenepiperidine-1,2-dicarboxylate (*R*)-4c

n-BuLi (0.13 mL, 0.29 mmol, 2.3 M in hexanes) was added to a mixture of (+)-sparteine (77 mg, 0.33 mmol) and the racemic alkene **3c** (114 mg, 0.366 mmol) in dry PhMe (1.5 mL) at –78 °C. After 1 h, MeOCOCI (0.06 mL, 0.7 mmol) was added and the mixture was allowed to warm to rt over 16 h then MeOH (1 mL) was added. The solvent was evaporated, and the residue was purified by column chromatography on silica gel, eluting with petrol–EtOAc (47:3), to give recovered alkene (*S*)-**3c** (40 mg, 35%) as a clear oil; data as above; the enantiomeric ratio was determined to be 99:1 by CSP-HPLC as described above (major component eluted at 6.6 min); $[\alpha]_D^{25}$ –78 (*c* 1.2, CHCl₃). In addition, the carbamate (*R*)-**4c** (77 mg, 57%) was isolated as a clear oil, data as above; the enantiomeric ratio was determined to be 76:24 by CSP-HPLC (major component eluted at 8.6 min); $[\alpha]_D^{27}$ +4 (*c* 1.0, CHCl₃).

Resolution of alkene 3d with (+)-sparteine

tert-Butyl (2*S*)-2-(4-Methylphenyl)-4-methylidenepiperidine-1-carboxylate (*S*)-**3d** and 1-*tert*-Butyl 2-Methyl (2*R*)-2-(4-Methylphenyl)-4-methylidenepiperidine-1,2-dicarboxylate (*R*)-**4d**

n-BuLi (0.13 mL, 0.29 mmol, 2.3 M in hexanes) was added to a mixture of (+)-sparteine (77 mg, 0.33 mmol) and the racemic alkene **3d** (106 mg, 0.366 mmol) in dry PhMe (1.5 mL) at –78 °C. After 1 h, MeOCOCl (0.06 mL, 0.7 mmol) was added and the mixture was allowed to warm to rt over 16 h then MeOH (1 mL) was added. The solvent was evaporated, and the residue was purified by column chromatography on silica gel, eluting with petrol–EtOAc (47:3), to give recovered alkene (*S*)-**3d** (40 mg, 38%) as a clear oil; data as above; the enantiomeric ratio was determined to be 95:5 by CSP-HPLC as described above (major component eluted at 9.3 min); $[\alpha]_D^{23}$ –76 (*c* 1.0, CHCl₃). In addition, the carbamate (*R*)-**4d** (71 mg, 56%) was isolated as a clear oil, data as above; the enantiomeric ratio was determined to be 82:18 by CSP-HPLC (major component eluted at 10.2 min); $[\alpha]_D^{27}$ +12 (*c* 1.0, CHCl₃).

Resolution of alkene 3e with (+)-sparteine

tert-Butyl (2*S*)-2-(4-Methoxyphenyl)-4-methylidenepiperidine-1-carboxylate (*S*)-**3e** and 1*tert*-Butyl 2-Methyl (2*R*)-2-(4-Methoxyphenyl)-4-methylidenepiperidine-1,2-dicarboxylate (*R*)-**4e**

n-BuLi (0.17 mL, 0.37 mmol, 2.2 M in hexanes) was added to a mixture of (+)-sparteine (95 mg, 0.41 mmol) and the racemic alkene **3e** (112 mg, 0.366 mmol) in dry PhMe (1.5 mL) at –78 °C. After 2 h, MeOCOCl (0.06 mL, 0.7 mmol) was added and the mixture was allowed to warm to rt over 16 h then MeOH (1 mL) was added. The solvent was evaporated, and the residue was purified by column chromatography on silica gel, eluting with petrol–EtOAc (22:3), to give recovered alkene (*S*)-**3e** (35 mg, 31%) as a clear oil; data as above; the enantiomeric ratio was determined to be 96:4 by CSP-HPLC as described above (major component eluted at 12.6 min); $[\alpha]_D^{26}$ –71 (*c* 1.1, CHCl₃). In addition, the carbamate (*R*)-**4e** (88 mg, 66%) was isolated as a clear oil, data as above; the enantiomeric ratio was determined to be 70:30 by CSP-HPLC (major component eluted at 18.4 min); $[\alpha]_D^{26}$ +7 (*c* 1.1, CHCl₃).

Resolution of alkene **3f** with (+)-sparteine

tert-Butyl (2*S*)-4-Methylidene-2-[3-(trifluoromethyl)phenyl]piperidine-1-carboxylate (*S*)-**3f** and 1-*tert*-Butyl 2-Methyl (2*R*)-4-Methylidene-2-[3-(trifluoromethyl)phenyl]piperidine-1,2-dicarboxylate (*R*)-**4f**

n-BuLi (0.13 mL, 0.29 mmol, 2.3 M in hexanes) was added to a mixture of (+)-sparteine (77 mg, 0.33 mmol) and the racemic alkene **3f** (126 mg, 0.366 mmol) in dry PhMe (1.5 mL) at -78 °C. After 1 h, MeOCOCI (0.06 mL, 0.7 mmol) was added and the mixture was allowed to warm to rt over 16 h then MeOH (1 mL) was added. The solvent was evaporated, and the residue was purified by column chromatography on silica gel, eluting with petrol–EtOAc (9:1), to give recovered alkene (*S*)-**3f** (45 mg, 36%) as a clear oil; data as above; the enantiomeric ratio was determined to be 97:3 by CSP-HPLC as described above (major component eluted at 5.8 min); $[\alpha]_D^{23}$ –65 (*c* 1.1, CHCl₃). In addition, the carbamate (*R*)-**4f** (87 mg, 59%) was isolated as a clear oil, data as above; the enantiomeric ratio was determined to be 76:24 by CSP-HPLC (major component eluted at 7.0 min); $[\alpha]_D^{26}$ +5 (*c* 1.0, CHCl₃).

Resolution of alkene **3g** with (+)-sparteine

tert-Butyl (2*S*)-2-(3-Methoxyphenyl)-4-methylidenepiperidine-1-carboxylate (*S*)-**3** \mathbf{g} and 1*tert*-Butyl 2-Methyl (2*R*)-2-(3-Methoxyphenyl)-4-methylidenepiperidine-1,2-dicarboxylate (*R*)-**4** \mathbf{g}

n-BuLi (0.16 mL, 0.37 mmol, 2.3 M in hexanes) was added to a mixture of (+)-sparteine (95 mg, 0.41 mmol) and the racemic alkene **3g** (112 mg, 0.366 mmol) in dry PhMe (1.5 mL) at –78 °C. After 1 h, MeOCOCI (0.06 mL, 0.7 mmol) was added and the mixture was allowed to warm to rt over 16 h then MeOH (1 mL) was added. The solvent was evaporated, and the residue was purified by column chromatography on silica gel, eluting with petrol–EtOAc (9:1), to give recovered alkene (*S*)-**3g** (42 mg, 38%) as a clear oil; data as above; the enantiomeric ratio was determined to be 97:3 by CSP-HPLC as described above (major component eluted at 19.4 min); $[\alpha]_D^{23}$ –72 (*c* 1.0, CHCl₃). In addition, the carbamate (*R*)-**4g** (70 mg, 52%) was isolated as a clear oil, data as above; the enantiomeric ratio was determined to be 82:18 by CSP-HPLC (major component eluted at 18.7 min); $[\alpha]_D^{26}$ +16 (*c* 1.0, CHCl₃).

Resolution of alkene **3h** with (+)-sparteine

tert-Butyl (2*S*)-2-(3,4-Dimethoxyphenyl)-4-methylidenepiperidine-1-carboxylate (*S*)-**3h** and 1-*tert*-Butyl 2-Methyl (2*R*)-2-(3,4-dimethoxyphenyl)-4-methylidenepiperidine-1,2-dicarboxylate (R)-**4h**

n-BuLi (0.16 mL, 0.37 mmol, 2.3 M in hexanes) was added to a mixture of (+)-sparteine (95 mg, 0.41 mmol) and the racemic alkene **3h** (123 mg, 0.366 mmol) in dry PhMe (1.5 mL) at –78 °C. After 2 h, MeOCOCl (0.06 mL, 0.7 mmol) was added and the mixture was allowed to warm to rt over 16 h then MeOH (1 mL) was added. The solvent was evaporated, and the residue was purified by column chromatography on silica gel, eluting with petrol–EtOAc (22:3), to give recovered alkene (*S*)-**3h** (35 mg, 28%) as a clear oil; data as above; the enantiomeric ratio was determined to be 85:15 by CSP-HPLC as described above (major component eluted at 8.4 min); $[\alpha]_D^{25}$ –54 (*c* 1.2, CHCl₃). In addition, the carbamate (*R*)-**4h** (97 mg, 66%) was isolated as a clear oil, data as above; the enantiomeric ratio was determined to be 66:33 by CSP-HPLC (major component eluted at 10.5 min); $[\alpha]_D^{25}$ +18 (*c* 1.0, CHCl₃).

2.7 Further functionalization of 3a and (S)-3a and (S)-3b

1-tert-Butyl 2-Methyl (2S)-4-Methylidene-2-phenylpiperidine-1,2-dicarboxylate (S)-4a

Using general procedure D, *n*-BuLi (0.09 mL, 0.22 mmol, 2.4 M in hexanes) and alkene (*S*)-**3a** (50 mg, 0.18 mmol, er 99:1) in THF (0.75 mL) at -78 °C and MeOCOCI (0.05 mL, 0.6 mmol) gave the crude product. Purification by column chromatography on silica gel, eluting with petrol–EtOAc (9:1), gave carbamate (*S*)-**4a** (47 mg, 77%) as a clear oil; data as above; the enantiomeric ratio was determined to be 99:1 by CSP-HPLC (major component eluted at 12.5 min); $[\alpha]_{\rm D}^{23}$ –18 (*c* 1.0, CHCl₃).

(2S)-4-Methylidene-2-phenylpiperidine hydrochloride (S)-10

HCl (1.3 mL, 5.1 mmol, 4 M in dioxane) was added to alkene (*S*)-**3a** (139 mg, 0.508 mmol, er 99:1) in CH₂Cl₂ (5 mL) at 0 °C then the mixture was warmed to rt. After 16 h, the solvent was evaporated and the oily residue and was suspended in Et₂O. The solvent was evaporated to give hydrochloride salt (*S*)-**10** (98 mg, 92%) as an amorphous off-white solid; mp 174–176 °C [Et₂O] (no lit. mp reported); R_f 0.01 [petrol–EtOAc (1:1)]; FT-IR v_{max} (film)/cm⁻¹ 1654 (C=C): ¹H NMR (DMSO-d⁶, 400 MHz) δ = 10.14 (br s, 1H), 9.50 (br s, 1H), 7.77–7.59 (m, 2H), 7.50–

7.36 (m, 3H), 5.02–4.88 (m, 2H), 4.30–4.14 (m, 1H), 3.44–3.28 (m, 1H), 3.07–2.91 (m, 1H), 2.83–2.67 (m, 2H), 2.66–2.37 (m, 2H); ¹³C{1H} NMR (DMSO-d⁶, 100 MHz) δ = 141.5, 137.6, 129.4, 129.2, 128.1, 112.3, 60.6, 45.4, 38.9, 30.0; HRMS (ESI-TOF) *m/z*: [M+H]⁺ Calcd for C₁₂H₁₆N 174.1284; Found 174.1284; LRMS *m/z* (ES) 174 (100%, MH⁺); $[\alpha]_D^{23}$ +68 (*c* 1.0, MeOH).

(2S)-4-Methylidene-2-(4-fluorophenyl)piperidine hydrochloride (S)-11

HCl (12 mL, 47 mmol, 4 M in dioxane) was added to alkene (*S*)-**3b** (1.3 mg, 4.5 mmol, er 94:6) in CH₂Cl₂ (45 mL) at 0 °C then the mixture was warmed to rt. After 16 h, the solvent was evaporated and the oily residue and was suspended in Et₂O. The solvent was evaporated to give the crude product. The crude product was recrystallized from EtOH–Et₂O to give hydrochloride salt (*S*)-**11** (0.67 g, 67%) as an amorphous white solid; mp 206–208 °C [EtOH–Et₂O]; R_f 0.01 [petrol–EtOAc (1:1)]; FT-IR v_{max} (film)/cm⁻¹ 1655 (C=C): ¹H NMR (DMSO-d⁶, 400 MHz) δ = 10.15 (br s, 1H), 9.49 (br s, 1H), 7.81–7.69 (m, 2H), 7.36–7.20 (m, 2H), 5.00–4.88 (m, 2H), 4.34–4.14 (m, 1H), 3.46–3.29 (m, 1H), 3.08–2.84 (m, 1H), 2.81–2.65 (m, 2H), 2.61–2.39 (m, 2H); ¹³C{1H} NMR (DMSO-d⁶, 100 MHz) δ = 162.7 (d, *J* = 245.5 Hz), 141.4, 133.9 (d, *J* = 3.0 Hz), 130.6 (d, *J* = 8.5 Hz), 116.0 (d, *J* = 21.5 Hz), 112.3, 59.8, 45.3, 38.7, 29.9; ¹⁹F NMR (377 MHz, DMSO-d⁶) δ = -112.86; HRMS (ESI-TOF) *m/z*: [M+H]⁺ Calcd for C₁₂H₁₄FN 192.1183; Found 192.1174; LRMS *m/z* (ES) 192 (100%, MH⁺). tert-Butyl (2S)-2-(4-fluorophenyl)-4-methylidenepiperidine-1-carboxylate (S)-3b

To a solution of hydrochloride salt (*S*)-**11** (72 mg, 0.32 mmol) in CH₂Cl₂ (2 mL) at 0 °C was added Et₃N (0.13 mL, 0.95 mmol) followed by Boc₂O (0.10 g, 0.47 mmol). After 30 min, the mixture was warmed to rt and was stirred for 16 h. The solvent was evaporated to give the crude product. Purification by column chromatography on silica gel, eluting with *n*-hexane–EtOAc (9:1), gave carbamate (*S*)-**3b** (82 mg, 89%) as an oil; data as above; the enantiomeric ratio was determined to be 99:1 by CSP-HPLC (major component eluted at 6.9 min* on an Agilent system fitted with a Chiralcel OX-H column); $[\alpha]_D^{25}$ –65 (0.6, CHCl₃).

*HPLC retention times for enantiomers were different when compared to original racemic compound (see above). A new HPLC for the racemic compound was run at the same time which gave the retention times 6.1 min and 6.9 min.

(±)-cis-tert-Butyl 4-(Hydroxymethyl)-2-phenylpiperidine-1-carboxylate 12

BH₃•THF complex solution (2.2 mL, 2.2 mmol, 1 M in THF) was added to alkene **3a** (100 mg, 0.366 mmol) at 0 °C. The mixture was warmed (stirrer hotplate and drysyn block) to 35 °C and stirred for 2 h. After cooling to 0 °C, aq NaOH (0.74 mL, 1.5 mmol, 2 M) was added followed

by H₂O₂ (0.41 mL, 3.5 mmol, 30% w/w). The mixture was warmed to 35 °C and stirred for 1 h. After cooling to rt, the mixture was diluted with water (60 mL) and EtOAc (60 mL). The aqueous layer was adjusted to pH 7 using aq HCl (2 M) and the organic layer was separated, dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure to give the crude product. Purification by column chromatography on silica gel, eluting with CH₂Cl₂– MeOH (47:3), gave alcohol **12** (70 mg, 65%) as a clear oil; R_f 0.29 [CH₂Cl₂–MeOH (47:3)]; FT-IR v_{max} (film)/cm⁻¹ 3400 (O-H), 1691 (C=O); ¹H NMR (CDCl₃, 400 MHz) δ = 7.39–7.30 (m, 2H), 7.26–7.20 (m, 3H), 4.98–4.85 (m, 1H), 4.13–4.02 (m, 1H), 3.57–3.35 (m, 1H), 3.33– 3.23 (m, 1H), 2.18–2.10 (m, 1H), 2.05–1.91 (m, 2H), 1.78–1.65 (m, 1H), 1.53–1.38 (m, 2H), 1.32 (s, 9H); ¹³C{1H} NMR (CDCl₃, 100 MHz) δ = 155.8, 144.4, 128.4, 126.5, 125.1, 79.6, 66.4, 56.3, 38.0, 34.2, 32.9, 28.3, 25.4; HRMS (ESI-TOF) *m/z*: [M+Na]⁺ Calcd for C₁₇H₂₅NO₃Na 314.1727; Found 314.1742; LRMS *m/z* (ES) 236 (75%), 314 (100%, MNa⁺). Data as reported.⁵

Resolution between the enantiomers of alcohol **12** was achieved using a Beckman system fitted with a Phenomenex Cellulose-1 column (250 mm × 4.60 mm i.d.) as the stationary phase with a mixture of *n*-hexane:isopropanol (9:1 v/v) as the mobile phase at a flow rate of 1 mL·min⁻¹; ambient temperature, detection by UV absorbance at 210 nm. Injection volume was 10 μ L of the sample prepared in a 2 g·L⁻¹ solution of the eluent. Under these conditions, the components were eluted at 16.9 min and 26.6 min. tert-Butyl (2S,4R)-4-(Hydroxymethyl)-2-phenylpiperidine-1-carboxylate (2S,4R)-12

BH₃-THF complex solution (2.2 mL, 2.2 mmol, 1 M in THF) was added to alkene (*S*)-**3a** (100 mg, 0.366 mmol, er 99:1) at 0 °C. The mixture was warmed (stirrer hotplate and drysyn block) to 35 °C and stirred for 1 h. After cooling to 0 °C, aq NaOH (0.74 mL, 1.5 mmol, 2 M) was added followed by H₂O₂ (0.41 mL, 4.4 mmol, 30% w/w). The mixture was warmed to 35 °C and stirred for 1 h. After cooling to rt, the mixture was diluted with water (30 mL) and EtOAc (60 mL). The aqueous layer was adjusted to pH 7 using aq HCl (2M) and the organic layer was separated, dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure to give the crude product. Purification by column chromatography on silica gel, eluting with CH₂Cl₂–MeOH (19:1), gave alcohol (2*S*,4*R*)-**12** (71 mg, 67%) as a clear oil; data as above; the enantiomeric ratio was determined to be 99:1 by CSP-HPLC (major component eluted at 17.0 min); $[\alpha]_{\rm D}^{23}$ –62 (*c* 1.0, CHCl₃).

tert-Butyl (2*S*,4*R*)-4-{[(4-Bromobenzoyl)oxy]methyl}-2-phenylpiperidine-1-carboxylate (2*S*,4*R*)-13

Et₃N (0.15 mL, 1.1. mmol) was added to alcohol (2*S*,4*R*)-**12** (70 mg, 0.24 mmol, er 99:1) and DMAP (2 mg, 0.01 mmol) in CH₂Cl₂ (0.5 mL) at 0 °C, followed by 4-bromobenzoyl chloride (116 mg, 0.528 mmol) in CH₂Cl₂ (0.23 mL). The mixture was warmed to rt over 16 h and the solvent was evaporated to give the crude product. Purification by column chromatography on silica gel, eluting with petrol–EtOAc (9:1), gave ester (2*S*,4*R*)-**13** (83 mg, 73%) as a white amorphous solid; mp 94–96 °C [petrol–EtOAcc]; R_f 0.38 [petrol–EtOAc (7:3)]; FT-IR v_{max} (film)/cm⁻¹ 1720 (C=O), 1687 (C=O); ¹H NMR (CDCl₃, 400 MHz) δ = 7.88 (d, 2H, *J* = 8.5 Hz), 7.60 (d, 2H, *J* = 8.5 Hz), 7.36–7.30 (m, 2H), 7.26–7.20 (m, 3H), 5.01–4.90 (m, 1H), 4.23–4.06 (m, 3H), 3.42–3.27 (m, 1H), 2.34–2.01 (m, 3H), 1.90–1.75 (m, 1H), 1.56–1.45 (m, 1H), 1.33 (s, 9H); ¹³C{1H} NMR (CDCl₃, 100 MHz) δ = 165.7, 155.7, 143.9, 131.8, 131.1, 129.0, 128.5, 128.2, 126.7, 125.2, 79.8, 68.1, 56.1, 37.8, 33.0, 31.2, 28.3, 25.7; HRMS (ESI-TOF) *m*/z: [M+Na]⁺ Calcd for C₂₄H₂₈⁷⁹BrNO4Na 496.1094; Found 496.1115; LRMS *m*/z (ES) 496 (100%, MNa⁺ for ⁷⁹Br), 497 (20%), 498 (100%, MNa⁺ for ⁸¹Br), 499 (20%); [*α*]_D²³ –16 (*c* 1.0, CHCl₃).

tert-Butyl (2S)-4-Oxo-2-phenylpiperidine-1-carboxylate (S)-2a

Ozone was bubbled through a solution of alkene (*S*)-**3a** (300 mg, 1.10 mmol, er 99:1) in CH₂Cl₂ (99 mL) and MeOH (11 mL) at -78 °C for 1 h. Me₂S (1.6 mL, 22 mmol) was added dropwise and the mixture was warmed to rt over 16 h. The solvent was evaporated to give the crude product. Purification by column chromatography on silica gel, eluting with petrol–EtOAc (15:5), gave piperidone (*S*)-**2a** (275 mg, 91%) as a clear oil; data as above; the enantiomeric ratio was determined to be 99:1 by CSP-HPLC (major component eluted at 12.0 min); $[\alpha]_D^{23}$ –71 (*c* 1.0, CHCl₃), lit.¹⁴ $[\alpha]_D^{20}$ –68.2 (*c* 1.95, CHCl₃).

tert-Butyl 4,4-Difluoro-2-phenylpiperidine-1-carboxylate 14

Et₂NSF₃ (1.5 ml, 11 mmol) was added to piperidone **2a** (1.0 g, 3.6 mmol) in CH₂Cl₂ (6 mL) at 0 °C. After 4 h, the mixture was warmed to rt and stirred for 16 h. The mixture was cooled to 0 °C and carefully quenched with saturated aq NaHCO₃. The mixture was diluted with water (50 mL) and CH₂Cl₂ (100 mL). The organic layer was separated, dried over anhydrous MgSO₄, filtered and the solvent was evaporated to give the crude product. Purification by column

chromatography on silica gel, eluting with petrol–EtOAc (19:1), gave difluoride **14** (0.69 g, 64%) as a clear oil; $R_f 0.43$ [petrol–EtOAc (4:1)]; FT-IR v_{max} (film)/cm⁻¹ 1693 (C=O); ¹H NMR (CDCl₃, 400 MHz) $\delta = 7.43-7.33$ (m, 2H), 7.32–7.22 (m, 3H), 5.63 (br d, 1H, J = 6.0 Hz), 4.34–4.19 (m, 1H), 3.20–3.01 (m, 1H), 2.90–2.73 (m, 1H), 2.42–2.21 (m, 1H), 2.09–1.85 (m, 2H), 1.48 (s, 9H); ¹³C{1H} NMR (CDCl₃, 100 MHz) $\delta = 155.0$, 139.0, 128.5, 126.9, 125.8, 121.8 (t, J = 242.5 Hz), 80.7, 52.4 (d, J = 9.5 Hz), 37.1 (d, J = 9.5 Hz), 35.8 (t, J = 23.0 Hz), 34.0 (t, J = 23.5 Hz), 28.3; ¹⁹F NMR (CDCl₃, 377 MHz) $\delta = -87.60$ (d, J = 238.5 Hz), -96.15 (d, J = 238.5 Hz); HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd for C₁₆H₂₁F₂NO₂Na 320.1433; Found 320.1442; LRMS m/z (ES) 198 (20%), 222 (20%), 242 (100%), 320 (20%, MNa⁺).

