Cell Reports Physical Science, Volume 3

Supplemental information

Mechanosensing view of SARS-CoV-2 infection

by a DNA nano-assembly

Jialu Zhang, Yihao Huang, Miao Sun, Ting Song, Shuang Wan, Chaoyong Yang, and Yanling Song

Supporting Information

Supporting Figures

TriApTDF	56pN	TriApTDF	53pN	TriApTDF	43pN
1		I		1 [*]	
GAG ACG AGC CAG	C CGA GCA GAG-3'	GAG ACG AGO	C CAC CGA GCA GAG-3'	GAG ACG AGC	CAC CGA GCA GAG-3
3'-CTC TGC TCG GT	G GCT CGT CTC-5'	3'-CTC TGC TCG	GTG GCT CGT CTC-5'	3'-CTC TGC TCG	GTG GCT CGT CTC-5'
TriApTDF	33pN	TriApTDF	23pN	TriApTDF	12pN
		I GAG ACG AGC	CAC CGA GCA GAG-3'	I GAG ACG AGC	CAC CGA GCA GAG-3
3'-CTC TGC TCG GT	G GCT CGT CTC-5'	3'-CTC TGC TCG	GTG GCT CGT CTC-5'	3'-CTC TGC TCG	GTG GCT CGT CTC-5'
TriApTDF I	9.6pN	TriApTDF I	4.7pN	Can	Bases in red font
GCG CGC ATG-3'		GTA AAT ATG-	3'	V	indicate modified
3'-CGC GCG TAC-5'		3'-CAT TTA TAC-	5'	1111111	

Figure S1. The TGT module comprising double-stranded DNA in unzipping or shear geometry, displaying estimated tensile forces of 4.7, 9.6, 12, 23, 33, 43 and 56 pN^{1,2}. Using DNA hybridization, we obtained a series of TGT modules with different defined pN-scale tensile forces.

Figure S2. Agarose gel electrophoresis analysis of the binding module at excitation wavelength of (A) UV and (B) 647 nm. Lane 1: s12-56pN-TriApTDF, Lane 2: Cy5-labelled s12-56pN-TriApTDF, Lane 3: s9.6pN-TriApTDF, Lane 4: Cy5-labelled s9.6pN-TriApTDF, Lane 5: s4.7pN-TriApTDF and Lane 6: Cy5 labelled s4.7pN-TriApTDF. Although Cy5-labelled s9.6pN-TriApTDF displayed many more by-products, we mainly used s4.7pN-TriApTDF, s9.6pN-TriApTDF and s12-56pN-TriApTDF to analyze the mechanical force between SARS-CoV-2 and host cell. The extra band below 100 bp may be the excess single-stranded DNA of A17-12-56pN, or A17-9.6pN, or A17-4.7pN.

Figure S3. The binding curve and dissociation constant of TriApTDF against SARS-CoV-2 RBD-beads of K417N/E484K/N501Y variant in binding buffer.

Figure S4. Diagram of the modification process for streptavidin-functionalized glass slide chip.

Figure S5. Experimental process of the optimization of the particle concentration of wild type SARS-CoV-2 pseudoviruses.

Figure S6. The optimization of the particle concentration of wild type SARS-CoV-2 pseudoviruse.

Figure S7. Working flow chart of Virus-TGT for determining the mechanical forces between SARS-CoV-2 pseudovirus and ACE2-expressing HEK293T cells.

Figure S8. Schematic illustration of the CG model in DPD simulations: SARS-CoV-2 virus nanoparticle (90 nm) consists of twelve spike trimer protein. Spike protein with green color represents wild type SARS-CoV-2 virus based on the protein crystal structures of wild type (PDB: 7DDN). The cell membrane is composed of lipids (light brown) and membrane protein ACE2 (yellow).

Supporting Tables

Table S1.	DNA	sequences.

Name	Sequence (5'-3')		
A 17, 10, 56mN	ACATTCCTAAGTCTGAAACATTACAGCTTGCTACACGAGAAGAGCCGCCATAGTAT		
A17-12-56pN	TGAGACGAGCCACCGAGCAGAG		
A17-12-56pN-cy5	ACATTCCTAAGTCTGAAACATTACAGCTTGCTACACGAGAAGAGCCGCCATAGTAT		
	TGAGACGAGCCACCGAGCAGAG-cy5		
A17-9.6pN	ACATTCCTAAGTCTGAAACATTACAGCTTGCTACACGAGAAGAGCCGCCATAGTAT		
	TGCGCGCATG		
417.9 6pN cv5	ACATTCCTAAGTCTGAAACATTACAGCTTGCTACACGAGAAGAGCCGCCATAGTAT		
	TGCGCGCATG-cy5		
A17-4 7pN	ACATTCCTAAGTCTGAAACATTACAGCTTGCTACACGAGAAGAGCCGCCATAGTAT		
	TGTAAATATG		
A17-4 7pN-cv5	ACATTCCTAAGTCTGAAACATTACAGCTTGCTACACGAGAAGAGCCGCCATAGTAT		
	TGTAAATATG-cy5		
А	ACATTCCTAAGTCTGAAACATTACAGCTTGCTACACGAGAAGAGCCGCCATAGTA		
B17-L	TATCACCAGGCAGTTGACAGTGTAGCAAGCTGTAATAGATGCGAGGGTCCAATACC		
D17-L	TGACCACGAGCTCC		
C17-I	TCAACTGCCTGGTGATAAAACGACACTACGTGGGAATCTACTATGGCGGCTCTTCCT		
	GACCACGAGCTCC		
D17-L	TTCAGACTTAGGAATGTGCTTCCCACGTAGTGTCGTTTGTATTGGACCCTCGCATCT		
	GACCACGAGCTCC		
B17	TATCACCAGGCAGTTGACAGTGTAGCAAGCTGTAATAGATGCGAGGGTCCAATAC		
C17	TCAACTGCCTGGTGATAAAACGACACTACGTGGGAATCTACTATGGCGGCTCTTC		
D17	TTCAGACTTAGGAATGTGCTTCCCACGTAGTGTCGTTTGTATTGGACCCTCGCAT		
CoV2-6C-L	CGCAGCACCCAAGAACAAGGACTGCTTAGGATTGCGATAGGTTCGG GGAGCTCGTG		
	GTCAG		
	Alexa 488-		
Alexa 488-CoV2-6C-L	CGCAGCACCCAAGAACAAGGACTGCTTAGGATTGCGATAGGTTCGG GGAGCTCGTG		
	GTCAG		
	cy5-		
cy5-CoV2-6C-L	CGCAGCACCCAAGAACAAGGACTGCTTAGGATTGCGATAGGTTCGG GGAGCTCGTG		
	GTCAG		
56pN	CTCTGCTCGGTGGCTCGTCTC		
53pN	CTCTGCTCGGTGGCTCGTCTC		
43pN	CTCTGCTCGGTGGCTCGTCTC		
33pN	CTCTGCTCGGTGGCTCGTCTC		
23pN	CTCTGCTCGGTGGCTCGTCTC		
12pN	CTCTGCTCGGTGGCTCGTCTC		
9.6pN	CATGCGCGC		
4.7pN	CATATTTAC		

Number	Probe Name	DNA sequence involved	Experiment name	
1	s12-56pN-TDF	A17-12-56pN, B17, C17, D17		
2	s12-56pN-