Resolution between the enantiomers of difluoride **14** was achieved using a Beckman system fitted with a Phenomenex Cellulose-2 column (250 mm × 4.60 mm i.d.) as the stationary phase with a mixture of *n*-hexane:isopropanol (99:1 v/v) as the mobile phase at a flow rate of 1 mL·min⁻¹; ambient temperature, detection by UV absorbance at 210 nm. Injection volume was 10 μ L of the sample prepared in a 2 g·L⁻¹ solution of the eluent. Under these conditions, the components were eluted at 6.0 min and 6.9 min.

tert-Butyl (2S)-4,4-Difluoro-2-phenylpiperidine-1-carboxylate (S)-14

Et₂NSF₃ (1.5 ml, 11 mmol) was added to piperidone (*S*)-**2a** (275 mg, 0.998 mmol, er 99:1) in CH₂Cl₂ (1.7 mL) at 0 °C. After 2 h, the mixture was warmed to rt and stirred for 16 h. The mixture was cooled to 0 °C and carefully quenched with saturated aq NaHCO₃. The mixture

was diluted with water (40 mL) and CH₂Cl₂ (60 mL). The organic layer was separated, dried over anhydrous MgSO₄, filtered and the solvent was evaporated to give the crude product. Purification by column chromatography on silica gel, eluting with petrol–EtOAc (9:1), gave difluoride (*S*)-**14** (256 mg, 86%) as a clear oil; data as above; the enantiomeric ratio was determined to be 99:1 by CSP-HPLC (major component eluted at 6.8 min); $[\alpha]_D^{22}$ –71 (*c* 1.0, CHCl₃).

1-tert-Butyl 2-Methyl 4,4-Difluoro-2-phenylpiperidine-1,2-dicarboxylate 15

Using general procedure D, *n*-BuLi (0.22 mL, 0.44 mmol, 2.0 M in hexanes) and difluoride **14** (110 mg, 0.366 mmol) in THF (1.5 mL) at -40 °C and MeOCOCI (0.1 mL, 1.28 mmol) gave the crude product. Purification by column chromatography on silica gel, eluting with pentane–EtOAc (9:1). gave carbamate **15** (100 mg, 76%) as a clear oil; R_f 0.52 [petrol–EtOAc (4:1)]; FT-IR ν_{max} (film)/cm⁻¹ 1747 (C=O), 1699 (C=O); ¹H NMR (CDCl₃, 400 MHz) δ = 7.50–7.18 (m, 5H), 4.03–3.88 (m, 1H), 3.74 (s, 3H), 3.68–3.52 (m, 1H), 2.94–2.70 (m, 2H), 2.20–1.95 (m, 2H), 1.35 (s, 9H); ¹³C{1H} NMR (CDCl₃, 100 MHz, one quaternary carbon signal not observed) δ = 171.2, 155.9, 128.1, 127.5, 126.8, 121.13 (t, *J* = 243.0 Hz), 81.6, 66.9, 52.7, 41.9, 40.35 (t, *J* = 5.0 Hz), 33.5 (t, *J* = 24.0 Hz), 28.0; ¹⁹F NMR (CDCl₃, 377 MHz) δ = -90.81 (br), -92.86 (d, *J* = 236.5 Hz); HRMS (ESI-TOF) *m*/*z*: [M+Na]⁺ Calcd for C₁₈H₂₃F₂NO₄Na 378.1487; Found 378.1506; LRMS *m*/*z* (ES) 256 (100%), 378 (60%, MNa⁺).

Resolution between the enantiomers of carbamate **15** was achieved using a Beckman system fitted with a Phenomenex Cellulose-2 column (250 mm × 4.60 mm i.d.) as the stationary phase with a mixture of *n*-hexane:isopropanol (99:1 v/v) as the mobile phase at a flow rate of 1 mL·min⁻¹; ambient temperature, detection by UV absorbance at 210 nm. Injection volume was 10 μ L of the sample prepared in a 2 g·L⁻¹ solution of the eluent. Under these conditions, the components were eluted at 9.3 min and 12.2 min.

1-tert-Butyl 2-Methyl (2S)-4-Oxo-2-phenylpiperidine-1,2-dicarboxylate (S)-15

Using general procedure D, *n*-BuLi (0.10 mL, 0.24 mmol, 2.4 M in hexanes) and (*S*)-**14** (60 mg, 0.20 mmol, er 99:1) in THF (0.8 mL) at -78 °C and MeOCOCI (0.05 mL, 0.7 mmol) gave the crude product. Purification by column chromatography on silica gel, eluting with pentane–EtOAc (9:1), gave carbamate (*S*)-**15** (45 mg, 63%) as a clear oil; data as above; the enantiomeric ratio was determined to be 99:1 by CSP-HPLC (major component eluted at 12.1 min); $[\alpha]_{\rm D}^{22}$ –12 (*c* 1.0, CHCl₃).

3. References

- 1. Bruker (2017) Apex3 v2017.3-0. Bruker AXS Inc., Madison, Wisconsin, USA.
- 2. L. Krause, R. Herbst-Irmer, G. M. Sheldrick, D. Stalke, J. Appl. Cryst., 2015, 48, 3.
- 3. G. M. Sheldrick, Acta Cryst., 2015, A71, 3.
- 4. G. M. Sheldrick, Acta Cryst., 2015, C71, 3.
- O.V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst., 2009, 42, 339.
- 6. A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2009.
- 8. S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456.
- 9. F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297.
- a) G. Scalmani, M. J. Frisch, J. Chem. Phys. 2010, 132, 114110; b) M. Cossi, N. Rega, G. Scalmani, V. Barone, J. Comput. Chem. 2003, 24, 669 and references therein.
- 11. Guo, F.; Dhakal, R. C.; Dieter, R. K. J. Org. Chem. 2013, 78, 8451.
- 12. Li, H.; Wu, J. Org. Lett. 2015, 17, 5424.

- Guo, F.; McGilvary, M.A.; Jeffries, M.C.; Graves, B.N.; Graham, S.A.; Wu, Y. *Molecules* 2017, 22, 723.
- 14. Xu, Q.; Zhang, R.; Zhang, T.; Shi, M. J. Org. Chem. 2010, 75, 3935.
- 15. Rice, K. Patent WO 2012071509 A2.

4. ¹H, ¹⁹F and ¹³C{1H} NMR spectra

¹⁹F NMR spectrum (CDCl₃, 377 MHz):

10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210
											ppm											

¹⁹F NMR spectrum (CDCl₃, 377 MHz):

¹⁹F NMR spectrum (CDCl₃, 377 MHz):

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 ppm

¹³C{1H} NMR spectrum (CDCl₃, 100 MHz):

¹⁹F NMR spectrum (CDCl₃, 377 MHz):

																						· · · ·
10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210
											ppm											

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 ppm

¹⁹F NMR spectrum (CDCl₃, 377 MHz):

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 ppm

¹⁹F NMR spectrum (d₆-DMSO, 377 MHz):

----112.86

(S)-**11** (¹⁹F-NMR in d₆-DMSO)

0 -10 -20 -30 -40	-50 -60 -70 -80	-90 -100 -120	-140 -160 ppm	-180 -200	-220 -240	-260 -280

¹³C{1H} NMR spectrum (CDCl₃, 100 MHz):

5. HPLC traces

HPLC of (\pm) -**3b** with a Phenomenex Cellulose-2 column:

HPLC of (\pm) -**3b** from Agilent system fitted with a Chiralcel OX-H column:

HPLC of (*S*)-**3b** (er 94:6) from Agilent system fitted with a Chiralcel OX-H column:

Chiralcel OX-H Column					
	R₁/min	Area/mAU.s	Area/%		
1	5.356	1818.44	6.33		
2	6.068	26888.92	93.67		
	Total	28707.36	100.00		

HPLC of (S)-3b (er 99:1) from Agilent system fitted with a Chiralcel OX-H column:

Chiralcel OX-H Column					
	R _f /min	Area/mAU.s	Area/%		
1	6.087	357.89	0.97		
2	6.926	36630.58	99.03		
	Total	36988.47	100.00		

S-114

HPLC of (±)-4b from Agilent system fitted with a Chiral Art Cellulose-C column:

Chiral Art Cellulose-C Column						
R _f /min Area/mAU.s Area/%						
1	1 7.670 3502.22		49.52			
2	8.372	3570.49	50.48			
	Total	7072.71	100.00			

HPLC of (*R*)-4b from Agilent system fitted with a Chiral Art Cellulose-C column:

Chiral Art Cellulose-C Column					
	R _f /min	Area/mAU.s	Area/%		
1	7.903	13930.66	24.72		
2	8.643	42424.82	75.28		
	Total	56355.48	100.00		

CH₂ CO₂Me N Boc (*P*)-**4**b

S-127

6. X-ray data for ester (2*S*,4*R*)-13

Thermal ellipsoid plot displayed at 50% probability level

CCDC 2155914

Compound (2S,4R)-13 was prepared by recrystallization by slow evaporation in the solvent system CH₂Cl₂-hexane

Table S2 Crystal data and structure r	efinement for OIC323v_0m.
Identification code	OIC323v_0m
Empirical formula	C24H28BrNO4
Formula weight	474.38
Temperature/K	99.99
Crystal system	monoclinic
Space group	C2
a/Å	17.0948(12)
b/Å	10.5262(7)
c/Å	13.2389(9)
$\alpha/^{\circ}$	90
β/°	106.728(3)
$\gamma^{\prime \circ}$	90
Volume/Å ³	2281.4(3)
Z	4
$\rho_{calc}g/cm^3$	1.381
μ/mm^{-1}	2.694
F(000)	984.0
Crystal size/mm ³	0.2 imes 0.19 imes 0.14
Radiation	$CuK\alpha \ (\lambda = 1.54178)$
2 Θ range for data collection/°	6.972 to 133.964
Index ranges	$-20 \le h \le 20, -12 \le k \le 12, -15 \le l \le 15$
Reflections collected	41440
Independent reflections	$4016 [R_{int} = 0.0517, R_{sigma} = 0.0256]$
Data/restraints/parameters	4016/1/274
Goodness-of-fit on F ²	1.031
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0246, wR_2 = 0.0581$
Final R indexes [all data]	$R_1 = 0.0258, wR_2 = 0.0588$
Largest diff. peak/hole / e Å ⁻³	0.28/-0.27
Flack parameter	0.091(7)

Table S2	Crystal data	and structure	refinement f	for OIC323v_0	Dm.
----------	--------------	---------------	--------------	---------------	-----

Table S3 Fractional Atomic Coordinates (×10 ⁴) and Equivalent Isotropic Displacement
Parameters ($Å^2 \times 10^3$) for OIC323v_0m. U _{eq} is defined as 1/3 of of the trace of the
orthogonalised U _{IJ} tensor.

Atom	x	у	Z	U(eq)
Br1	3663.9(2)	-1713.9(4)	9528.9(2)	37.47(11)
01	4410.2(15)	4379(2)	8341.0(19)	35.1(6)
O2	3544.1(15)	4802(3)	9289(2)	38.1(6)
03	6231.4(13)	6765(2)	5112.1(17)	30.9(5)
O4	7000.0(13)	5363(2)	6306.5(16)	28.6(5)
N1	6307.0(16)	6864(3)	6854(2)	26.6(6)
C1	5615(2)	7752(3)	6661(3)	27.8(7)
C2	5103.1(19)	7412(3)	7411(2)	28.2(7)
C3	5043.2(19)	5981(3)	7542(2)	29.9(7)
C4	5894(2)	5427(4)	8077(3)	34.2(7)
C5	6560.2(19)	6290(3)	7906(2)	30.3(7)
C6	5864(2)	9138(4)	6779(2)	28.8(7)
C7	6646(2)	9537(4)	7330(3)	33.3(8)
C8	6825(2)	10828(4)	7470(3)	40.3(8)
C9	6231(3)	11714(4)	7057(3)	43.4(9)
C10	5451(3)	11328(4)	6501(3)	47.1(10)
C11	5270(2)	10058(4)	6367(3)	39.3(8)
C12	4448(2)	5727(3)	8170(3)	35.4(8)
C13	3924(2)	4036(4)	8941(3)	31.2(9)
C14	3911(2)	2643(4)	9098(3)	29.6(8)
C15	3458(2)	2178(4)	9753(3)	30.7(7)
C16	3398.2(19)	892(3)	9896(2)	30.5(7)
C17	3787(2)	61(3)	9386(2)	31.5(7)
C18	4255.8(19)	498(4)	8760(2)	30.7(7)
C19	4312(2)	1799(4)	8619(3)	31.7(8)
C20	6492.5(17)	6358(3)	6010(2)	25.0(6)
C21	7401.0(19)	4756(3)	5582(2)	27.7(7)
C22	6776(2)	4172(4)	4650(3)	43.9(9)
C23	7943(2)	5727(4)	5260(3)	40.7(8)
C24	7924.0(19)	3753(3)	6281(3)	29.5(7)

Table S4 Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for OIC323v_0m. The Anisotropic displacement factor exponent takes the form: - $2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U 11	U_{22}	U33	U23	U 13	U12
Br1	39.98(18)	38.69(19)	33.44(16)	5.49(18)	10.07(12)	2.9(2)
O1	39.0(13)	33.2(15)	36.3(13)	-3.4(11)	16.2(11)	-4.0(11)
O2	39.5(14)	41.5(15)	34.6(13)	-3.6(11)	13.0(11)	3.5(11)
O3	29.4(11)	37.5(14)	25.9(11)	6.7(10)	8.0(9)	8.9(10)
O4	27.1(11)	33.9(13)	25.3(10)	3.4(9)	8.4(9)	10.5(9)
N1	19.4(13)	32.7(16)	24.6(13)	-0.9(11)	1.3(10)	7.5(11)
C1	20.9(16)	35.1(18)	24.6(16)	0.2(13)	2.1(13)	8.2(13)
C2	20.9(15)	33.9(19)	27.6(15)	-1.5(13)	3.4(12)	4.3(13)
C3	28.1(16)	33.4(19)	25.9(15)	-2.3(13)	4.0(13)	1.8(13)
C4	35.8(18)	38(2)	26.7(16)	4.3(14)	6.0(13)	9.4(15)
C5	24.5(15)	40(2)	20.1(14)	-2.0(14)	-2.6(12)	10.2(14)
C6	29.6(17)	35(2)	24.8(15)	3.0(14)	12.1(13)	9.1(15)
C7	33.1(18)	38(2)	29.0(17)	0.6(15)	8.7(14)	3.9(15)
C8	47(2)	41(2)	37.0(18)	-6.1(16)	18.5(16)	-7.9(17)
C9	63(3)	27.9(19)	52(2)	1.7(16)	38(2)	6.0(17)
C10	51(2)	39(2)	63(2)	17.1(19)	34(2)	17.8(18)
C11	30.9(18)	44(2)	46(2)	12.7(16)	15.3(15)	11.3(15)
C12	37.1(18)	31.5(19)	39.8(18)	-4.3(15)	14.5(15)	0.4(15)
C13	27.9(18)	39(2)	24.1(17)	-4.7(15)	2.9(14)	-2.4(16)
C14	22.1(17)	43(2)	19.6(16)	-4.5(14)	-0.9(13)	-2.1(14)
C15	25.5(16)	40(2)	24.7(16)	-3.6(14)	4.7(13)	0.7(14)
C16	26.2(16)	40(2)	22.6(15)	1.2(13)	3.2(12)	-0.2(14)
C17	25.1(16)	42(2)	21.8(15)	-0.4(13)	-1.7(12)	-0.5(14)
C18	27.0(16)	38(2)	26.1(16)	-1.1(13)	5.5(13)	3.1(14)
C19	23.4(16)	47(2)	23.1(16)	-2.4(15)	3.8(13)	-3.5(15)
C20	18.5(14)	27.4(17)	28.4(16)	-0.6(13)	5.5(12)	0.9(12)
C21	25.8(15)	32.5(17)	25.0(15)	-1.6(13)	7.7(12)	7.9(13)
C22	37.6(19)	47(2)	36.6(18)	-9.5(17)	-5.7(15)	13.4(18)
C23	37.6(19)	39(2)	52(2)	12.0(17)	22.6(17)	10.9(16)
C24	26.2(16)	32.4(17)	27.8(15)	0.6(12)	4.2(13)	7.7(12)

Table S5 Bond Lengths for OIC323v_0m.

Atom Atom		Length/Å	Atom Atom		Length/Å
Br1	C17	1.896(4)	C6	C7	1.392(5)
01	C12	1.442(5)	C6	C11	1.395(5)
01	C13	1.353(5)	C7	C8	1.393(5)
O2	C13	1.207(5)	C8	C9	1.372(6)
03	C20	1.221(4)	C9	C10	1.386(6)
O4	C20	1.345(4)	C10	C11	1.372(6)
O4	C21	1.475(4)	C13	C14	1.482(5)
N1	C1	1.472(4)	C14	C15	1.406(5)
N1	C5	1.464(4)	C14	C19	1.383(5)
N1	C20	1.355(4)	C15	C16	1.374(5)
C1	C2	1.542(5)	C16	C17	1.387(5)
C1	C6	1.515(5)	C17	C18	1.385(5)
C2	C3	1.523(5)	C18	C19	1.390(5)
C3	C4	1.537(4)	C21	C22	1.511(5)
C3	C12	1.512(5)	C21	C23	1.522(5)
C4	C5	1.525(5)	C21	C24	1.514(4)

Table S6 Bond Angles for OIC323v_0m.

Atom Atom Atom		n Atom	Angle/°	Atom Atom Atom		n Atom	Angle/°
C13	01	C12	114.6(3)	01	C13	C14	112.5(4)
C20	O4	C21	122.0(2)	O2	C13	01	122.4(4)
C5	N1	C1	115.5(3)	O2	C13	C14	125.1(4)
C20	N1	C1	118.3(3)	C15	C14	C13	117.7(4)
C20	N1	C5	123.2(3)	C19	C14	C13	122.8(4)
N1	C1	C2	108.5(3)	C19	C14	C15	119.5(4)
N1	C1	C6	114.0(3)	C16	C15	C14	120.3(3)
C6	C1	C2	110.6(3)	C15	C16	C17	119.3(3)
C3	C2	C1	111.8(3)	C16	C17	Br1	119.4(3)
C2	C3	C4	110.0(3)	C18	C17	Br1	119.1(3)
C12	C3	C2	108.4(3)	C18	C17	C16	121.5(3)
C12	C3	C4	112.1(3)	C17	C18	C19	118.8(3)
C5	C4	C3	110.7(3)	C14	C19	C18	120.6(3)
N1	C5	C4	111.0(2)	03	C20	O4	125.6(3)
C7	C6	C1	122.9(3)	03	C20	N1	123.9(3)
C7	C6	C11	118.5(4)	O4	C20	N1	110.5(3)
C11	C6	C1	118.5(3)	O4	C21	C22	110.8(3)
C6	C7	C8	120.3(3)	O4	C21	C23	109.0(3)
C9	C8	C7	120.1(4)	O4	C21	C24	102.0(2)
C8	C9	C10	120.1(4)	C22	C21	C23	112.9(3)
C11	C10	C9	120.1(3)	C22	C21	C24	111.7(3)
C10	C11	C6	121.0(4)	C24	C21	C23	109.9(3)
01	C12	C3	109.1(3)				

Table S7 Torsion Angles for OIC323v_0m.

A	B	С	D	Angle/°	A	В	С	D	Angle/°
Br1	C17	C18	C19	177.0(2)	C7	C6	C11	C10	-0.1(5)
01	C13	8C14	C15	176.9(3)	C7	C8	C9	C10	0.0(5)
01	C13	8C14	C19	-4.0(5)	C8	C9	C10)C11	0.5(6)
O2	C13	8C14	C15	-3.8(6)	C9	C1()C11	C6	-0.4(6)
O2	C13	8C14	C19	175.2(3)	C11	l C6	C7	C8	0.5(5)
N1	C1	C2	C3	-38.4(4)	C12	201	C13	8 O 2	1.1(5)
N1	C1	C6	C7	-19.4(5)	C12	201	C13	8C14	-179.6(3)
N1	C1	C6	C11	164.3(3)	C12	2C3	C4	C5	-144.4(3)
C1	N1	C5	C4	65.7(4)	C13	301	C12	2C3	177.0(3)
C1	N1	C20	03	14.6(5)	C13	3 C14	4C15	5C16	177.5(3)
C1	N1	C20	04	-165.6(3)	C13	3 C14	4C19	C18	-177.6(4)
C1	C2	C3	C4	64.2(3)	C14	4C15	5C16	5C17	-0.1(5)
C1	C2	C3	C12	-172.9(3)	C15	5 C14	4C19	C18	1.5(5)
C1	C6	C7	C8	-175.8(3)	C15	5C16	5C17	Br1	-177.1(2)
C1	C6	C11	C10	176.4(3)	C15	5C16	5C17	C18	2.0(5)
C2	C1	C6	C7	103.2(3)	C16	5C17	7 C18	3C19	-2.1(5)
C2	C1	C6	C11	-73.1(4)	C17	7 C18	3C19	C14	0.3(5)
C2	C3	C4	C5	-23.7(4)	C19	9 C 14	4C15	5C16	-1.5(5)
C2	C3	C12	01	-177.5(3)	C20	004	C21	C22	-63.5(4)
C3	C4	C5	N1	-36.4(4)	C20	004	C21	C23	61.4(4)
C4	C3	C12	01	-55.9(4)	C20	004	C21	C24	177.5(3)
C5	N1	C1	C2	-24.8(4)	C20)N1	C1	C2	135.9(3)
C5	N1	C1	C6	98.9(4)	C20)N1	C1	C6	-100.4(4)
C5	N1	C20	03	173.8(3)	C20)N1	C5	C4	-94.1(4)
C5	N1	C20	O4	-6.4(4)	C21	04	C20	003	9.4(5)
C6	C1	C2	C3	-164.2(3)	C21	04	C20)N1	-170.4(3)
C6	C7	C8	C9	-0.5(5)					

Atom	x	У	Z.	U(eq)
H1	5264.26	7619.31	5921.71	33
H2A	5355.13	7802.75	8109.5	34
H2B	4547	7769.29	7128.51	34
H3	4826.76	5587.04	6828.66	36
H4A	5966.3	5331.59	8842.88	41
H4B	5939.45	4574.98	7782.93	41
H5A	6681.6	6969.41	8446.08	36
H5B	7065.29	5790.89	7987.42	36
H7	7060.92	8926.7	7611.82	40
H8	7359.41	11095.23	7851.6	48
H9	6353.67	12594.01	7153.66	52
H10	5041.06	11943.28	6210.96	56
H11	4732.97	9801.27	5988.24	47
H12A	4628.33	6173.84	8856.64	43
H12B	3899.62	6048.77	7781.26	43
H15	3192.43	2754.69	10097.66	37
H16	3093.45	576.65	10339.07	37
H18	4533.52	-82.28	8434.33	37
H19	4629.29	2111.21	8188.97	38
H22A	6412.9	3615.13	4902.92	66
H22B	7055.29	3676	4231.82	66
H22C	6454.24	4847.3	4212.02	66
H23A	7601.71	6372.53	4806.86	61
H23B	8278.71	5300.73	4873.74	61
H23C	8299.18	6134.83	5891.68	61
H24A	8317.06	4164.2	6880.03	44
H24B	8218.59	3268.42	5874.34	44
H24C	7574.77	3178.06	6541.82	44

Table S8 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Ų×10³) for OIC323v_0m.

Crystal structure determination of OIC323v_0m

Crystal Data for C₂₄H₂₈BrNO₄ (*M* =474.38 g/mol): monoclinic, space group C2 (no. 5), a = 17.0948(12) Å, b = 10.5262(7) Å, c = 13.2389(9) Å, $\beta = 106.728(3)^\circ$, V = 2281.4(3) Å³, Z = 4, T = 99.99 K, μ (CuK α) = 2.694 mm⁻¹, *Dcalc* = 1.381 g/cm³, 41440 reflections measured (6.972° $\leq 2\Theta \leq 133.964^\circ$), 4016 unique ($R_{int} = 0.0517$, $R_{sigma} = 0.0256$) which were used in all calculations. The final R_1 was 0.0246 (I > 2 σ (I)) and wR_2 was 0.0588 (all data).

7. Variable temperature ¹H NMR spectra for alkene 3a

Coalescence of signals in the ¹H NMR spectrum of alkene **3a** in D₈-THF was followed by taking spectra at various temperatures. The ¹H NMR spectra in the region 6.0-3.7 ppm are shown below:

The ratio of rotamers is $\sim 1.2:1$.

Assuming an approximately equal rate and using line shape analysis (DNMR with the software iNMR), the following rate data can be estimated:

T/K	1/T	k	$\ln(k/T)$
203	0.004926	0.1	-7.61579107
213	0.004695	1	-5.36129217
223	0.004484	3	-4.30855948
233	0.004292	12	-2.9661318
243	0.004115	30	-2.09186406
253	0.003953	110	-0.83290912
263	0.003802	210	-0.2250465
273	0.003663	550	0.700446483
283	0.003534	1500	1.667773489
298	0.003356	3500	2.463424761

 Table S-9. Estimated rate constants from VT-NMR spectroscopy of carbamate 3a.

Eyring plot:

By using the Eyring equation, this gave the following data:

slope –5970.54, intercept 22.59

Approximate activation parameters for Boc rotation in THF:

 $\Delta H^\ddagger \approx 49.6 \; kJ/mol$

 $\Delta S^{\ddagger} \approx -9.7 ~J/K \cdot mol.$

Hence the barrier to rotation $\Delta G^{\ddagger} \approx 51.5$ kJ/mol at -78 °C.

The half-life for rotation is about 11 sec at -78 °C.

8. DFT Data

DFT calculations on the rotamers of piperidine **3a** were carried out using the methods described in the general information. Two conformations of piperidine **3a** were considered where the phenyl group could be axial or equatorial. The minimal energy structures for the rotamers of piperidine **3a** with an axial phenyl group are shown in Figure 1a,c. Of these two structures the rotamer in which the carbonyl group of the Boc group is pointing towards the benzylic position (C-2) was lower in thermal energy by 170 Jmol⁻¹. From these structures the lowest energy transition state for rotation of the Boc group was obtained (Figure 1b) where the Gibbs energy of activation was calculated to be ~77 kJmol⁻¹ at -78 °C.

Figure 1

In contrast, the minimal energy structures for the rotamers of piperidine **3a** with an equatorial phenyl group are shown in Figure 2a,c. As expected, based on $A_{1,3}$ strain considerations these structures were higher in energy then their corresponding axial rotamers, however the rotamer in which the carbonyl group of the Boc group is pointing towards the benzylic position (C-2) was now higher in thermal energy by 6.3 kJmol⁻¹. The Gibbs energy of activation for rotation of the Boc group through the lowest energy transition state (Figure 2b) was calculated to be ~34 kJmol⁻¹ at -78 °C. Although further optimization of the rotamers in Figure 2a,c gave lower energy structures, the lowest energy transition state obtained for rotation of the Boc group from these structures was much higher in energy when compared to the other transition states calculated. Therefore, these structures were not considered any further.

With the phenyl group axial in piperidine **3a** we found when comparing this to the lowest energy equatorial transition state for rotation of the Boc group the Gibbs energy of activation was calculated to be ~55 kJmol⁻¹ at -78 °C (with $\Delta H \approx 43$ kJmol⁻¹ and $\Delta S \approx -63$ JK⁻¹mol⁻¹). This value matched well with the results obtained from VT-NMR and indicated that the rate of ring flipping between the axial and equatorial positions of the phenyl group was fast along with the rotation of the Boc group under the reaction conditions.

Below are summaries for optimised structures and transition states obtained from the calculations performed. Thermochemistry data at 298 K, 223 K and 195 K has also been provided as well.
Left Rotamer Axial

Route : # opt freq b3lyp scrf=(solvent=thf) geom=connectivity def2tzvp empiricaldispersion=gd3bj int=ultrafine pop=(regular,mk) SMILES : C=C2CCN(C(=0)OC(C)(C)C)C(clcccccl)C2 Formula : C₁₇H₂₃NO₂ Charge : 0 Multiplicity : 1 Dipole : 2.6574 Debye Energy : -867.300243526 a.u. Gibbs Energy : -866.979530 a.u. Number of imaginary frequencies : 0

Cartesian Coordinates (XYZ format)

С	-1.41379400	-1.48908400	1.39336000
С	-0.64103300	-0.33635800	0.71920700
С	-0.64043300	-1.61694300	-1.40517300
С	-1.42477200	-2.76659000	-0.76582800
Н	0.07834400	0.04029900	1.44046200
Н	-0.66022700	-2.14732100	1.83644400
Н	-2.02984700	-1.11639700	2.20891000
Н	-1.33666300	-0.92697700	-1.89147400
Н	0.05359000	-1.98355700	-2.15380300
Н	-2.06760000	-3.23185000	-1.51396400
Н	-0.70914400	-3.52084300	-0.42095200
С	-2.22815300	-2.27127500	0.40337600
С	-3.53518400	-2.47520300	0.53201400
Н	-4.08764600	-2.08981900	1.38040800
Н	-4.09436900	-3.03763500	-0.20609400
Ν	0.12622500	-0.89038000	-0.39924400

С	1.46011600	-0.68835500	-0.58630300
0	2.08870400	-1.12864600	-1.53596800
0	1.98784600	0.05600000	0.40436800
С	3.40317300	0.45464200	0.40959200
С	4.29797600	-0.77654600	0.49413500
Н	4.23784500	-1.37079000	-0.41346500
Н	5.33172900	-0.45977600	0.64053400
Н	4.00809800	-1.39535600	1.34477300
С	3.70726000	1.31568200	-0.81116700
Н	4.71556700	1.72258500	-0.72194900
Н	3.64273800	0.73672500	-1.72840600
Н	3.00670400	2.15039000	-0.86663100
С	3.50575500	1.28083200	1.68585500
Н	3.24637200	0.67627200	2.55560000
Н	4.52525000	1.64658700	1.80927200
Н	2.83200700	2.13709900	1.64260800
С	-1.49911400	0.84544000	0.27335000
С	-1.05462200	1.67357100	-0.75863900
С	-2.69588100	1.17320200	0.90936700
С	-1.78234300	2.79118500	-1.14659700
Н	-0.13103400	1.44075100	-1.27060300
С	-3.42752600	2.29198100	0.52474100
Н	-3.07455100	0.55773200	1.71192700
С	-2.97553700	3.10604600	-0.50599500
Н	-1.41600800	3.41567900	-1.95144400
Н	-4.35587600	2.52235700	1.03176100
Н	-3.54656600	3.97431500	-0.80817700

Mode	IR frequency	IR intensity	Raman intensity
1	14.16070000	0.02060000	0.0000000
2	19.09830000	0.17990000	0.0000000
3	34.18630000	0.01750000	0.0000000
4	59.89320000	4.61870000	0.0000000
5	68.74770000	0.27250000	0.0000000
6	100.20840000	0.47870000	0.0000000
7	107.13920000	0.23520000	0.0000000
8	124.02560000	1.12160000	0.0000000
9	160.17790000	0.17590000	0.0000000
10	199.02450000	1.17170000	0.0000000
11	204.41360000	0.22210000	0.0000000
12	219.00280000	8.03990000	0.0000000
13	241.93030000	0.04140000	0.0000000
14	271.52830000	0.06880000	0.0000000
15	275.83610000	3.09010000	0.0000000
16	306.93210000	0.37410000	0.0000000
17	330.05430000	3.81040000	0.0000000
18	340.62590000	12.67090000	0.0000000

19	351.09040000	1.95050000	0.0000000
20	384.15790000	10.95380000	0.0000000
21	410.14060000	1.13510000	0.0000000
22	413.73130000	3.57770000	0.0000000
23	415.40020000	0.07740000	0.0000000
24	436.04500000	1.64770000	0.0000000
25	459.74400000	3.71200000	0.0000000
26	469.28450000	15.86460000	0.0000000
27	483.41550000	1.45780000	0.0000000
28	511.69800000	0.80150000	0.0000000
29	542.05550000	9.22950000	0.0000000
30	623.94120000	7.78990000	0.0000000
31	638.25710000	1.03310000	0.0000000
32	664.64230000	21.36010000	0.0000000
33	712.81940000	54.31570000	0.0000000
34	723.29660000	18.21150000	0.0000000
35	743.44520000	12.23450000	0.0000000
36	766.15980000	7.17110000	0.0000000
37	771.72180000	17.59310000	0.0000000
38	776.37560000	26.19100000	0.0000000
39	786.15690000	12.90970000	0.0000000
40	812.77920000	16.82260000	0.0000000
41	840.54860000	5.75630000	0.0000000
42	857.51940000	0.67370000	0.0000000
43	867.35760000	47.70610000	0.0000000
44	917.36150000	27.17080000	0.0000000
45	928.21160000	39.30960000	0.0000000
46	929.49550000	3.79850000	0.0000000
47	930.79810000	0.14670000	0.0000000
48	939.92590000	13.87540000	0.0000000
49	963.59740000	20.37220000	0.0000000
50	972.60480000	0.10580000	0.0000000
51	979.39580000	0.37410000	0.0000000
52	994.50530000	1.08140000	0.0000000
53	1007.37460000	21.82210000	0.0000000
54	1014.22440000	79.32760000	0.0000000
55	1025.10860000	4.61930000	0.0000000
56	1029.52630000	60.32650000	0.0000000
57	1052.70300000	0.67880000	0.0000000
58	1055.51190000	9.62660000	0.0000000
59	1059.16300000	0.95600000	0.0000000
60	1070.39220000	10.22900000	0.0000000
61	1115.02270000	21.65620000	0.0000000

62	1126.69820000	183.51340000	0.0000000
63	1169.18920000	70.52510000	0.0000000
64	1181.97660000	6.71480000	0.0000000
65	1185.39030000	416.03820000	0.0000000
66	1198.72450000	56.29080000	0.0000000
67	1211.07760000	5.65180000	0.0000000
68	1223.71120000	17.14680000	0.0000000
69	1248.58540000	4.27730000	0.0000000
70	1269.20150000	96.09440000	0.0000000
71	1269.83470000	86.09100000	0.0000000
72	1284.04360000	36.02090000	0.0000000
73	1292.64790000	97.78100000	0.0000000
74	1305.65780000	12.79180000	0.0000000
75	1325.22680000	20.97300000	0.0000000
76	1347.77640000	160.69840000	0.0000000
77	1354.84960000	7.78100000	0.0000000
78	1364.27420000	0.18930000	0.0000000
79	1378.87620000	16.93550000	0.0000000
80	1396.25500000	31.37290000	0.0000000
81	1396.87640000	28.31070000	0.0000000
82	1401.19940000	16.17020000	0.0000000
83	1423.04640000	18.01430000	0.0000000
84	1444.24550000	393.77190000	0.0000000
85	1456.82030000	25.68590000	0.0000000
86	1466.68250000	0.20610000	0.0000000
87	1473.28380000	4.81720000	0.0000000
88	1482.76110000	11.02400000	0.0000000
89	1484.26350000	1.61930000	0.0000000
90	1484.35710000	1.59170000	0.0000000
91	1486.94800000	25.93270000	0.0000000
92	1492.10110000	29.79960000	0.0000000
93	1497.60620000	2.46160000	0.0000000
94	1499.56730000	19.29340000	0.0000000
95	1517.34740000	32.81390000	0.0000000
96	1535.33650000	19.18150000	0.0000000
97	1625.44980000	0.39220000	0.0000000
98	1646.23830000	11.23140000	0.0000000
99	1701.82210000	797.65440000	0.0000000
100	1717.00020000	17.29430000	0.0000000
101	3011.92360000	20.0900000	0.0000000
102	3026.63370000	28.21360000	0.0000000
103	3029.12930000	76.73210000	0.0000000
104	3041.44740000	15.45400000	0.0000000

105	3043.10580000	39.69190000	0.0000000
106	3049.98520000	20.64360000	0.0000000
107	3086.55710000	44.81620000	0.0000000
108	3102.06480000	8.04560000	0.0000000
109	3104.19370000	30.62440000	0.0000000
110	3109.71890000	25.64920000	0.0000000
111	3111.08380000	45.13500000	0.0000000
112	3117.60990000	64.10510000	0.0000000
113	3120.69660000	8.14510000	0.0000000
114	3131.75470000	14.54570000	0.0000000
115	3144.88970000	0.65150000	0.0000000
116	3147.99200000	24.36750000	0.0000000
117	3152.11910000	6.65550000	0.0000000
118	3169.80960000	0.56760000	0.0000000
119	3177.90180000	11.67750000	0.0000000
120	3190.57040000	32.40370000	0.0000000
121	3198.42780000	21.89150000	0.0000000
122	3210.45420000	8.79120000	0.0000000
123	3211.23580000	26.50140000	0.0000000

Right Rotamer Axial

SMILES : C=C2CCN(C(=0)OC(C)(C)C)C(clcccccl)C2

Formula : $C_{17}H_{23}NO_2$

Charge : 0

Multiplicity : 1

Dipole : 2.7968 Debye

Energy : -867.300166083 a.u.

Gibbs Energy : -866.983065 a.u.

Number of imaginary frequencies : 0

Cartesian Coordinates (XYZ format)

С	-1.42919500	-1.73875000	1.22136800
С	-0.97148400	-0.29229000	0.94757600
С	-0.01570300	-1.00933700	-1.21443600
С	-0.45123400	-2.46108100	-0.98477300
Н	-0.61807700	0.13212800	1.88510700
Н	-0.63129600	-2.20655900	1.80643300
Н	-2.32517600	-1.75190300	1.83972300
Н	-0.79692400	-0.47575500	-1.76281400
Н	0.89675500	-0.96334300	-1.79584200
Н	-0.69064500	-2.93122000	-1.93943700
Н	0.39287400	-3.00406200	-0.54533000
С	-1.62615500	-2.52125600	-0.04786400
С	-2.74194100	-3.18733600	-0.32735200
Н	-3.57875700	-3.20563200	0.36050000

-2.85300700	-3.74048700	-1.25225500
0.19345100	-0.33402400	0.06151300
1.39189700	0.12881600	0.51006900
1.54994100	0.66046700	1.59884800
2.36740100	-0.06550700	-0.39718200
3.74644400	0.38828000	-0.16084500
3.78107200	1.90425400	-0.00283400
3.28543300	2.21736600	0.91203500
4.81921600	2.23843400	0.02692200
3.29386100	2.38296800	-0.85377000
4.33967300	-0.33763400	1.04131800
5.40093500	-0.09677900	1.11858100
3.84470000	-0.04375600	1.96278000
4.24410400	-1.41714300	0.91431600
4.45505600	-0.03220700	-1.44265400
4.00414000	0.45514500	-2.30769500
5.50673300	0.25084100	-1.39392500
4.39240100	-1.11239500	-1.57849800
-2.03735700	0.64445800	0.39114200
-1.63956100	1.86550100	-0.15840700
-3.39964100	0.36027300	0.44997800
-2.57314800	2.77429900	-0.63647000
-0.58549300	2.10354700	-0.21396600
-4.33953500	1.26900400	-0.02859900
-3.74489900	-0.57577400	0.86200700
-3.93158300	2.47844100	-0.57473100
-2.24046600	3.71467300	-1.05727500
-5.39277900	1.02405400	0.02311600
-4.66215900	3.18353000	-0.94955000
	-2.85300700 0.19345100 1.39189700 1.54994100 2.36740100 3.74644400 3.74644400 3.78107200 3.28543300 4.81921600 3.29386100 4.33967300 5.40093500 3.84470000 4.24410400 4.2505600 4.00414000 5.50673300 4.39240100 -2.03735700 -1.63956100 -3.39964100 -2.57314800 -0.58549300 -3.74489900 -3.93158300 -2.24046600 -5.39277900 -4.66215900	-2.85300700 -3.74048700 0.19345100 -0.33402400 1.39189700 0.12881600 1.54994100 0.66046700 2.36740100 -0.06550700 3.74644400 0.38828000 3.74644400 0.38828000 3.78107200 1.90425400 3.28543300 2.21736600 4.81921600 2.23843400 3.29386100 2.38296800 4.33967300 -0.33763400 5.40093500 -0.09677900 3.84470000 -0.04375600 4.24410400 -1.41714300 4.45505600 -0.03220700 4.00414000 0.45514500 5.50673300 0.25084100 -2.03735700 0.64445800 -1.63956100 1.86550100 -3.39964100 0.36027300 -2.57314800 2.77429900 -0.58549300 2.10354700 -4.33953500 1.26900400 -3.74489900 -0.57577400 -3.93158300 2.47844100 -2.24046600 3.71467300 -5.39277900 1.02405400 -4.66215900 3.18353000

Mode	IR frequency	IR intensity	Raman intensity
1	2.45010000	0.07770000	0.0000000
2	4.31770000	0.05220000	0.0000000
3	26.95830000	0.06870000	0.0000000
4	53.99790000	5.22180000	0.0000000
5	73.90260000	0.66050000	0.0000000
6	98.47940000	0.52890000	0.0000000
7	103.36100000	0.49950000	0.0000000
8	122.69100000	0.67640000	0.0000000
9	157.64960000	0.79010000	0.0000000
10	199.43650000	0.32700000	0.0000000
11	203.57420000	0.15290000	0.0000000
12	236.83350000	0.94040000	0.0000000
13	243.56010000	12.01890000	0.0000000
14	250.64830000	1.38880000	0.0000000
15	268.76940000	0.06440000	0.0000000
16	288.92720000	0.56290000	0.0000000
17	331.96410000	18.47730000	0.0000000

18	337.81910000	6.86540000	0.0000000
19	349.67860000	1.18140000	0.0000000
20	380.21470000	3.05640000	0.0000000
21	407.79230000	1.55030000	0.0000000
22	414.28380000	0.31150000	0.0000000
23	418.26190000	1.31320000	0.0000000
24	452.47170000	5.63920000	0.0000000
25	459.53920000	2.92150000	0.0000000
26	474.37770000	13.05360000	0.0000000
27	486.88570000	1.12660000	0.0000000
28	512.08290000	0.38750000	0.0000000
29	562.59240000	11.62690000	0.0000000
30	621.37590000	15.77720000	0.0000000
31	637.50680000	0.78950000	0.0000000
32	652.22480000	16.04450000	0.0000000
33	712.09610000	61.92540000	0.0000000
34	720.48630000	8.98440000	0.0000000
35	737.42060000	20.79820000	0.0000000
36	755.92130000	5.29830000	0.0000000
37	774.52910000	33.13490000	0.0000000
38	781.99990000	14.18240000	0.0000000
39	782.51300000	4.49550000	0.0000000
40	812.43830000	14.82340000	0.0000000
41	839.78000000	4.26130000	0.0000000
42	856.20450000	0.27180000	0.0000000
43	870.43770000	63.66860000	0.0000000
44	916.96660000	28.57370000	0.0000000
45	927.49790000	34.75110000	0.0000000
46	929.11700000	3.70030000	0.0000000
47	929.61990000	0.27020000	0.0000000
48	934.04640000	10.78130000	0.0000000
49	963.14540000	9.97930000	0.0000000
50	971.41980000	0.10420000	0.0000000
51	977.05430000	0.19100000	0.0000000
52	992.55190000	0.65020000	0.0000000
53	1003.39320000	19.11090000	0.0000000
54	1013.07010000	60.33330000	0.0000000
55	1023.33920000	83.27710000	0.0000000
56	1026.77890000	50.37930000	0.0000000
57	1052.09840000	1.18770000	0.0000000
58	1053.76880000	9.23390000	0.0000000
59	1058.26650000	2.11370000	0.0000000
60	1066.97280000	1.01460000	0.0000000

61	1110.95620000	29.30920000	0.0000000
62	1131.09720000	182.01100000	0.00000000
63	1167.27670000	29.86450000	0.0000000
64	1180.89360000	10.63670000	0.0000000
65	1183.79790000	546.75020000	0.0000000
66	1206.41480000	14.33350000	0.0000000
67	1209.89080000	1.83440000	0.0000000
68	1222.95910000	21.70410000	0.0000000
69	1247.87770000	12.23390000	0.0000000
70	1265.99330000	179.91710000	0.0000000
71	1268.80260000	22.79600000	0.0000000
72	1284.58240000	42.07890000	0.00000000
73	1287.88590000	54.44890000	0.0000000
74	1304.88460000	10.82540000	0.0000000
75	1331.01430000	10.30370000	0.0000000
76	1348.34690000	151.03810000	0.00000000
77	1354.74240000	3.42020000	0.0000000
78	1364.77030000	1.78950000	0.0000000
79	1379.64700000	14.17490000	0.0000000
80	1395.82840000	28.40310000	0.0000000
81	1396.54330000	44.12880000	0.0000000
82	1400.73470000	13.64270000	0.0000000
83	1421.46170000	19.49900000	0.0000000
84	1447.57240000	417.17350000	0.0000000
85	1456.00790000	35.17910000	0.0000000
86	1465.84070000	0.15340000	0.0000000
87	1471.82940000	8.96120000	0.0000000
88	1483.18840000	11.06640000	0.0000000
89	1483.81090000	2.04970000	0.0000000
90	1483.90290000	0.21040000	0.0000000
91	1485.98480000	22.98670000	0.0000000
92	1490.06320000	26.06210000	0.0000000
93	1496.67560000	2.24090000	0.0000000
94	1501.85860000	21.90430000	0.0000000
95	1516.36830000	42.17840000	0.0000000
96	1535.33810000	17.56570000	0.0000000
97	1626.21340000	1.69160000	0.0000000
98	1646.81110000	8.02510000	0.0000000
99	1696.53820000	732.21270000	0.0000000
100	1715.10180000	21.48700000	0.0000000
101	3010.87800000	22.43100000	0.0000000
102	3026.86340000	33.27280000	0.0000000
103	3034.47150000	59.24340000	0.0000000

104	3040.86340000	16.23940000	0.0000000
105	3043.25430000	40.90710000	0.0000000
106	3049.84740000	22.12720000	0.0000000
107	3084.59440000	45.71090000	0.0000000
108	3100.16260000	5.36240000	0.0000000
109	3102.25590000	6.58280000	0.0000000
110	3102.87160000	43.41560000	0.0000000
111	3103.63150000	27.14860000	0.0000000
112	3110.68590000	46.57890000	0.0000000
113	3117.08330000	61.35300000	0.0000000
114	3131.29930000	14.58860000	0.0000000
115	3144.86150000	2.56480000	0.0000000
116	3148.03850000	24.01270000	0.0000000
117	3169.12410000	0.72100000	0.0000000
118	3171.33050000	6.95070000	0.0000000
119	3177.04790000	9.38000000	0.0000000
120	3187.88440000	31.52680000	0.0000000
121	3195.71500000	26.22850000	0.0000000
122	3210.00930000	20.13710000	0.0000000
123	3216.75610000	13.57740000	0.0000000

Left Rotamer Equatorial

- SMILES : C=C2CCN(C(=0)OC(C)(C)C)C(clccccl)C2
- Formula : $C_{17}H_{23}NO_2$
- Charge : 0
- Multiplicity : 1
- Dipole : 2.5409 Debye
- Energy : -867.295403418 a.u.
- Gibbs Energy : -866.973483 a.u.
- Number of imaginary frequencies : 0

Cartesian Coordinates (XYZ format)

С	-3.48872700	-1.12642600	-0.70406700
С	-2.21300100	-1.82479900	-0.25297200
С	-1.20184600	0.37630100	0.45404900
С	-2.55702100	1.02659800	0.07748100
Н	-2.37627500	-2.24226400	0.74907100
Н	-1.96921600	-2.64631500	-0.91789200
Н	-3.38330600	-0.82964300	-1.75290600
Н	-4.31940300	-1.82927200	-0.63355700
Н	-1.19082200	0.22463900	1.53929200
Н	-2.70022300	1.88941800	0.72736800
Н	-2.46712300	1.40022900	-0.94727300
С	-3.71674100	0.08624100	0.14153200
С	-4.79553100	0.28776500	0.89105500
Н	-5.61404100	-0.42198500	0.90465200
Н	-4.89726700	1.17200900	1.50880200
Ν	-1.04378500	-0.92912700	-0.21792600

С	0.16123200	-1.60270300	-0.21045300
0	0.31523600	-2.69921000	-0.72139800
0	1.11600100	-0.92159500	0.43025100
С	2.54168700	-1.27502000	0.31660400
С	2.80194100	-2.60426600	1.01455800
Н	2.31071200	-3.42283800	0.49547700
Н	3.87629100	-2.79365400	1.03898300
Н	2.43918400	-2.56703100	2.04294200
С	2.96054400	-1.29115900	-1.14881900
Н	4.04180000	-1.42259900	-1.20863700
Н	2.48108900	-2.10242300	-1.69043900
Н	2.70423200	-0.34306800	-1.62259400
С	3.22675700	-0.13153200	1.05333400
Н	2.88111000	-0.08059400	2.08627100
Н	4.30548900	-0.29056800	1.05559100
Н	3.01075100	0.81990600	0.56950200
С	-0.13038700	1.38542100	0.09725000
С	0.29184400	1.55838500	-1.21931600
С	0.37490500	2.22786000	1.08116100
С	1.22354000	2.53647300	-1.53885200
Н	-0.09501500	0.90787800	-1.99327800
С	1.29904600	3.21740800	0.76369700
Н	0.05529600	2.09910100	2.10832800
С	1.73192600	3.37151900	-0.54762900
Н	1.55448700	2.64838300	-2.56360100
Н	1.68863800	3.85930000	1.54352100
Н	2.45920200	4.13333600	-0.79663800

Mode	IR frequency	IR intensity	Raman intensity
1	22.03290000	0.49000000	0.0000000
2	40.45610000	0.35270000	0.0000000
3	60.34950000	4.19230000	0.0000000
4	67.42860000	0.04790000	0.0000000
5	75.24240000	0.02880000	0.0000000
6	91.43500000	2.34870000	0.0000000
7	105.79890000	1.29440000	0.0000000
8	140.09510000	0.13080000	0.0000000
9	171.77960000	0.22190000	0.0000000
10	182.85150000	4.51620000	0.0000000
11	209.75920000	0.66660000	0.0000000
12	220.32100000	4.68400000	0.0000000
13	242.00230000	0.48270000	0.0000000
14	250.10050000	0.49620000	0.0000000
15	274.24460000	2.82900000	0.0000000
16	278.34080000	2.58680000	0.0000000
17	285.78990000	4.94000000	0.0000000
18	324.31710000	4.34990000	0.0000000

19	355.29400000	1.26240000	0.0000000
20	363.42850000	15.26280000	0.0000000
21	383.48180000	8.23190000	0.0000000
22	417.77920000	0.13190000	0.0000000
23	419.33730000	0.94310000	0.0000000
24	430.35130000	5.60970000	0.0000000
25	464.78630000	2.25110000	0.0000000
26	467.36990000	3.01530000	0.0000000
27	468.12900000	2.65560000	0.0000000
28	532.31110000	1.15100000	0.0000000
29	556.61320000	12.24140000	0.0000000
30	610.52550000	30.36150000	0.0000000
31	635.96070000	0.05190000	0.0000000
32	669.28950000	14.98480000	0.0000000
33	696.67420000	8.89860000	0.0000000
34	718.08190000	68.61840000	0.0000000
35	737.25580000	2.17330000	0.0000000
36	761.86530000	12.81390000	0.0000000
37	776.55150000	26.42290000	0.0000000
38	790.94940000	53.49620000	0.0000000
39	809.08940000	14.24560000	0.0000000
40	838.47520000	3.18560000	0.0000000
41	854.60230000	9.64790000	0.0000000
42	861.27550000	38.69870000	0.0000000
43	862.27150000	4.26100000	0.0000000
44	918.72080000	8.18220000	0.0000000
45	927.67090000	21.97020000	0.0000000
46	930.26610000	41.29340000	0.0000000
47	931.57400000	0.30360000	0.0000000
48	931.92810000	0.61000000	0.0000000
49	974.20350000	0.21100000	0.0000000
50	978.59230000	9.65010000	0.0000000
51	985.23920000	0.53180000	0.0000000
52	1000.82130000	1.53800000	0.0000000
53	1014.62050000	20.69160000	0.0000000
54	1022.29350000	34.67290000	0.0000000
55	1025.47420000	2.34010000	0.0000000
56	1031.78840000	14.50270000	0.0000000
57	1053.34540000	10.27100000	0.0000000
58	1054.47130000	1.65170000	0.0000000
59	1063.09100000	1.76090000	0.0000000
60	1077.26260000	13.52930000	0.0000000
61	1104.62530000	13.24600000	0.0000000

62	1140.60920000	58.77210000	0.0000000
63	1157.04250000	74.94480000	0.00000000
64	1178.42140000	3.56200000	0.0000000
65	1183.80470000	521.78070000	0.0000000
66	1200.04040000	3.28940000	0.00000000
67	1212.99860000	4.80630000	0.0000000
68	1228.47050000	23.15160000	0.0000000
69	1253.98090000	12.77100000	0.0000000
70	1270.69200000	29.04240000	0.0000000
71	1276.87350000	192.76640000	0.0000000
72	1283.58290000	22.50890000	0.0000000
73	1291.21070000	137.40570000	0.0000000
74	1309.59700000	1.26230000	0.0000000
75	1326.49350000	82.02740000	0.0000000
76	1345.78170000	118.00340000	0.0000000
77	1357.19860000	13.63800000	0.0000000
78	1359.34030000	45.87040000	0.0000000
79	1368.71930000	51.34900000	0.0000000
80	1396.88200000	25.97130000	0.0000000
81	1398.39860000	58.45590000	0.0000000
82	1400.89160000	34.90900000	0.0000000
83	1423.33380000	56.91950000	0.0000000
84	1425.50890000	97.32290000	0.0000000
85	1455.12610000	5.25360000	0.0000000
86	1467.88220000	0.35040000	0.0000000
87	1468.89350000	5.69880000	0.0000000
88	1484.21540000	9.74030000	0.0000000
89	1484.72180000	3.13500000	0.0000000
90	1485.98300000	2.50370000	0.0000000
91	1488.75970000	24.51830000	0.0000000
92	1491.77480000	9.38220000	0.0000000
93	1498.32810000	2.64370000	0.0000000
94	1508.22840000	10.80060000	0.0000000
95	1517.58540000	22.63130000	0.0000000
96	1532.75530000	19.40900000	0.0000000
97	1629.03240000	1.17970000	0.0000000
98	1647.55880000	17.81460000	0.0000000
99	1701.25430000	687.48360000	0.0000000
100	1720.61590000	36.47150000	0.0000000
101	2980.70690000	63.78030000	0.0000000
102	2997.90540000	40.47240000	0.0000000
103	3019.11770000	21.95580000	0.0000000
104	3026.58810000	55.49470000	0.0000000

105	3042.55910000	17.28790000	0.0000000
106	3045.05090000	32.60710000	0.0000000
107	3052.07840000	26.89620000	0.0000000
108	3089.03990000	44.64920000	0.0000000
109	3097.63280000	23.93710000	0.0000000
110	3101.62980000	15.20980000	0.0000000
111	3108.32090000	14.45010000	0.0000000
112	3113.61750000	64.72460000	0.0000000
113	3127.15570000	25.90220000	0.0000000
114	3131.09830000	16.62430000	0.0000000
115	3143.06140000	2.17170000	0.0000000
116	3145.32450000	10.00950000	0.0000000
117	3146.45510000	24.56730000	0.0000000
118	3163.19280000	8.92470000	0.0000000
119	3169.18020000	0.04220000	0.0000000
120	3178.12170000	15.35040000	0.0000000
121	3185.15890000	37.21380000	0.0000000
122	3195.23570000	21.47190000	0.0000000
123	3210.88940000	19.60330000	0.0000000

Right Rotamer Equatorial

Route : # opt freq b3lyp scrf=(solvent=thf) geom=connectivity def2tzvp empiricaldispersion=gd3bj int=ultrafine pop=(regular,mk) SMILES : C=C2CCN(C(=0)OC(C)(C)C)C(clccccc1)C2 Formula : C₁₇H₂₃NO₂ Charge : 0 Multiplicity : 1 Dipole : 2.9888 Debye Energy : -867.292815979 a.u. Gibbs Energy : -866.972580 a.u.

Number of imaginary frequencies : 0

Cartesian Coordinates (XYZ format)

С	0.69356000	-3.12724700	0.82557000
С	-0.38893300	-2.28343000	0.16357100
С	1.31705100	-0.53271400	-0.46519200
С	2.39173300	-1.46824800	0.13656000
Н	-0.57884900	-2.68122800	-0.84156100
Н	-1.31163300	-2.35356900	0.72745600
Н	0.78393000	-2.83075200	1.87597600
Н	0.38930200	-4.17395800	0.79572400
Н	1.31650200	-0.67042800	-1.55249600
Н	3.32020100	-1.29871200	-0.40805100
Н	2.55828200	-1.15619400	1.17229700
С	1.99935900	-2.91035400	0.12938100
С	2.70512600	-3.87044200	-0.45903100
Н	2.38045300	-4.90392500	-0.43772500
Н	3.63324300	-3.65429600	-0.97448600
N	-0.02290200	-0.85747700	0.06168500
С	-1.03217400	0.02194900	-0.27927000
0	-0.86568400	1.03798600	-0.92472200

0	-2.21460200	-0.38196900	0.21799200
С	-3.45268400	0.37928200	-0.01347400
С	-3.34573400	1.75787300	0.62865700
Н	-2.60592800	2.37241500	0.12320300
Н	-4.31494400	2.25588500	0.57360800
Н	-3.07069500	1.66332600	1.68023200
С	-3.75728500	0.45217800	-1.50565000
Н	-4.74820500	0.88593700	-1.64757400
Н	-3.02924100	1.06479000	-2.03011100
Н	-3.75920200	-0.54903200	-1.93943900
С	-4.49743400	-0.46664700	0.70396400
Н	-4.25573600	-0.55680500	1.76344300
Н	-5.47852000	-0.00066700	0.61034100
Н	-4.54526200	-1.46614600	0.27046900
С	1.74491100	0.88688300	-0.15881000
С	1.57269400	1.43081000	1.11254900
С	2.41717400	1.63060600	-1.12264300
С	2.04444800	2.70330800	1.40617300
Н	1.05081400	0.85983000	1.86997600
С	2.89874300	2.90205400	-0.83059200
Н	2.55331300	1.21731100	-2.11485400
С	2.71099700	3.44502000	0.43516300
Н	1.89269300	3.11764700	2.39494700
Н	3.41426900	3.47035600	-1.59440900
Н	3.07850700	4.43713200	0.66352200

Mode	IR frequency	IR intensity	Raman intensity
1	24.69350000	0.10800000	0.0000000
2	26.31540000	0.55800000	0.0000000
3	40.91610000	2.70950000	0.0000000
4	47.35990000	0.19540000	0.0000000
5	67.71640000	0.71750000	0.0000000
6	87.87200000	0.67590000	0.0000000
7	111.06730000	0.76730000	0.0000000
8	119.97730000	1.90210000	0.0000000
9	167.22320000	1.38040000	0.0000000
10	186.44590000	4.95200000	0.0000000
11	205.49770000	0.22030000	0.0000000
12	223.87930000	2.17900000	0.0000000
13	237.21130000	3.30500000	0.0000000
14	245.56130000	1.21050000	0.0000000
15	270.96990000	3.02940000	0.0000000
16	276.67470000	9.89850000	0.0000000
17	284.50800000	1.54640000	0.0000000
18	318.90600000	0.24690000	0.0000000
19	341.94190000	31.04130000	0.0000000
20	352.76330000	2.03610000	0.0000000

21	396.36240000	0.75060000	0.0000000
22	416.53490000	0.34250000	0.0000000
23	420.56820000	0.13120000	0.0000000
24	430.68880000	5.98750000	0.0000000
25	460.72750000	1.46960000	0.0000000
26	467.31630000	5.87210000	0.0000000
27	470.21020000	0.35600000	0.0000000
28	530.60720000	17.14970000	0.0000000
29	562.32420000	2.84640000	0.00000000
30	612.39060000	28.56850000	0.0000000
31	636.92230000	0.12210000	0.0000000
32	650.33180000	4.92440000	0.0000000
33	697.91400000	14.86230000	0.0000000
34	714.97420000	58.91570000	0.0000000
35	736.89210000	0.57690000	0.0000000
36	766.89960000	25.43960000	0.0000000
37	774.85390000	24.21280000	0.0000000
38	797.90750000	32.73050000	0.0000000
39	808.71450000	20.01440000	0.0000000
40	837.83760000	0.14980000	0.0000000
41	849.41790000	13.28300000	0.0000000
42	858.28190000	0.15660000	0.00000000
43	871.92140000	36.78450000	0.0000000
44	918.78150000	13.56530000	0.0000000
45	925.35860000	12.41350000	0.0000000
46	928.59880000	40.56900000	0.0000000
47	930.43060000	0.63160000	0.0000000
48	932.23090000	7.73380000	0.0000000
49	971.86720000	0.09570000	0.0000000
50	975.09020000	0.64380000	0.0000000
51	977.79900000	4.68880000	0.0000000
52	990.10390000	1.42600000	0.0000000
53	1014.37660000	24.49070000	0.0000000
54	1024.47490000	0.07730000	0.0000000
55	1026.45450000	78.56160000	0.0000000
56	1032.44980000	3.43130000	0.0000000
57	1052.70280000	5.52420000	0.0000000
58	1052.75120000	6.82180000	0.0000000
59	1061.08100000	4.90780000	0.0000000
60	1077.74770000	22.65070000	0.0000000
61	1103.55630000	5.36740000	0.0000000
62	1135.28950000	166.84240000	0.0000000
63	1155.67910000	56.74680000	0.0000000

64	1178.24010000	8.60050000	0.0000000
65	1183.38440000	620.40370000	0.0000000
66	1198.97590000	4.27780000	0.0000000
67	1215.09890000	6.69930000	0.0000000
68	1233.48060000	17.65410000	0.0000000
69	1256.07470000	177.29880000	0.0000000
70	1261.09690000	108.54890000	0.0000000
71	1269.10750000	21.52440000	0.0000000
72	1282.91490000	33.21200000	0.0000000
73	1288.50690000	51.31480000	0.0000000
74	1310.36990000	5.79970000	0.0000000
75	1327.58190000	89.12910000	0.0000000
76	1345.45610000	148.09720000	0.0000000
77	1356.31530000	12.78570000	0.0000000
78	1363.26810000	78.76170000	0.0000000
79	1368.88900000	36.09440000	0.0000000
80	1396.96380000	25.65920000	0.0000000
81	1399.18350000	42.10230000	0.0000000
82	1402.21040000	47.98790000	0.0000000
83	1413.62820000	54.69410000	0.0000000
84	1423.25140000	34.17920000	0.0000000
85	1455.70760000	2.87750000	0.0000000
86	1466.96780000	0.17000000	0.0000000
87	1468.72570000	6.83170000	0.0000000
88	1483.84510000	0.94980000	0.0000000
89	1484.24420000	1.69830000	0.0000000
90	1485.12210000	10.27140000	0.0000000
91	1487.79990000	17.28970000	0.0000000
92	1490.83210000	9.69190000	0.0000000
93	1497.71830000	2.16780000	0.0000000
94	1508.45160000	4.25300000	0.0000000
95	1516.52380000	22.63140000	0.0000000
96	1532.32320000	17.66470000	0.0000000
97	1628.98830000	1.63260000	0.0000000
98	1647.39650000	14.55970000	0.0000000
99	1720.15480000	204.23450000	0.0000000
100	1723.67770000	393.41920000	0.0000000
101	2982.18940000	61.65630000	0.0000000
102	2997.20510000	42.27880000	0.0000000
103	3018.44020000	22.65970000	0.0000000
104	3026.73750000	53.87360000	0.0000000
105	3040.94880000	16.47740000	0.0000000
106	3043.38130000	38.73260000	0.0000000

107	3050.16950000	22.30400000	0.0000000
108	3088.88740000	44.80140000	0.0000000
109	3097.26630000	24.35050000	0.0000000
110	3102.22170000	7.57100000	0.0000000
111	3103.59850000	25.57260000	0.0000000
112	3110.93270000	46.31660000	0.0000000
113	3116.99510000	62.99780000	0.0000000
114	3131.07570000	16.43210000	0.0000000
115	3145.82610000	1.70870000	0.0000000
116	3148.63810000	25.17380000	0.0000000
117	3154.61640000	12.32440000	0.0000000
118	3162.51830000	9.47720000	0.0000000
119	3167.91860000	0.06890000	0.0000000
120	3176.95450000	16.57950000	0.0000000
121	3183.96230000	42.61260000	0.0000000
122	3194.17770000	22.40660000	0.0000000
123	3210.83250000	19.41290000	0.0000000

- SMILES : C=C2CCN(C(=0)OC(C)(C)C)C(clcccccl)C2
- Formula : $C_{17}H_{23}NO_2$
- Charge : 0
- Multiplicity : 1
- Dipole : 2.5348 Debye
- Energy : -867.296096363 a.u.
- Gibbs Energy : -866.973549 a.u.
- Number of imaginary frequencies : 0

Cartesian Coordinates (XYZ format)

С	-3.42792700	0.76307600	-0.13179500
С	-2.50772000	0.71741200	-1.36170600
С	-1.10390400	-0.98441500	-0.34106000
С	-1.92485700	-0.98128300	0.95867600
Н	-2.85530800	-0.03633100	-2.07026200
Н	-2.47878800	1.67844000	-1.86418500
Н	-3.10952100	1.60888400	0.48775800
Н	-4.45917100	0.94767400	-0.43563800
Н	-1.65861800	-1.60513300	-1.05280800
Н	-1.95643000	-1.97925200	1.39492200
Н	-1.43732400	-0.31335700	1.67577100
С	-3.32848800	-0.51090400	0.66533200
С	-4.39886000	-1.20642800	1.03967000
Н	-5.40170000	-0.87049000	0.80464300
Н	-4.30648800	-2.12956400	1.59933900

Ν	-1.15215500	0.36095500	-0.94429700
С	-0.33327600	1.40274400	-0.58195100
0	-0.47619100	2.53952600	-1.00160100
0	0.62323500	1.01362800	0.26886400
С	1.80121000	1.84771600	0.55608900
С	2.53104300	2.17678700	-0.74086400
Н	1.93595900	2.82749900	-1.37669900
Н	3.46941300	2.68114600	-0.50613700
Н	2.76204100	1.25942200	-1.28392900
С	1.38280800	3.09482500	1.32579700
Н	2.27458100	3.63120800	1.65409500
Н	0.78089700	3.75558100	0.70800600
Н	0.80885400	2.81550500	2.21077900
С	2.65061700	0.93327900	1.42909400
Н	2.91260400	0.02369100	0.89057400
Н	3.56629400	1.44926800	1.71941300
Н	2.10752300	0.65438500	2.33250900
С	0.28140200	-1.59314400	-0.27587900
С	0.77840100	-2.19852000	0.87263100
С	1.06662700	-1.60242300	-1.42981600
С	2.03842700	-2.79025600	0.87502100
Н	0.19725500	-2.19956800	1.78365700
С	2.32642800	-2.18191000	-1.42896000
Н	0.69012800	-1.13193200	-2.32944400
С	2.81951100	-2.78075900	-0.27230100
Н	2.41096500	-3.24996600	1.78157700
Н	2.92472800	-2.16955200	-2.33115300
Н	3.80218600	-3.23426000	-0.26868300

Mode	IR frequency	IR intensity	Raman intensity
1	28.92760000	1.68780000	0.0000000
2	33.66180000	0.26290000	0.0000000
3	52.39400000	0.01620000	0.0000000
4	73.37800000	0.12730000	0.0000000
5	81.27800000	3.82970000	0.0000000
6	100.63980000	1.01760000	0.0000000
7	117.69270000	0.82780000	0.0000000
8	130.76300000	0.30520000	0.0000000
9	135.65300000	0.55860000	0.0000000
10	187.00340000	1.84500000	0.0000000
11	205.64790000	0.25920000	0.0000000
12	216.46970000	6.31200000	0.0000000
13	244.46510000	0.27350000	0.0000000
14	272.47360000	1.67510000	0.0000000
15	276.08270000	0.28010000	0.0000000
16	311.79050000	2.17420000	0.0000000
17	324.07560000	5.32540000	0.0000000
18	344.66560000	5.68850000	0.0000000

19	359.04860000	2.33070000	0.0000000
20	382.48320000	4.23330000	0.0000000
21	399.23730000	18.80210000	0.0000000
22	414.63120000	0.30070000	0.0000000
23	423.07500000	1.93150000	0.0000000
24	436.69290000	2.32410000	0.0000000
25	462.29210000	2.97740000	0.0000000
26	479.78690000	7.34260000	0.0000000
27	490.28310000	0.34870000	0.0000000
28	515.42550000	1.71190000	0.0000000
29	546.97880000	2.60960000	0.0000000
30	625.07830000	12.26560000	0.0000000
31	639.21050000	2.19330000	0.0000000
32	647.22560000	41.77350000	0.0000000
33	681.29580000	9.74250000	0.0000000
34	714.00020000	60.06290000	0.0000000
35	733.12650000	1.53520000	0.0000000
36	766.24960000	9.73520000	0.0000000
37	767.72950000	35.79680000	0.0000000
38	785.12650000	43.02070000	0.0000000
39	797.24860000	8.07860000	0.0000000
40	830.39170000	5.46250000	0.0000000
41	859.06850000	0.88910000	0.0000000
42	862.97590000	29.93470000	0.0000000
43	869.18240000	23.18460000	0.0000000
44	917.93730000	20.19720000	0.0000000
45	927.42040000	48.56600000	0.0000000
46	931.24170000	0.74710000	0.0000000
47	931.52860000	0.32190000	0.0000000
48	943.84080000	17.10030000	0.0000000
49	959.83050000	8.52640000	0.0000000
50	972.90110000	0.25900000	0.0000000
51	982.71660000	0.51040000	0.0000000
52	998.51860000	50.00810000	0.0000000
53	999.80300000	1.31620000	0.0000000
54	1014.44060000	36.50940000	0.0000000
55	1024.82300000	16.59360000	0.0000000
56	1026.51500000	4.95270000	0.0000000
57	1053.45150000	1.12090000	0.0000000
58	1056.07420000	8.34450000	0.0000000
59	1062.43420000	1.05710000	0.0000000
60	1070.55200000	22.97860000	0.0000000
61	1115.92820000	6.30940000	0.0000000

62	1146.64670000	67.03450000	0.0000000
63	1165.76320000	34.20700000	0.0000000
64	1179.84000000	8.71060000	0.0000000
65	1186.00370000	150.44880000	0.0000000
66	1187.95800000	313.59630000	0.0000000
67	1207.18430000	1.89560000	0.0000000
68	1235.90590000	2.35240000	0.0000000
69	1252.92010000	8.70100000	0.0000000
70	1269.98280000	29.15830000	0.0000000
71	1273.40950000	216.20630000	0.0000000
72	1286.60070000	77.69050000	0.0000000
73	1290.07530000	14.20440000	0.0000000
74	1305.84850000	6.55730000	0.0000000
75	1323.87380000	131.63150000	0.0000000
76	1339.68420000	18.23590000	0.0000000
77	1349.74850000	11.16020000	0.0000000
78	1361.47370000	4.32780000	0.0000000
79	1378.98850000	10.07320000	0.0000000
80	1385.96590000	24.98240000	0.0000000
81	1396.30010000	26.20770000	0.0000000
82	1400.88380000	30.49720000	0.0000000
83	1424.32940000	18.14900000	0.0000000
84	1450.02680000	169.98470000	0.0000000
85	1456.02750000	87.39860000	0.0000000
86	1466.88460000	0.26860000	0.0000000
87	1472.37730000	11.17010000	0.0000000
88	1483.97780000	2.75310000	0.0000000
89	1485.26470000	3.54080000	0.0000000
90	1485.74810000	31.92310000	0.0000000
91	1487.28650000	14.59100000	0.0000000
92	1488.53000000	7.19280000	0.0000000
93	1496.43380000	60.74000000	0.0000000
94	1497.36110000	3.74290000	0.0000000
95	1517.01030000	36.46110000	0.0000000
96	1536.30970000	17.17490000	0.0000000
97	1628.06460000	2.59340000	0.0000000
98	1649.22470000	16.25480000	0.0000000
99	1698.38340000	733.11260000	0.0000000
100	1709.47210000	35.27680000	0.0000000
101	3003.85100000	14.34550000	0.0000000
102	3013.06260000	19.91580000	0.0000000
103	3029.01150000	29.50320000	0.0000000
104	3042.18020000	18.95250000	0.0000000

105	3044.06500000	29.14180000	0.0000000
106	3051.08670000	28.35480000	0.0000000
107	3056.85940000	46.99690000	0.0000000
108	3084.32270000	60.91580000	0.0000000
109	3095.48150000	32.96890000	0.0000000
110	3100.89770000	15.64060000	0.0000000
111	3106.35960000	17.53710000	0.0000000
112	3113.58970000	65.95530000	0.0000000
113	3126.77850000	25.71940000	0.0000000
114	3131.10850000	16.52930000	0.0000000
115	3140.86230000	7.58300000	0.0000000
116	3146.48660000	18.27510000	0.0000000
117	3151.20010000	10.25770000	0.0000000
118	3167.03100000	2.30600000	0.0000000
119	3173.98620000	2.78900000	0.0000000
120	3182.79940000	29.33180000	0.0000000
121	3193.05860000	34.53630000	0.0000000
122	3203.57790000	11.08460000	0.0000000
123	3210.43890000	20.99850000	0.0000000

Route : # opt freq b3lyp scrf=(solvent=thf) geom=connectivity def2tzvp empiricaldispersion=gd3bj int=ultrafine pop=(regular,mk) SMILES : C=C2CCN(C(=O)OC(C)(C)C)C(clcccccl)C2 Formula : C₁₇H₂₃NO₂ Charge : 0 Multiplicity : 1 Dipole : 2.9756 Debye Energy : -867.293496677 a.u. Gibbs Energy : -866.972175 a.u.

Number of imaginary frequencies : 0

Cartesian Coordinates (XYZ format)

С	0.93684500	2.86530400	-0.29797400
С	0.81602900	1.76876900	-1.36730000
С	-1.25170500	0.93962800	-0.39911000
С	-1.20229200	1.96156500	0.74803400
Н	0.22391800	2.12797200	-2.21077200
Н	1.79051600	1.47304300	-1.73773000
Н	1.62114100	2.49973800	0.47610800
Н	1.37605600	3.76716000	-0.72665600
Н	-1.65979500	1.46481300	-1.26840200
Н	-2.20890200	2.26631400	1.03354900
Н	-0.73459300	1.48469200	1.61491000
С	-0.40537600	3.16746400	0.31563300
С	-0.88112500	4.40532800	0.42009300
Н	-0.30708200	5.26159900	0.08684000
Н	-1.85625300	4.60211700	0.84938900
Ν	0.12683000	0.60517800	-0.80285600
С	0.82929600	-0.31495500	-0.06204300

0	0.34274300	-1.01535100	0.80467200
0	2.11828700	-0.35760400	-0.45134600
С	3.09505400	-1.23845700	0.20686800
С	3.21863100	-0.87544000	1.68264100
Н	2.31025000	-1.11764200	2.22735400
Н	4.04931900	-1.43101600	2.12021600
Н	3.42663900	0.19014600	1.79260000
С	2.71147400	-2.69870700	-0.00420900
Н	3.51471900	-3.33808400	0.36522800
Н	1.79468100	-2.94525000	0.52407900
Н	2.57531600	-2.90267200	-1.06735400
С	4.38581300	-0.91069800	-0.53354100
Н	4.63938200	0.14321100	-0.41407300
Н	5.20362900	-1.51163700	-0.13538700
Н	4.28252500	-1.12645000	-1.59741700
С	-2.13920400	-0.27048800	-0.19993300
С	-2.89552000	-0.46762000	0.95020000
С	-2.25298100	-1.19178800	-1.24193300
С	-3.73780200	-1.56958900	1.06469500
Н	-2.82232800	0.22615600	1.77563000
С	-3.08665300	-2.29491300	-1.12953800
Н	-1.66889200	-1.04611800	-2.14229300
С	-3.83514200	-2.48883100	0.02816300
Н	-4.31436700	-1.70999300	1.97024200
Н	-3.15621400	-3.00259800	-1.94598700
Н	-4.48776500	-3.34753900	0.11883000

Mode	IR frequency	IR intensity	Raman intensity
1	23.52920000	0.86060000	0.0000000
2	31.55340000	0.04650000	0.0000000
3	37.25000000	0.21230000	0.0000000
4	60.17330000	0.80580000	0.0000000
5	73.59420000	3.05600000	0.0000000
6	108.10230000	0.33190000	0.0000000
7	111.05750000	0.64480000	0.0000000
8	123.61660000	0.74090000	0.0000000
9	140.54420000	1.10310000	0.0000000
10	185.30660000	5.22700000	0.0000000
11	206.13720000	0.23730000	0.0000000
12	219.08660000	4.51060000	0.0000000
13	242.66420000	0.93550000	0.0000000
14	271.37990000	4.80190000	0.0000000
15	274.94820000	1.67040000	0.0000000
16	284.78600000	0.62620000	0.0000000
17	330.75580000	22.81410000	0.0000000
18	343.11230000	1.92000000	0.0000000
19	353.82390000	2.21580000	0.0000000

20	385.32510000	7.97110000	0.0000000
21	411.79360000	1.80540000	0.0000000
22	414.64180000	0.26080000	0.0000000
23	422.31010000	0.82930000	0.0000000
24	439.11680000	7.98860000	0.0000000
25	461.83480000	4.17680000	0.0000000
26	480.80350000	5.65960000	0.0000000
27	487.05510000	5.08070000	0.0000000
28	516.51440000	1.76920000	0.00000000
29	577.06850000	4.96460000	0.00000000
30	607.22140000	16.47530000	0.0000000
31	635.15070000	4.36030000	0.00000000
32	645.97080000	18.95470000	0.00000000
33	677.77590000	15.28260000	0.0000000
34	711.02380000	53.15290000	0.0000000
35	733.61280000	2.53530000	0.00000000
36	756.17190000	59.25040000	0.0000000
37	777.47780000	15.72890000	0.0000000
38	787.02190000	14.56080000	0.0000000
39	798.95370000	20.25550000	0.0000000
40	830.90030000	1.85930000	0.0000000
41	854.75980000	15.49630000	0.0000000
42	855.54980000	0.17470000	0.0000000
43	879.35530000	33.51600000	0.0000000
44	916.74590000	10.40400000	0.0000000
45	926.46280000	56.96680000	0.0000000
46	929.85120000	0.25050000	0.0000000
47	930.84380000	0.07860000	0.0000000
48	942.26360000	2.43720000	0.0000000
49	959.51390000	3.16650000	0.0000000
50	972.51400000	0.02710000	0.0000000
51	972.52580000	0.45110000	0.0000000
52	988.25100000	1.75980000	0.0000000
53	997.12620000	65.90640000	0.0000000
54	1012.75200000	77.29580000	0.0000000
55	1024.50400000	12.40710000	0.0000000
56	1026.45330000	3.18130000	0.0000000
57	1053.59530000	1.84050000	0.0000000
58	1055.34780000	11.37710000	0.0000000
59	1060.35430000	3.40630000	0.0000000
60	1069.60270000	13.73580000	0.0000000
61	1114.64110000	7.91520000	0.0000000
62	1137.86690000	121.45220000	0.0000000

63	1171.15400000	260.14910000	0.0000000
64	1179.00560000	334.78710000	0.0000000
65	1179.81250000	1.80020000	0.0000000
66	1189.30290000	141.34050000	0.0000000
67	1205.96970000	1.20690000	0.0000000
68	1234.58850000	24.64630000	0.0000000
69	1249.55960000	170.38020000	0.00000000
70	1254.34400000	8.47540000	0.0000000
71	1269.15080000	22.67220000	0.00000000
72	1282.57170000	20.05520000	0.0000000
73	1287.81270000	2.39920000	0.0000000
74	1304.58890000	3.68430000	0.00000000
75	1332.88260000	147.68440000	0.0000000
76	1340.57410000	86.60810000	0.0000000
77	1349.75960000	27.69000000	0.0000000
78	1360.77760000	13.84420000	0.0000000
79	1378.58430000	11.40640000	0.0000000
80	1388.07240000	44.03590000	0.0000000
81	1397.16380000	25.88730000	0.0000000
82	1399.74230000	23.27340000	0.0000000
83	1422.72260000	14.20020000	0.0000000
84	1437.57990000	177.90540000	0.0000000
85	1453.67010000	2.54020000	0.0000000
86	1467.14920000	0.30860000	0.0000000
87	1471.97050000	9.88210000	0.0000000
88	1483.76800000	1.77690000	0.0000000
89	1484.11350000	0.08590000	0.0000000
90	1486.49260000	20.09070000	0.0000000
91	1487.22960000	17.61690000	0.0000000
92	1487.52550000	6.93800000	0.0000000
93	1497.68180000	2.15860000	0.0000000
94	1503.00940000	40.47690000	0.0000000
95	1516.68140000	33.86080000	0.0000000
96	1536.02380000	15.97230000	0.0000000
97	1628.15060000	2.19580000	0.0000000
98	1649.04180000	11.04700000	0.0000000
99	1708.98980000	93.98130000	0.0000000
100	1721.51060000	522.20050000	0.0000000
101	3010.03340000	31.23760000	0.0000000
102	3012.95550000	1.51420000	0.0000000
103	3031.85190000	24.62170000	0.0000000
104	3041.11590000	16.75480000	0.0000000
105	3042.93640000	38.75630000	0.00000000

106	3049.80900000	22.89250000	0.0000000
107	3056.72830000	50.14370000	0.0000000
108	3083.42390000	59.95990000	0.0000000
109	3094.06990000	32.25330000	0.0000000
110	3101.74440000	7.83900000	0.0000000
111	3103.76870000	28.79600000	0.0000000
112	3110.68470000	46.28800000	0.0000000
113	3117.17590000	59.89480000	0.0000000
114	3130.94940000	16.70940000	0.0000000
115	3145.25100000	3.32390000	0.0000000
116	3148.68050000	23.76070000	0.0000000
117	3161.71780000	13.81560000	0.0000000
118	3165.42600000	3.61030000	0.0000000
119	3172.37410000	1.91930000	0.0000000
120	3181.23130000	32.79490000	0.0000000
121	3192.15740000	37.40260000	0.0000000
122	3202.48040000	11.94490000	0.0000000
123	3210.25360000	21.35260000	0.0000000

Route : # opt freq b3lyp scrf=(solvent=thf) geom=connectivity def2tzvp empiricaldispersion=gd3bj int=ultrafine pop=(regular,mk) SMILES : C=C2CCN(C(=0)OC(C)(C)C)C(clcccccl)C2 Formula : C₁₇H₂₃NO₂ Charge : 0 Multiplicity : 1 Dipole : 2.1747 Debye Energy : -867.274004513 a.u. Gibbs Energy : -866.951473 a.u. Number of imaginary frequencies : -1

Cartesian Coordinates (XYZ format)

С	-1.19655600	-1.61359700	1.16879700
С	-0.78851000	-0.18746200	0.73389000
С	-0.25695000	-1.03369400	-1.51850700
С	-0.66570500	-2.46433100	-1.13608200
Н	-0.27078400	0.27795600	1.57751900
Н	-0.30401600	-2.07299400	1.59930700
Н	-1.95220300	-1.58163800	1.95219900
Н	-1.10964700	-0.52275100	-1.97127900
Н	0.54419200	-1.04447000	-2.25831700
Н	-1.08617100	-2.97131100	-2.00634700
Н	0.22956600	-3.01039100	-0.82578500
С	-1.65060400	-2.44042700	-0.00095800
С	-2.81989100	-3.07298800	-0.03977300
Н	-3.51591800	-3.02983700	0.78944800
Н	-3.11611600	-3.65986700	-0.90109600
Ν	0.17774500	-0.21530700	-0.38021400

С	1.51857100	-0.45113700	0.02554300
0	1.93271100	-1.47441800	0.52292200
0	2.25272700	0.63031700	-0.22577800
С	3.69992800	0.68860300	0.08909900
С	3.90790800	0.53558100	1.59050400
Н	3.65072600	-0.46452000	1.92909400
Н	4.95627200	0.72432700	1.82534800
Н	3.30202800	1.26323500	2.13238600
С	4.44686300	-0.36479800	-0.71917000
Н	5.51988100	-0.21711400	-0.59030300
Н	4.19331400	-1.37062400	-0.39495200
Н	4.21501100	-0.26215300	-1.78026400
С	4.07837800	2.09045400	-0.36871800
Н	3.50509800	2.84004700	0.17739400
Н	5.13908700	2.26374600	-0.18643200
Н	3.88469900	2.21129700	-1.43485300
С	-1.94946100	0.73367800	0.36772200
С	-1.68784500	1.90469500	-0.34732300
С	-3.26119200	0.48389700	0.76598500
С	-2.70485400	2.79758500	-0.65609900
Н	-0.67446900	2.10037300	-0.66936800
С	-4.28386300	1.37651000	0.45744000
Н	-3.50498600	-0.41264000	1.31518200
С	-4.01162400	2.53647400	-0.25530100
Н	-2.47739400	3.69867600	-1.21174600
Н	-5.29604900	1.15755300	0.77312200
Н	-4.80741600	3.22879600	-0.49821400

Mode	IR frequency	IR intensity	Raman intensity
1	-60.63770000	2.12340000	0.0000000
2	20.26300000	0.01600000	0.0000000
3	37.57220000	0.18260000	0.0000000
4	46.92130000	0.52900000	0.0000000
5	80.77690000	0.23990000	0.0000000
6	101.02050000	0.23940000	0.0000000
7	108.70150000	0.34940000	0.0000000
8	149.70330000	0.91520000	0.0000000
9	170.19180000	4.65830000	0.0000000
10	193.00880000	2.06390000	0.0000000
11	203.49200000	0.14140000	0.0000000
12	214.71160000	1.54780000	0.0000000
13	239.97710000	0.65410000	0.0000000
14	261.53020000	5.69670000	0.0000000
15	271.77060000	0.12340000	0.0000000
16	278.85050000	0.35730000	0.0000000
17	314.55500000	7.39690000	0.0000000
18	326.33330000	13.62230000	0.0000000

19	357.27500000	2.57300000	0.0000000
20	392.74480000	5.69340000	0.0000000
21	405.16460000	1.07890000	0.0000000
22	415.16680000	0.58310000	0.0000000
23	417.86920000	0.48450000	0.0000000
24	440.78590000	4.42390000	0.0000000
25	464.51230000	0.70170000	0.0000000
26	469.51190000	2.80250000	0.0000000
27	477.65710000	9.55120000	0.0000000
28	505.91760000	9.33570000	0.0000000
29	575.29780000	4.91380000	0.0000000
30	600.56420000	9.52330000	0.0000000
31	637.85100000	0.00530000	0.0000000
32	710.88630000	2.12150000	0.0000000
33	713.15460000	61.30680000	0.0000000
34	718.52250000	40.77520000	0.0000000
35	734.94650000	21.01950000	0.0000000
36	748.92040000	9.57910000	0.0000000
37	773.42190000	7.34520000	0.0000000
38	784.35050000	25.28430000	0.0000000
39	804.00280000	20.57000000	0.0000000
40	827.04180000	4.38230000	0.0000000
41	849.66770000	33.64300000	0.0000000
42	860.62880000	15.85320000	0.0000000
43	861.46140000	10.00070000	0.0000000
44	913.76690000	41.35750000	0.0000000
45	915.89450000	27.51390000	0.0000000
46	928.53370000	5.82950000	0.0000000
47	932.86870000	0.26370000	0.0000000
48	933.52650000	0.05850000	0.0000000
49	967.11210000	13.92840000	0.0000000
50	973.73310000	0.05980000	0.0000000
51	983.95220000	0.20110000	0.0000000
52	986.77430000	37.00620000	0.0000000
53	998.11610000	1.90470000	0.0000000
54	1006.42800000	24.54190000	0.0000000
55	1018.00640000	110.97990000	0.0000000
56	1025.30400000	2.26210000	0.0000000
57	1035.69340000	4.87300000	0.0000000
58	1052.62120000	1.42290000	0.0000000
59	1056.51370000	8.29570000	0.0000000
60	1063.54580000	6.43210000	0.0000000
61	1107.45320000	4.43170000	0.0000000

62	1115.47710000	8.03460000	0.0000000
63	1141.70900000	54.94870000	0.0000000
64	1171.16760000	794.05400000	0.0000000
65	1178.98830000	1.62680000	0.0000000
66	1189.96740000	32.07480000	0.0000000
67	1205.22120000	5.57420000	0.0000000
68	1223.01140000	17.64620000	0.0000000
69	1241.78100000	18.22370000	0.0000000
70	1257.75030000	358.18980000	0.0000000
71	1265.67380000	38.00510000	0.0000000
72	1272.74730000	14.08290000	0.0000000
73	1283.27890000	23.90660000	0.0000000
74	1300.01630000	3.36060000	0.0000000
75	1315.75380000	173.52700000	0.0000000
76	1331.22240000	12.25510000	0.0000000
77	1356.06010000	6.34880000	0.0000000
78	1359.88720000	0.61050000	0.0000000
79	1373.65650000	14.40330000	0.00000000
80	1388.63100000	22.40930000	0.00000000
81	1398.77680000	25.24190000	0.0000000
82	1400.79580000	82.60940000	0.0000000
83	1402.10280000	16.24410000	0.0000000
84	1424.35760000	20.27530000	0.00000000
85	1454.88940000	6.84020000	0.0000000
86	1468.10210000	0.16970000	0.0000000
87	1471.34600000	9.54530000	0.0000000
88	1482.33100000	6.62360000	0.0000000
89	1483.94320000	0.13160000	0.0000000
90	1484.40340000	1.79140000	0.0000000
91	1488.74420000	14.54780000	0.0000000
92	1490.39090000	13.76500000	0.0000000
93	1493.08770000	42.64310000	0.0000000
94	1497.75260000	2.49610000	0.0000000
95	1516.35680000	22.25900000	0.0000000
96	1532.66880000	19.31640000	0.0000000
97	1624.83580000	0.98610000	0.0000000
98	1645.52740000	7.56640000	0.00000000
99	1711.07940000	46.90890000	0.00000000
100	1725.90830000	409.89140000	0.00000000
101	3026.63730000	21.59110000	0.0000000
102	3030.35170000	26.56590000	0.0000000
103	3039.69360000	34.44730000	0.0000000
104	3043.16920000	15.98070000	0.0000000

105	3045.34700000	35.36230000	0.0000000
106	3051.87130000	17.79040000	0.0000000
107	3052.31350000	25.43060000	0.0000000
108	3079.47610000	46.23520000	0.0000000
109	3089.99010000	41.61060000	0.0000000
110	3101.11850000	31.14560000	0.0000000
111	3104.92520000	7.95730000	0.0000000
112	3106.69580000	21.79160000	0.0000000
113	3113.64150000	42.38280000	0.0000000
114	3119.15650000	56.48330000	0.0000000
115	3129.27860000	15.05490000	0.0000000
116	3143.05000000	0.33170000	0.0000000
117	3145.98600000	27.38600000	0.0000000
118	3167.81770000	0.52460000	0.0000000
119	3176.53650000	18.33070000	0.0000000
120	3190.25080000	31.82520000	0.0000000
121	3199.90810000	15.64520000	0.0000000
122	3207.64620000	22.43350000	0.0000000
123	3218.12170000	13.62020000	0.0000000

Route : # opt freq b3lyp scrf=(solvent=thf) geom=connectivity def2tzvp empiricaldispersion=gd3bj int=ultrafine pop=(regular,mk) SMILES : C=C2CCN(C(=O)OC(C)(C)C)C(clccccc1)C2 Formula : C₁₇H₂₃NO₂ Charge : 0 Multiplicity : 1

- Dipole : 3.5670 Debye
- Energy : -867.273949768 a.u.
- Gibbs Energy : -866.951141 a.u.

Number of imaginary frequencies : -1

Cartesian Coordinates (XYZ format)

С	-0.44218200	1.37968600	-0.98042400
С	-0.71349300	-0.09447100	-0.59845300
С	-0.12107200	0.41386800	1.74459700
С	0.13910800	1.89141700	1.41094500
Н	-0.34356100	-0.72047700	-1.41540600
Н	0.60031500	1.43413600	-1.29916100
Н	-1.05301900	1.68157600	-1.82925300
Н	-1.14765600	0.30430000	2.10253500
Н	0.53698400	0.07551700	2.54542400
Н	-0.12752100	2.51168300	2.26842000
Н	1.20667100	2.02435700	1.21622600
С	-0.64265900	2.29635100	0.19275900
С	-1.45632600	3.34805900	0.16687500
Н	-2.01880800	3.60772400	-0.72191100
Н	-1.58238800	3.98614000	1.03350600
N	0.03728600	-0.49399900	0.60386700
С	1.35212600	-0.97376500	0.38000400
0	1.67258900	-2.12073000	0.57786400
---	-------------	-------------	-------------
0	2.17234700	-0.01595400	-0.06321100
С	3.59903300	-0.26325100	-0.37764200
С	4.33293100	-0.70634700	0.88111500
Н	4.00254900	-1.68814600	1.20990800
Н	5.40283900	-0.74969400	0.67320400
Н	4.17206900	0.01258200	1.68575300
С	3.70620400	-1.27629000	-1.50966300
Н	4.74826100	-1.35214600	-1.82312200
Н	3.36517400	-2.25983600	-1.19719900
Н	3.11638600	-0.94952800	-2.36728700
С	4.07706100	1.10965000	-0.82985000
Н	3.95091900	1.84184200	-0.03188300
Н	5.13343300	1.06376900	-1.09505100
Н	3.51462100	1.44401700	-1.70202100
С	-2.19018900	-0.44150100	-0.41020500
С	-2.53774000	-1.58342500	0.31451100
С	-3.21424000	0.30963400	-0.98507100
С	-3.86539200	-1.96245100	0.46173200
Н	-1.75103400	-2.16725500	0.77156000
С	-4.54606800	-0.06689300	-0.83945300
Н	-2.98919200	1.20132300	-1.55015600
С	-4.87886200	-1.20362100	-0.11467500
Н	-4.10895300	-2.85201000	1.02898400
Н	-5.32310000	0.53623600	-1.29178500
Н	-5.91491100	-1.49453100	0.00180000

Mode	IR frequency	IR intensity	Raman intensity
1	-59.18510000	1.44730000	0.0000000
2	25.91400000	0.01060000	0.0000000
3	39.50930000	0.59840000	0.0000000
4	51.24310000	0.69810000	0.0000000
5	75.25580000	0.28450000	0.0000000
6	88.58310000	0.34500000	0.0000000
7	111.80080000	0.86990000	0.0000000
8	145.41630000	1.30550000	0.0000000
9	164.76570000	2.71210000	0.0000000
10	191.92930000	3.71560000	0.0000000
11	201.07120000	0.18810000	0.0000000
12	211.15130000	1.56750000	0.0000000
13	241.50300000	0.18980000	0.0000000
14	262.62710000	1.15780000	0.0000000
15	272.70660000	0.07740000	0.0000000
16	282.42120000	0.44300000	0.0000000
17	324.23980000	7.80350000	0.0000000
18	354.69970000	1.40820000	0.0000000
19	361.82840000	1.47610000	0.0000000

20	370.55270000	2.09520000	0.0000000
21	409.71310000	3.37910000	0.0000000
22	416.42160000	1.15560000	0.0000000
23	419.10020000	1.13830000	0.0000000
24	446.04990000	0.23510000	0.0000000
25	463.14660000	10.80840000	0.0000000
26	467.32400000	2.92060000	0.0000000
27	476.18130000	9.58680000	0.0000000
28	506.85780000	8.09920000	0.0000000
29	566.56470000	5.60460000	0.0000000
30	623.62620000	12.49160000	0.0000000
31	638.79960000	1.69680000	0.0000000
32	662.34740000	23.34970000	0.0000000
33	714.30570000	44.72200000	0.0000000
34	717.27160000	29.61410000	0.0000000
35	735.18610000	21.22240000	0.0000000
36	760.61120000	6.82790000	0.0000000
37	775.89410000	4.75030000	0.00000000
38	783.83840000	23.71400000	0.0000000
39	802.05500000	20.43040000	0.0000000
40	825.62200000	2.93690000	0.00000000
41	853.03730000	26.52530000	0.0000000
42	858.87890000	47.15520000	0.0000000
43	862.63370000	0.60710000	0.0000000
44	914.46750000	63.85320000	0.0000000
45	916.60890000	8.52560000	0.0000000
46	928.39330000	3.19280000	0.0000000
47	932.57090000	0.07570000	0.0000000
48	933.54890000	0.06970000	0.0000000
49	966.76650000	18.28770000	0.0000000
50	974.44450000	0.04580000	0.0000000
51	983.90780000	3.36710000	0.0000000
52	984.58540000	2.45280000	0.0000000
53	1001.36330000	3.79660000	0.0000000
54	1006.41400000	22.94210000	0.0000000
55	1017.40190000	88.10660000	0.0000000
56	1024.97090000	1.32510000	0.0000000
57	1034.91490000	46.51150000	0.0000000
58	1053.42260000	1.22520000	0.0000000
59	1056.94210000	6.21440000	0.0000000
60	1063.58720000	7.98150000	0.0000000
61	1105.96730000	113.92590000	0.0000000
62	1111.56520000	37.83290000	0.00000000

63	1145.21760000	32.49280000	0.0000000
64	1157.00670000	728.46710000	0.0000000
65	1179.26360000	3.21350000	0.0000000
66	1189.19510000	32.04360000	0.0000000
67	1206.15150000	3.63580000	0.0000000
68	1220.62200000	13.08660000	0.0000000
69	1239.58220000	41.04680000	0.0000000
70	1242.80000000	89.00680000	0.0000000
71	1263.75390000	36.28720000	0.00000000
72	1272.81270000	18.97810000	0.0000000
73	1283.12050000	20.02690000	0.0000000
74	1299.21310000	0.15550000	0.0000000
75	1315.07490000	33.84820000	0.0000000
76	1329.91240000	8.90160000	0.0000000
77	1353.76960000	11.12780000	0.0000000
78	1360.12170000	2.01140000	0.00000000
79	1372.09550000	16.72420000	0.0000000
80	1388.46500000	30.60150000	0.0000000
81	1399.94710000	26.16950000	0.0000000
82	1402.46780000	35.93290000	0.0000000
83	1404.60300000	112.69910000	0.0000000
84	1425.96980000	17.55900000	0.0000000
85	1454.10090000	2.49510000	0.0000000
86	1467.92510000	0.10590000	0.0000000
87	1473.12600000	11.09810000	0.0000000
88	1481.96240000	8.50350000	0.0000000
89	1483.99980000	0.54870000	0.0000000
90	1484.64320000	1.71900000	0.0000000
91	1489.22540000	33.25490000	0.0000000
92	1490.73460000	12.80570000	0.0000000
93	1495.12570000	28.64690000	0.0000000
94	1497.43000000	3.72080000	0.0000000
95	1516.28150000	23.02430000	0.00000000
96	1532.87560000	20.55690000	0.0000000
97	1624.71720000	0.20600000	0.0000000
98	1645.07690000	7.04300000	0.0000000
99	1711.26920000	60.40630000	0.0000000
100	1748.87210000	591.63120000	0.0000000
101	3028.81140000	23.93120000	0.0000000
102	3032.59260000	28.21360000	0.0000000
103	3037.61720000	37.07980000	0.0000000
104	3043.23080000	15.25890000	0.0000000
105	3045.51350000	35.94040000	0.0000000

106	3051.71260000	15.69310000	0.0000000
107	3060.44560000	27.43290000	0.0000000
108	3080.80520000	45.63880000	0.0000000
109	3090.73810000	43.73360000	0.0000000
110	3105.33030000	5.47760000	0.0000000
111	3106.00040000	33.63850000	0.0000000
112	3107.10360000	21.90450000	0.0000000
113	3113.15020000	42.91280000	0.0000000
114	3118.89820000	59.65160000	0.0000000
115	3129.70260000	14.73710000	0.0000000
116	3142.34920000	2.54930000	0.0000000
117	3145.84560000	22.92640000	0.0000000
118	3167.84600000	0.39200000	0.0000000
119	3176.50510000	18.74020000	0.0000000
120	3190.32060000	32.34200000	0.0000000
121	3201.20290000	15.17260000	0.0000000
122	3208.23080000	20.90180000	0.0000000
123	3215.78980000	15.95760000	0.0000000

Route : # opt freq b3lyp scrf=(solvent=thf) geom=connectivity def2tzvp empiricaldispersion=gd3bj int=ultrafine pop=(regular,mk) SMILES : C=C2CCN(C(=0)OC(C)(C)C)C(clcccccl)C2 Formula : C₁₇H₂₃NO₂ Charge : 0 Multiplicity : 1 Dipole : 2.0073 Debye Energy : -867.282502567 a.u. Gibbs Energy : -866.959664 a.u. Number of imaginary frequencies : 1

Cartesian Coordinates (XYZ format)

С	3.11774700	-1.79716500	0.65711600
С	1.81122000	-2.00477900	-0.10579000
С	1.46272100	0.41244500	-0.32782900
С	2.77455500	0.67896700	0.42961600
Н	2.02327500	-2.11170900	-1.17886400
Н	1.31757500	-2.91725900	0.23135200
Н	2.89725600	-1.81527100	1.72935900
Н	3.80364200	-2.61662200	0.43936700
Н	1.69462100	0.34940600	-1.39959200
Н	3.21766400	1.60219700	0.05524900
Н	2.52976600	0.82825100	1.48554900
С	3.72601000	-0.47380200	0.29120400
С	4.96903800	-0.33964300	-0.16106500
Н	5.62803600	-1.19349800	-0.26432600
Н	5.36906600	0.62906300	-0.43596800
N	0.90056000	-0.87476300	0.13957400

С	-0.37655100	-1.11204800	-0.46445200
0	-0.56214300	-1.17523100	-1.65732300
0	-1.30020200	-1.24376300	0.47676200
С	-2.73977300	-1.36276100	0.14570200
С	-3.18557400	-0.12434400	-0.62306200
Н	-2.75072000	-0.09401200	-1.61838600
Н	-4.27218100	-0.13811200	-0.71757100
Н	-2.89741200	0.77917100	-0.08479800
С	-2.99299600	-2.65632400	-0.61700700
Н	-4.06839900	-2.79443100	-0.73759100
Н	-2.53252400	-2.63305100	-1.60115500
Н	-2.60126100	-3.50836000	-0.05945300
С	-3.38856400	-1.40560600	1.52210100
Н	-3.16884100	-0.49281300	2.07632200
Н	-4.46975500	-1.49743500	1.41742800
Н	-3.02125300	-2.25858800	2.09346100
С	0.46092300	1.52537800	-0.12586600
С	-0.10421300	1.75812600	1.12848400
С	0.07773200	2.33001900	-1.19514600
С	-1.03089300	2.77598800	1.30784300
Н	0.16765500	1.12182300	1.95971100
С	-0.84796900	3.35327000	-1.01915700
Н	0.49865100	2.14533600	-2.17578200
С	-1.40560400	3.57800000	0.23356000
Н	-1.46676900	2.94075600	2.28497500
Н	-1.13868600	3.96727200	-1.86183200
Н	-2.13141800	4.36885500	0.37251300

Mode	IR frequency	IR intensity	Raman intensity
1	-39.47030000	2.26220000	0.0000000
2	38.91050000	0.02730000	0.0000000
3	47.98910000	0.24430000	0.0000000
4	56.92300000	0.92340000	0.0000000
5	71.03100000	0.87940000	0.0000000
6	82.09310000	0.94760000	0.0000000
7	110.58590000	0.36250000	0.0000000
8	131.69830000	2.49220000	0.0000000
9	169.68940000	3.60200000	0.0000000
10	194.69180000	3.12970000	0.0000000
11	204.87450000	0.23440000	0.0000000
12	210.08580000	0.19270000	0.0000000
13	236.71190000	1.48750000	0.0000000
14	240.97010000	0.38860000	0.0000000
15	270.84690000	0.16000000	0.0000000
16	280.07540000	5.80680000	0.0000000
17	303.68130000	2.04010000	0.0000000
18	318.60930000	3.25890000	0.0000000

19	324.79350000	8.11840000	0.0000000
20	359.58360000	3.5000000	0.0000000
21	398.99980000	0.57560000	0.0000000
22	415.44560000	0.39430000	0.0000000
23	416.73260000	1.77420000	0.0000000
24	425.53520000	5.72040000	0.0000000
25	456.56500000	0.78770000	0.0000000
26	475.62050000	5.67650000	0.0000000
27	494.40260000	0.36960000	0.0000000
28	524.03070000	15.57160000	0.0000000
29	548.62870000	9.34360000	0.0000000
30	607.54710000	18.01940000	0.0000000
31	636.79160000	0.13910000	0.0000000
32	662.77380000	11.89950000	0.0000000
33	715.36630000	70.53890000	0.0000000
34	733.90810000	0.58180000	0.0000000
35	745.03640000	23.94530000	0.0000000
36	758.41210000	11.38350000	0.0000000
37	778.46840000	22.17820000	0.0000000
38	799.93540000	7.82720000	0.0000000
39	808.13820000	12.85460000	0.0000000
40	836.67340000	2.41810000	0.0000000
41	850.09220000	42.20760000	0.0000000
42	861.10890000	1.84030000	0.0000000
43	868.56240000	23.62850000	0.0000000
44	918.70820000	18.85890000	0.0000000
45	928.78900000	42.05080000	0.0000000
46	932.80550000	0.91130000	0.0000000
47	933.42260000	1.15300000	0.0000000
48	935.94080000	10.16590000	0.0000000
49	970.33280000	1.04890000	0.0000000
50	973.84040000	0.11710000	0.0000000
51	983.40850000	0.21090000	0.0000000
52	1003.14110000	0.75290000	0.0000000
53	1006.86270000	11.89700000	0.0000000
54	1020.42100000	45.69750000	0.0000000
55	1026.00290000	1.47100000	0.0000000
56	1039.05040000	12.63060000	0.0000000
57	1053.65100000	5.70480000	0.0000000
58	1053.82370000	6.39170000	0.0000000
59	1063.15680000	3.38860000	0.0000000
60	1082.35620000	15.11080000	0.0000000
61	1105.11370000	14.05590000	0.0000000

62	1117.71290000	32.35900000	0.0000000
63	1122.06070000	73.26530000	0.0000000
64	1178.25390000	598.96420000	0.0000000
65	1179.80380000	11.84360000	0.0000000
66	1200.10580000	0.66780000	0.0000000
67	1204.86630000	10.87870000	0.0000000
68	1231.09980000	4.43350000	0.0000000
69	1248.95250000	25.34100000	0.0000000
70	1263.85290000	261.82070000	0.0000000
71	1271.71720000	44.86020000	0.0000000
72	1276.92080000	159.77430000	0.00000000
73	1285.44050000	39.08760000	0.0000000
74	1297.28940000	59.26740000	0.00000000
75	1307.30490000	2.16310000	0.00000000
76	1338.83170000	36.19790000	0.0000000
77	1347.01080000	6.86090000	0.0000000
78	1354.81750000	4.64680000	0.00000000
79	1363.50000000	32.25460000	0.0000000
80	1398.88240000	20.81290000	0.00000000
81	1399.27610000	29.97500000	0.0000000
82	1401.82940000	22.36960000	0.0000000
83	1406.34650000	15.90450000	0.0000000
84	1425.22130000	18.43580000	0.0000000
85	1452.95710000	1.65320000	0.0000000
86	1464.70880000	7.13160000	0.0000000
87	1468.26330000	0.44530000	0.0000000
88	1479.38230000	10.85980000	0.00000000
89	1483.72010000	0.17120000	0.0000000
90	1484.94500000	1.77500000	0.0000000
91	1489.50510000	12.11190000	0.0000000
92	1492.16620000	15.93620000	0.0000000
93	1497.52090000	2.55420000	0.0000000
94	1504.29240000	4.29950000	0.0000000
95	1516.21320000	23.91240000	0.0000000
96	1532.88730000	14.89370000	0.0000000
97	1628.44520000	1.16060000	0.0000000
98	1647.76620000	3.67280000	0.0000000
99	1714.72950000	43.52100000	0.0000000
100	1738.10260000	368.86690000	0.0000000
101	2967.13620000	64.02620000	0.0000000
102	2971.57480000	63.59170000	0.0000000
103	3020.73580000	29.54160000	0.0000000
104	3029.83300000	37.65400000	0.0000000

105	3042.68120000	16.84340000	0.0000000
106	3046.12940000	28.98450000	0.0000000
107	3052.80500000	22.99980000	0.0000000
108	3076.01760000	45.24360000	0.0000000
109	3086.89610000	44.42280000	0.0000000
110	3091.17950000	25.84970000	0.0000000
111	3104.66740000	13.89400000	0.0000000
112	3110.09420000	3.83530000	0.0000000
113	3113.70270000	43.40250000	0.0000000
114	3119.19330000	55.52020000	0.0000000
115	3130.39240000	16.96080000	0.0000000
116	3142.98780000	4.16990000	0.0000000
117	3146.95710000	21.61530000	0.0000000
118	3167.27750000	4.23140000	0.0000000
119	3173.15570000	1.49220000	0.0000000
120	3182.35090000	28.54420000	0.0000000
121	3192.27580000	32.83000000	0.0000000
122	3198.66290000	8.82900000	0.0000000
123	3209.85930000	20.46900000	0.0000000

Route : # opt freq b3lyp scrf=(solvent=thf) geom=connectivity def2tzvp empiricaldispersion=gd3bj int=ultrafine pop=(regular,mk) SMILES : C=C2CCN(C(=O)OC(C)(C)C)C(clcccccl)C2 Formula : C₁₇H₂₃NO₂ Charge : 0 Multiplicity : 1 Dipole : 3.0946 Debye Energy : -867.280856122 a.u. Gibbs Energy : -866.958475 a.u.

Number of imaginary frequencies : 1

Cartesian Coordinates (XYZ format)

С	-2.53577700	-2.39902300	-0.66626400
С	-1.02728600	-2.22702400	-0.49539700
С	-1.29038000	0.06187200	0.31377100
С	-2.81932200	-0.05307600	0.18563500
Н	-0.72946600	-2.57112500	0.50338900
Н	-0.49273000	-2.82951600	-1.23006700
Н	-2.79651400	-2.15103400	-1.70016800
Н	-2.80925600	-3.43981300	-0.48879000
Н	-1.01030600	-0.29931700	1.31353400
Н	-3.28561800	0.55164000	0.96395000
Н	-3.10880100	0.36442500	-0.78304700
С	-3.26775700	-1.48325300	0.27228500
С	-4.18626000	-1.90373300	1.13686000
Н	-4.48009100	-2.94543700	1.18712800
Н	-4.67889200	-1.21826500	1.81618100
N	-0.66558400	-0.81671800	-0.70659900
С	0.73997200	-0.60582100	-0.82483000
0	1.23686000	0.02762400	-1.72145100
0	1.40588400	-1.19160100	0.17288600

С	2.87857600	-1.11052800	0.29932700
С	3.53753600	-1.76690500	-0.90696800
Н	3.36251500	-1.19670100	-1.81548600
Н	4.61305100	-1.82886900	-0.73559700
Н	3.15598100	-2.78000800	-1.04215900
С	3.29368400	0.34430500	0.47807800
Н	4.36172000	0.38598600	0.69602100
Н	3.09681600	0.92680000	-0.41793100
Н	2.75540100	0.79179400	1.31409600
С	3.14584500	-1.91102200	1.56598600
Н	2.80489800	-2.94015700	1.44917500
Н	4.21529300	-1.92149400	1.77707600
Н	2.62858100	-1.46611500	2.41651800
С	-0.82021300	1.49051400	0.19328500
С	-1.04510400	2.23178400	-0.96700900
С	-0.15224200	2.09212100	1.25605600
С	-0.61333300	3.54715000	-1.05804300
Н	-1.54120400	1.76847700	-1.80918800
С	0.28127600	3.41143600	1.16992300
Н	0.03426200	1.52074700	2.15721100
С	0.05101400	4.14216600	0.01156100
Н	-0.78962200	4.10947100	-1.96605700
Н	0.80079800	3.86372400	2.00490400
Н	0.38895500	5.16784400	-0.06150900

Mode	IR frequency	IR intensity	Raman intensity
1	-42.48740000	0.88420000	0.0000000
2	35.05330000	0.42770000	0.0000000
3	42.40640000	0.28900000	0.0000000
4	45.62610000	0.28600000	0.0000000
5	75.81450000	1.74350000	0.0000000
6	82.59030000	0.36540000	0.0000000
7	107.38750000	1.07350000	0.0000000
8	132.44440000	2.22120000	0.0000000
9	168.81710000	4.49220000	0.0000000
10	197.13810000	2.40750000	0.0000000
11	201.22090000	0.32400000	0.0000000
12	213.18560000	0.30310000	0.0000000
13	225.64620000	1.34280000	0.0000000
14	241.54980000	0.21250000	0.0000000
15	269.88320000	0.14970000	0.0000000
16	278.17730000	1.17640000	0.0000000
17	308.41920000	0.68990000	0.0000000
18	322.49200000	7.74770000	0.0000000
19	346.03140000	2.18850000	0.0000000
20	363.57470000	3.02640000	0.0000000

21	389.17030000	3.42530000	0.0000000
22	413.90550000	1.71630000	0.00000000
23	417.65560000	0.38440000	0.0000000
24	425.45120000	1.20040000	0.0000000
25	463.21940000	6.66380000	0.0000000
26	472.72180000	5.07540000	0.0000000
27	495.32920000	2.14250000	0.0000000
28	540.41530000	2.45830000	0.0000000
29	545.88580000	17.52430000	0.0000000
30	614.64620000	25.30710000	0.0000000
31	636.26050000	0.30200000	0.0000000
32	647.63560000	2.98880000	0.0000000
33	694.34840000	19.73390000	0.0000000
34	715.26600000	65.64530000	0.0000000
35	735.72760000	0.74200000	0.0000000
36	773.03040000	34.33490000	0.0000000
37	782.54240000	5.21440000	0.00000000
38	800.60960000	10.40250000	0.0000000
39	806.34300000	7.55160000	0.00000000
40	836.11720000	1.66770000	0.0000000
41	853.30340000	54.52430000	0.0000000
42	860.42500000	0.58380000	0.0000000
43	872.01190000	8.67530000	0.0000000
44	920.27020000	28.05880000	0.0000000
45	928.85020000	32.47810000	0.0000000
46	932.33110000	0.54280000	0.0000000
47	933.13090000	0.13980000	0.0000000
48	935.65370000	16.48160000	0.0000000
49	969.70690000	0.47840000	0.0000000
50	972.95520000	0.05900000	0.0000000
51	980.66360000	0.50140000	0.0000000
52	995.73730000	1.31790000	0.0000000
53	1007.94300000	18.45660000	0.0000000
54	1018.48290000	28.69020000	0.0000000
55	1025.71540000	1.74820000	0.0000000
56	1037.19490000	15.04570000	0.0000000
57	1052.89870000	1.79970000	0.0000000
58	1054.02020000	10.64950000	0.0000000
59	1062.15930000	1.88270000	0.0000000
60	1081.87920000	14.18900000	0.0000000
61	1103.90540000	49.07390000	0.0000000
62	1111.79650000	11.59640000	0.0000000
63	1121.66430000	120.28380000	0.0000000

64	1162.60540000	747.42000000	0.0000000
65	1179.90730000	0.10890000	0.00000000
66	1201.02030000	2.27120000	0.00000000
67	1204.69730000	10.38180000	0.00000000
68	1233.45330000	5.57100000	0.00000000
69	1240.85300000	144.51120000	0.0000000
70	1251.55850000	12.58690000	0.0000000
71	1271.87900000	25.84670000	0.00000000
72	1277.72420000	78.68680000	0.0000000
73	1283.93960000	24.76750000	0.0000000
74	1297.42430000	48.28560000	0.0000000
75	1307.91710000	1.65890000	0.0000000
76	1339.76610000	13.04040000	0.0000000
77	1350.20740000	2.76380000	0.0000000
78	1356.16710000	3.7000000	0.0000000
79	1368.89920000	7.52650000	0.0000000
80	1396.91810000	42.74210000	0.0000000
81	1399.51930000	25.61690000	0.0000000
82	1402.09170000	11.85820000	0.0000000
83	1408.96060000	16.54140000	0.0000000
84	1425.47030000	17.10870000	0.0000000
85	1452.78500000	4.51110000	0.0000000
86	1463.89070000	7.56770000	0.0000000
87	1467.45520000	0.35390000	0.0000000
88	1478.67490000	11.12470000	0.00000000
89	1483.14210000	0.02790000	0.0000000
90	1484.11640000	1.37570000	0.0000000
91	1488.99970000	17.34530000	0.0000000
92	1492.62760000	13.52950000	0.0000000
93	1497.03910000	3.58940000	0.0000000
94	1503.24400000	5.70480000	0.0000000
95	1515.70710000	22.76620000	0.0000000
96	1533.60560000	12.09980000	0.0000000
97	1628.95930000	0.67030000	0.0000000
98	1648.38660000	2.04990000	0.0000000
99	1714.00030000	53.15130000	0.0000000
100	1762.34840000	504.90030000	0.0000000
101	2959.22230000	49.26570000	0.0000000
102	2982.38180000	67.53720000	0.0000000
103	3022.00090000	31.16210000	0.0000000
104	3032.65310000	35.06550000	0.0000000
105	3042.58560000	16.72340000	0.0000000
106	3046.55090000	32.59210000	0.0000000

107	3053.10670000	18.00930000	0.0000000
108	3083.08500000	45.32810000	0.0000000
109	3086.66820000	43.90960000	0.0000000
110	3091.62700000	24.30400000	0.0000000
111	3105.34650000	11.67880000	0.0000000
112	3109.51670000	8.44340000	0.0000000
113	3112.88400000	47.70500000	0.0000000
114	3118.64150000	63.48340000	0.0000000
115	3130.26630000	16.50410000	0.0000000
116	3143.71740000	2.68810000	0.0000000
117	3146.76130000	22.35930000	0.0000000
118	3166.04800000	5.82570000	0.0000000
119	3172.92640000	0.97550000	0.0000000
120	3181.98550000	26.93430000	0.0000000
121	3191.54270000	36.17120000	0.0000000
122	3198.47670000	10.69830000	0.0000000
123	3209.70780000	20.52620000	0.0000000

Equatorial Clockwise Transition State Re-Optimized

Route : # opt freq b3lyp scrf=(solvent=thf) geom=connectivity def2tzvp empiricaldispersion=gd3bj int=ultrafine pop=(regular,mk) SMILES : C=C2CCN(C(=O)OC(C)(C)C)C(clcccccl)C2 Formula : C₁₇H₂₃NO₂ Charge : 0 Multiplicity : 1 Dipole : 3.1521 Debye Energy : -867.276495435 a.u. Gibbs Energy : -866.953764 a.u.

Number of imaginary frequencies : 1

Cartesian Coordinates (XYZ format)

С	-2.45954600	1.87277700	0.32747800
С	-1.61477400	1.47622400	1.55014300
С	0.45822800	1.55169800	0.22947900
С	-0.34904900	1.89881300	-1.03814700
Н	-1.36519300	2.38008800	2.11302500
Н	-2.18307800	0.82706500	2.21689200
Н	-2.85322800	0.96590600	-0.13705400
Н	-3.30468500	2.48128400	0.65387200
Н	0.70049800	2.50161900	0.71692800
Н	0.26552400	2.51089500	-1.69992000
Н	-0.60593600	0.97811000	-1.56575000
С	-1.61368900	2.61801700	-0.66415800
С	-1.92193600	3.82745400	-1.12543600
Н	-2.83149700	4.33265500	-0.82288200
Н	-1.27830900	4.34613400	-1.82608400
N	-0.34277000	0.81429500	1.23433700
С	-0.42022300	-0.59498900	1.05379600
0	0.15794500	-1.37843300	1.76466800
0	-1.20987500	-0.92983300	0.02738000

С	-1.48609800	-2.33770600	-0.34072500
С	-0.19150500	-3.03283400	-0.74102700
Н	0.48619100	-3.12859300	0.10281200
Н	-0.42646700	-4.02930200	-1.11777100
Н	0.30926500	-2.47695700	-1.53372300
С	-2.19633700	-3.03729000	0.81063900
Н	-2.52377900	-4.02428300	0.48130000
Н	-1.53976600	-3.15773800	1.66850700
Н	-3.07787800	-2.46975100	1.11236000
С	-2.41197300	-2.18672000	-1.53985800
Н	-1.91636600	-1.63338900	-2.33805400
Н	-2.68786500	-3.17065700	-1.91964400
Н	-3.32167300	-1.65497700	-1.25963800
С	1.76303700	0.83081400	-0.03166600
С	1.98036000	0.05802700	-1.16898500
С	2.77724200	0.91387300	0.92353100
С	3.18219700	-0.62089800	-1.34731600
Н	1.21298700	-0.02437000	-1.92522000
С	3.97751200	0.24055800	0.74997400
Н	2.61397000	1.50730200	1.81470700
С	4.18308200	-0.53313800	-0.38918800
Н	3.33239900	-1.21944100	-2.23664800
Н	4.75262000	0.31713800	1.50164800
Н	5.11793500	-1.06074400	-0.52761500

Mode	IR frequency	IR intensity	Raman intensity
1	-43.55750000	1.22530000	0.0000000
2	27.49670000	0.02790000	0.0000000
3	42.04470000	0.45600000	0.0000000
4	54.28840000	0.13690000	0.0000000
5	73.42250000	2.03530000	0.0000000
6	99.11210000	0.06530000	0.0000000
7	109.37080000	1.13150000	0.0000000
8	130.55660000	1.61310000	0.0000000
9	167.12840000	2.89180000	0.0000000
10	188.51880000	2.88820000	0.0000000
11	201.12330000	0.34030000	0.0000000
12	208.88270000	0.41460000	0.0000000
13	246.69360000	0.57830000	0.0000000
14	260.26260000	1.37140000	0.0000000
15	272.22480000	0.07660000	0.0000000
16	279.90700000	0.27290000	0.0000000
17	323.62200000	7.21350000	0.0000000
18	328.08850000	0.35390000	0.0000000
19	356.50670000	0.83810000	0.0000000
20	365.17370000	2.25960000	0.0000000
21	394.80640000	4.24150000	0.0000000

22	414.12130000	0.15180000	0.0000000
23	418.24070000	0.60610000	0.0000000
24	433.22280000	1.87710000	0.0000000
25	457.18530000	7.51370000	0.0000000
26	473.50990000	2.24380000	0.0000000
27	490.53090000	7.20430000	0.0000000
28	522.25190000	10.04710000	0.0000000
29	565.76800000	5.86380000	0.0000000
30	612.64990000	15.68930000	0.0000000
31	630.13510000	13.98290000	0.0000000
32	638.82640000	1.79480000	0.0000000
33	680.53840000	35.98380000	0.0000000
34	712.37400000	66.13550000	0.0000000
35	732.38320000	1.02790000	0.0000000
36	768.08430000	47.15980000	0.0000000
37	778.88280000	7.96020000	0.0000000
38	793.48070000	1.91280000	0.0000000
39	807.88350000	5.83560000	0.0000000
40	832.73290000	2.97120000	0.0000000
41	854.53300000	55.34800000	0.0000000
42	857.79410000	0.39300000	0.0000000
43	865.07590000	12.08790000	0.0000000
44	915.57850000	59.63140000	0.0000000
45	925.29670000	5.35910000	0.0000000
46	932.30310000	0.31480000	0.0000000
47	933.49310000	0.06810000	0.0000000
48	943.66090000	12.73690000	0.0000000
49	954.11380000	5.76170000	0.0000000
50	974.23640000	0.06830000	0.0000000
51	978.80900000	0.24020000	0.0000000
52	983.43840000	12.79900000	0.0000000
53	993.85670000	1.62290000	0.0000000
54	1006.74480000	7.76670000	0.0000000
55	1016.94030000	38.08610000	0.00000000
56	1026.70680000	1.57300000	0.0000000
57	1049.63490000	37.95240000	0.0000000
58	1054.39490000	1.74500000	0.0000000
59	1058.79420000	7.26680000	0.0000000
60	1063.89020000	10.30190000	0.0000000
61	1108.81390000	24.19110000	0.0000000
62	1122.69550000	111.72410000	0.0000000
63	1134.69170000	87.36940000	0.0000000
64	1151.00610000	677.38790000	0.00000000

65	1181.20220000	0.04520000	0.0000000
66	1191.76110000	11.93480000	0.00000000
67	1206.43390000	3.51460000	0.0000000
68	1222.91660000	11.37360000	0.0000000
69	1233.46940000	61.09110000	0.00000000
70	1254.32870000	11.12180000	0.0000000
71	1272.62380000	25.79670000	0.0000000
72	1281.84680000	8.96320000	0.0000000
73	1283.42500000	18.84460000	0.0000000
74	1299.86020000	49.61730000	0.0000000
75	1306.17410000	23.14810000	0.0000000
76	1342.13010000	3.11710000	0.0000000
77	1349.91380000	7.83080000	0.0000000
78	1357.44580000	2.68220000	0.0000000
79	1382.61080000	24.60660000	0.0000000
80	1390.54990000	51.27420000	0.00000000
81	1400.19530000	25.99290000	0.0000000
82	1402.57680000	16.84250000	0.0000000
83	1409.11140000	47.58000000	0.0000000
84	1424.94590000	19.13440000	0.0000000
85	1452.92880000	0.58790000	0.0000000
86	1468.09160000	1.56420000	0.0000000
87	1468.76570000	9.84700000	0.0000000
88	1482.61690000	10.14690000	0.0000000
89	1484.04640000	15.87120000	0.0000000
90	1485.00810000	1.35750000	0.0000000
91	1488.04540000	13.64210000	0.0000000
92	1489.45000000	2.79600000	0.0000000
93	1490.45890000	16.88350000	0.0000000
94	1497.39230000	3.80900000	0.0000000
95	1515.78960000	24.23540000	0.0000000
96	1535.26060000	11.67470000	0.0000000
97	1628.26770000	2.21110000	0.0000000
98	1648.79480000	2.06420000	0.0000000
99	1709.40250000	72.67880000	0.0000000
100	1755.98490000	538.78110000	0.0000000
101	3010.69150000	30.14110000	0.0000000
102	3025.24060000	57.76750000	0.0000000
103	3041.56550000	31.45630000	0.0000000
104	3042.62320000	19.30020000	0.0000000
105	3045.46900000	17.82330000	0.0000000
106	3046.57920000	33.52120000	0.0000000
107	3053.98530000	18.79750000	0.00000000

108	3083.48340000	46.42970000	0.0000000
109	3090.17650000	19.38330000	0.0000000
110	3091.33050000	51.79810000	0.0000000
111	3105.73280000	13.21500000	0.0000000
112	3109.63950000	4.41830000	0.0000000
113	3112.95840000	47.74350000	0.0000000
114	3118.57130000	69.00070000	0.0000000
115	3128.96180000	16.55610000	0.0000000
116	3142.47140000	8.70530000	0.0000000
117	3149.33170000	15.98330000	0.0000000
118	3167.72170000	3.47740000	0.0000000
119	3174.17500000	1.86610000	0.0000000
120	3183.41830000	29.21860000	0.0000000
121	3193.98510000	34.64070000	0.0000000
122	3203.56560000	10.60060000	0.0000000
123	3208.19560000	22.23090000	0.0000000

Equatorial Anticlockwise Transition State Re-Optimized

Route : # opt freq b3lyp scrf=(solvent=thf) geom=connectivity def2tzvp empiricaldispersion=gd3bj int=ultrafine pop=(regular,mk) SMILES : C=C2CCN(C(=0)OC(C)(C)C)C(clcccccl)C2 Formula : C₁₇H₂₃NO₂ Charge : 0 Multiplicity : 1 Dipole : 2.0699 Debye Energy : -867.277898089 a.u. Gibbs Energy : -866.954363 a.u. Number of imaginary frequencies : 1

Cartesian Coordinates (XYZ format)

C C	-3.07647900 -2.00625900	-1.62868300 -1.55150600	0.03361200 1.13494100
C	-1.43258100	0.75266300	0.50356700
С	-2.47889700	0.72396400	-0.62679000
Н	-2.47653900	-1.23349700	2.06932900
Н	-1.56024600	-2.53102200	1.31137100
Н	-2.62816000	-2.07666700	-0.85724000
Н	-3.89472200	-2.27173900	0.36219300
Н	-1.94895600	1.09393400	1.40716100
Н	-2.88414300	1.72615700	-0.77461800
Н	-1.99187100	0.40955600	-1.55225200
С	-3.57365400	-0.24990900	-0.29374800
С	-4.85763300	0.09523100	-0.23987200
Н	-5.62578700	-0.62390900	0.01877300
Н	-5.18109100	1.10536400	-0.46179200
Ν	-0.92835100	-0.59537700	0.85459500
С	0.05454900	-1.08630400	-0.05576800

0	-0.13111200	-1.31177600	-1.23053500
0	1.20477600	-1.25321800	0.58695000
С	2.44822100	-1.64058900	-0.11702400
С	2.29874300	-3.03442800	-0.71272500
Н	1.57175700	-3.04534400	-1.52047200
Н	3.26305900	-3.35921300	-1.10609700
Н	1.98911100	-3.74405300	0.05602100
С	2.79071700	-0.58385000	-1.16033300
Н	3.78687000	-0.78600200	-1.55635300
Н	2.08149700	-0.59076800	-1.98365900
Н	2.79439300	0.40770400	-0.70682900
С	3.47370700	-1.63740300	1.00838500
Н	3.19567800	-2.35255800	1.78312400
Н	4.45282600	-1.91312300	0.61634200
Н	3.54435700	-0.64620700	1.45691000
С	-0.25837000	1.68263200	0.26913700
С	0.04211600	2.22334300	-0.97752100
С	0.58158400	1.97789000	1.34530200
С	1.15742200	3.03935000	-1.14793800
Н	-0.58522900	2.00715700	-1.83013700
С	1.69468100	2.78825900	1.18002500
Н	0.36284500	1.55000800	2.31538300
С	1.98776800	3.32229900	-0.07233800
Н	1.37719300	3.44748000	-2.12608500
Н	2.33546700	3.00330200	2.02557800
Н	2.85703600	3.95329600	-0.20558300

Mode	IR frequency	IR intensity	Raman intensity
1	-36.28790000	2.05310000	0.0000000
2	37.24280000	0.08640000	0.0000000
3	49.74100000	0.29480000	0.0000000
4	61.86440000	0.57400000	0.0000000
5	71.24450000	1.21260000	0.0000000
6	109.41120000	0.67950000	0.0000000
7	114.68320000	0.41520000	0.0000000
8	140.34340000	1.78870000	0.0000000
9	162.81490000	3.85650000	0.0000000
10	187.13370000	1.09280000	0.0000000
11	202.32970000	2.83310000	0.0000000
12	208.36590000	0.28120000	0.0000000
13	244.73410000	2.31520000	0.0000000
14	253.06100000	2.48280000	0.0000000
15	272.68680000	0.12720000	0.0000000
16	295.43020000	2.75540000	0.0000000
17	306.50560000	2.81630000	0.0000000
18	325.41930000	10.49390000	0.0000000
19	343.39340000	0.81660000	0.0000000

20	363.83060000	2.52690000	0.0000000
21	403.74110000	2.55460000	0.0000000
22	413.71490000	0.13760000	0.0000000
23	420.74010000	0.70130000	0.0000000
24	434.04670000	5.72880000	0.0000000
25	460.99460000	1.26950000	0.0000000
26	474.58600000	0.97420000	0.0000000
27	486.88530000	7.34920000	0.0000000
28	519.54160000	9.98000000	0.0000000
29	565.56850000	3.17100000	0.0000000
30	605.90480000	14.68880000	0.0000000
31	638.04990000	0.60350000	0.0000000
32	658.94680000	7.04080000	0.0000000
33	698.14420000	55.51060000	0.0000000
34	713.99140000	74.42750000	0.0000000
35	732.89530000	1.37990000	0.0000000
36	757.87930000	28.34230000	0.0000000
37	776.35480000	19.28570000	0.0000000
38	796.20120000	4.23400000	0.0000000
39	811.90100000	12.80450000	0.0000000
40	833.29830000	0.79140000	0.0000000
41	852.72670000	31.85500000	0.0000000
42	859.40010000	1.00810000	0.0000000
43	864.83070000	19.26960000	0.0000000
44	915.66040000	60.64890000	0.0000000
45	925.03390000	5.71840000	0.0000000
46	932.67220000	0.29930000	0.0000000
47	933.90050000	0.11840000	0.0000000
48	941.77150000	9.98540000	0.0000000
49	958.82090000	10.02800000	0.0000000
50	974.33460000	0.12950000	0.0000000
51	983.15540000	0.38010000	0.0000000
52	987.10690000	24.10100000	0.0000000
53	1003.13710000	3.34600000	0.0000000
54	1007.19090000	4.12040000	0.0000000
55	1020.64780000	38.80560000	0.0000000
56	1026.78400000	1.12500000	0.0000000
57	1051.09410000	23.51510000	0.0000000
58	1053.55380000	1.52700000	0.0000000
59	1059.54260000	4.23210000	0.0000000
60	1064.84910000	3.34920000	0.0000000
61	1110.97630000	20.26700000	0.0000000
62	1128.04780000	51.43140000	0.0000000

63	1134.77840000	91.13630000	0.0000000
64	1175.25910000	681.85100000	0.0000000
65	1181.33980000	0.17950000	0.0000000
66	1191.33540000	10.17590000	0.0000000
67	1207.57890000	3.99950000	0.0000000
68	1221.24570000	8.66970000	0.0000000
69	1252.25000000	33.47820000	0.0000000
70	1260.09310000	372.56950000	0.0000000
71	1272.16790000	25.28810000	0.0000000
72	1280.96240000	10.59340000	0.0000000
73	1283.78560000	13.75040000	0.0000000
74	1296.42570000	50.57480000	0.0000000
75	1304.25800000	4.10520000	0.0000000
76	1342.46550000	3.45940000	0.0000000
77	1348.39500000	15.08020000	0.0000000
78	1358.68630000	3.97410000	0.0000000
79	1380.27810000	11.78640000	0.0000000
80	1388.51230000	36.16720000	0.0000000
81	1399.25420000	28.84380000	0.0000000
82	1401.49220000	36.48890000	0.0000000
83	1405.26040000	70.77100000	0.0000000
84	1425.36940000	20.36770000	0.0000000
85	1451.55430000	5.01230000	0.0000000
86	1468.16750000	11.01480000	0.0000000
87	1468.62230000	0.55320000	0.0000000
88	1483.55060000	17.47110000	0.0000000
89	1484.56480000	0.48250000	0.0000000
90	1485.03750000	1.38040000	0.0000000
91	1487.36000000	15.48730000	0.0000000
92	1488.84540000	7.67330000	0.0000000
93	1490.21620000	14.36330000	0.0000000
94	1497.81580000	2.87930000	0.0000000
95	1517.12830000	24.13950000	0.0000000
96	1535.59420000	14.79500000	0.0000000
97	1627.76810000	2.86190000	0.0000000
98	1648.62060000	3.63680000	0.0000000
99	1709.32370000	59.19490000	0.0000000
100	1727.93210000	354.39160000	0.0000000
101	3007.13080000	27.60430000	0.0000000
102	3027.98990000	53.98430000	0.0000000
103	3035.28300000	24.97730000	0.0000000
104	3042.47400000	17.39470000	0.0000000
105	3043.83100000	22.28220000	0.00000000

106	3045.98350000	29.71080000	0.0000000
107	3052.56700000	23.91970000	0.0000000
108	3081.09680000	53.36990000	0.0000000
109	3087.53080000	35.11190000	0.0000000
110	3090.79380000	31.74670000	0.0000000
111	3104.57240000	13.84260000	0.0000000
112	3110.20040000	2.77120000	0.0000000
113	3113.27760000	43.27270000	0.0000000
114	3118.79710000	57.30710000	0.0000000
115	3128.52420000	16.93260000	0.0000000
116	3143.10270000	1.12020000	0.0000000
117	3146.03960000	26.51310000	0.0000000
118	3168.63970000	1.08180000	0.0000000
119	3176.20050000	4.25420000	0.0000000
120	3184.86650000	30.23030000	0.0000000
121	3194.17050000	29.97500000	0.0000000
122	3206.31400000	9.01640000	0.0000000
123	3207.73580000	22.25460000	0.0000000

Thermochemistry Values

Left Rotamer Axial:

	Temperature		
	298 K	213 K	195 K
ε0	-867.300243526 a.u.	-867.300243526 a.u.	-867.300243526 a.u.
8 ZPE	0.370384 a.u.	0.370384 a.u.	0.370384 a.u.
Etot	0.389867 a.u.	0.380965 a.u.	0.379439 a.u.
H _{corr}	0.390811 a.u.	0.381640 a.u.	0.380057 a.u.
Gcorr	0.320714 a.u.	0.339211 a.u.	0.342727 a.u.
Stot	147.533 calmol ⁻¹ K ⁻¹	124.998 calmol ⁻¹ K ⁻¹	120.127 calmol ⁻¹ K ⁻¹
ε ₀ + ε _{ZPE}	–866.929859 a.u.	-866.929860 a.u.	-866.929860 a.u.
$\epsilon_0 + E_{tot}$	–866.910376 a.u.	-866.919279 a.u.	-866.920805 a.u.
$\epsilon_0 + H_{corr}$	-866.909432 a.u.	-866.918604 a.u.	-866.920187 a.u.
$\epsilon_0 + G_{corr}$	–866.979530 a.u.	-866.961033 a.u.	-866.957517 a.u.

Right Rotamer Axial:

	Temperature		
	298 K	223 K	195 K
ε ₀	-867.300166083 a.u.	-867.300166083 a.u.	-867.300166083 a.u.
8 _{ZPE}	0.370126 a.u.	0.370126 a.u.	0.370126 a.u.
Etot	0.389725 a.u.	0.380814 a.u.	0.379285 a.u.
H _{corr}	0.390669 a.u.	0.381488 a.u.	0.379903 a.u.
G _{corr}	0.317101 a.u.	0.336588 a.u.	0.340312 a.u.
Stot	154.836 calmol ⁻¹ K ⁻¹	132.279 calmol ⁻¹ K ⁻¹	127.402 calmol ⁻¹ K ⁻¹
ε ₀ + ε _{ZPE}	-866.930040 a.u.	-866.930040 a.u.	-866.930040 a.u.
$\epsilon_0 + E_{tot}$	-866.910441 a.u.	-866.919352 a.u.	-866.920881 a.u.
$\epsilon_0 + H_{corr}$	-866.909497 a.u.	-866.918678 a.u.	-866.920263 a.u.
$\epsilon_0 + G_{corr}$	-866.983065 a.u.	-866.963578 a.u.	-866.959854 a.u.

Left Rotamer Equatorial:

	Temperature		
	298 K	195 K	
٥3	-867.295403418 a.u.	–867.295403418 a.u.	
ε zpe	0.369956 a.u.	0.369956 a.u.	
Etot	0.389434 a.u.	0.378969 a.u.	
H _{corr}	0.390379 a.u.	0.379587 a.u.	
G _{corr}	0.321920 a.u.	0.343360 a.u.	
Stot	144.083 calmol ⁻¹ K ⁻¹	116.578 calmol ⁻¹ K ⁻¹	
ε ₀ + ε _{ZPE}	–866.925448 a.u.	–866.925447 a.u.	
$\epsilon_0 + E_{tot}$	–866.905969 a.u.	–866.916434 a.u.	
$\epsilon_0 + H_{corr}$	-866.905025 a.u.	-866.915816 a.u.	
$\epsilon_0 + G_{corr}$	-866.973483 a.u.	-866.952043 a.u.	

Right Rotamer Equatorial:

	Temperature		
	298 K	195 K	
63	–867.292815979 a.u.	–867.292815979 a.u.	
8ZPE	0.369571 a.u.	0.369571 a.u.	
E _{tot}	0.389259 a.u.	0.378763 a.u.	
H _{corr}	0.390203 a.u.	0.379380 a.u.	
Gcorr	0.320236 a.u.	0.342192 a.u.	
Stot	147.258 calmol ⁻¹ K ⁻¹	119.671 calmol ⁻¹ K ⁻¹	
ε ₀ + ε _{ZPE}	–866.923245 a.u.	-866.923245 a.u.	
$\epsilon_0 + E_{tot}$	–866.903557 a.u.	–866.914053 a.u.	
$\epsilon_0 + H_{corr}$	-866.902613 a.u.	-866.913436 a.u.	
$\epsilon_0 + G_{corr}$	-866.972580 a.u.	-866.950624 a.u.	

Left Rotamer Equatorial Re-Optimized:

	Temperature	
	298 K	195 K
٤٥	-867.296096363 a.u.	-867.296096363 a.u.
ε _{zpe}	0.370295 a.u.	0.370295 a.u.
Etot	0.389628 a.u.	0.379210 a.u.
H _{corr}	0.390572 a.u.	0.379828 a.u.
Gcorr	0.322547 a.u.	0.343845 a.u.
Stot	143.171 calmol ⁻¹ K ⁻¹	115.792 calmol ⁻¹ K ⁻¹
ε ₀ + ε _{ZPE}	-866.925801 a.u.	-866.925801 a.u.
$\epsilon_0 + E_{tot}$	-866.906468 a.u.	-866.916886 a.u.
$\epsilon_0 + H_{corr}$	–866.905524 a.u.	-866.916268 a.u.
$\epsilon_0 + G_{corr}$	–866.973549 a.u.	-866.952251 a.u.

Right Rotamer Equatorial Re-Optimized:

	Temperature		
	298 K	195 K	
E 0	-867.293496677 a.u.	-867.293496677 a.u.	
E ZPE	0.370033 a.u.	0.370033 a.u.	
Etot	0.389484 a.u.	0.379051 a.u.	
H _{corr}	0.390428 a.u.	0.379668 a.u.	
G _{corr}	0.321322 a.u.	0.342991 a.u.	
Stot	145.446 calmol ⁻¹ K ⁻¹	118.028 calmol ⁻¹ K ⁻¹	
ε ₀ + ε _{ZPE}	–866.923464 a.u.	-866.923464 a.u.	
$\epsilon_0 + E_{tot}$	-866.904013 a.u.	-866.914446 a.u.	
$\epsilon_0 + H_{corr}$	-866.903069 a.u.	-866.913829 a.u.	
$\epsilon_0 + G_{corr}$	–866.972175 a.u.	-866.950506 a.u.	

Axial Clockwise Transition State:

	Temperature	
	298 K	195 K
63	–867.274004513 a.u.	–867.274004513 a.u.
8ZPE	0.369562 a.u.	0.369562 a.u.
E _{tot}	0.388146 a.u.	0.378026 a.u.
H _{corr}	0.389090 a.u.	0.378644 a.u.
G _{corr}	0.322532 a.u.	0.343381 a.u.
Stot	140.084 calmol ⁻¹ K ⁻¹	113.477 calmol ⁻¹ K ⁻¹
$\varepsilon_0 + \varepsilon_{ZPE}$	–866.904443 a.u.	-866.904443 a.u.
$\epsilon_0 + E_{tot}$	–866.885859 a.u.	-866.895979 a.u.
$\epsilon_0 + H_{corr}$	-866.884914 a.u.	-866.895361 a.u.
$\epsilon_0 + G_{corr}$	-866.951473 a.u.	-866.930624 a.u.

Axial Anticlockwise Transition State:

	Temperature	
	298 K	195 K
٥3	–867.273949768 a.u.	–867.273949768 a.u.
ε zpe	0.369571 a.u.	0.369571 a.u.
E _{tot}	0.388153 a.u.	0.378034 a.u.
H _{corr}	0.389097 a.u.	0.378651 a.u.
Gcorr	0.322809 a.u.	0.343564 a.u.
Stot	139.515 calmol ⁻¹ K ⁻¹	112.910 calmol ⁻¹ K ⁻¹
ε ₀ + ε _{ZPE}	–866.904379 a.u.	-866.904379 a.u.
$\epsilon_0 + E_{tot}$	–866.885797 a.u.	-866.895916 a.u.
$\epsilon_0 + H_{corr}$	–866.884853 a.u.	-866.895299 a.u.
$\epsilon_0 + G_{corr}$	-866.951141 a.u.	-866.930386 a.u.

Equatorial Clockwise Transition State:

	Temperature	
	298 K	195 K
E 0	–867.282502567 a.u.	–867.282502567 a.u.
ε zpe	0.369283 a.u.	0.369283 a.u.
Etot	0.387984 a.u.	0.377829 a.u.
H _{corr}	0.388928 a.u.	0.378447 a.u.
G _{corr}	0.322839 a.u.	0.343520 a.u.
Stot	139.095 calmol ⁻¹ K ⁻¹	112.393 calmol ⁻¹ K ⁻¹
$\epsilon_0 + \epsilon_{ZPE}$	–866.913219 a.u.	–866.913220 a.u.
$\epsilon_0 + E_{tot}$	–866.894519 a.u.	-866.904674 a.u.
$\epsilon_0 + H_{corr}$	-866.893575 a.u.	-866.904056 a.u.
$\epsilon_0 + G_{corr}$	-866.959664 a.u.	-866.938983 a.u.

	Temperature	
	298 K	195 K
ε ₀	-867.280856122 a.u.	-867.280856122 a.u.
8ZPE	0.369200 a.u.	0.369200 a.u.
E _{tot}	0.387933 a.u.	0.377775 a.u.
H _{corr}	0.388877 a.u.	0.378393 a.u.
Gcorr	0.322381 a.u.	0.343203 a.u.
Stot	139.953 calmol ⁻¹ K ⁻¹	113.243 calmol ⁻¹ K ⁻¹
$\epsilon_0 + \epsilon_{ZPE}$	–866.911656 a.u.	-866.911656 a.u.
$\epsilon_0 + E_{tot}$	–866.892923 a.u.	-866.903081 a.u.
$\epsilon_0 + H_{corr}$	-866.891979 a.u.	-866.902463 a.u.
$\epsilon_0 + G_{corr}$	–866.958475 a.u.	-866.937653 a.u.

Equatorial Anticlockwise Transition State:

Equatorial Clockwise Transition State Re-Optimized:

	Temperature	
	298 K	195 K
63	–867.276495435 a.u.	-867.276495435 a.u.
8ZPE	0.369342 a.u.	0.369342 a.u.
E _{tot}	0.387999 a.u.	0.377845 a.u.
H _{corr}	0.388944 a.u.	0.378462 a.u.
G _{corr}	0.322732 a.u.	0.343454 a.u.
Stot	139.354 calmol ⁻¹ K ⁻¹	112.656 calmol ⁻¹ K ⁻¹
ε ₀ + ε _{ZPE}	–866.907154 a.u.	-866.907153 a.u.
$\epsilon_0 + E_{tot}$	–866.888496 a.u.	-866.898650 a.u.
$\epsilon_0 + H_{corr}$	-866.887552 a.u.	-866.898033 a.u.
$\epsilon_0 + G_{corr}$	-866.953764 a.u.	-866.933041 a.u.

Equatorial Anticlockwise Transition State Re-Optimized:

	Temperature	
	298 K	195 K
ε ₀	–867.277898089 a.u.	-867.277898089 a.u.
8 _{ZPE}	0.369540 a.u.	0.369540 a.u.
Etot	0.388109 a.u.	0.377970 a.u.
H _{corr}	0.389053 a.u.	0.378588 a.u.
G _{corr}	0.323535 a.u.	0.344021 a.u.
Stot	137.895 calmol ⁻¹ K ⁻¹	111.237 calmol ⁻¹ K ⁻¹
ε ₀ + ε _{ZPE}	–866.908358 a.u.	–866.908358 a.u.
$\epsilon_0 + E_{tot}$	–866.889789 a.u.	-866.899928 a.u.
$\epsilon_0 + H_{corr}$	-866.888845 a.u.	-866.899310 a.u.
$\epsilon_0 + G_{corr}$	–866.954363 a.u.	-866.933877 a.u.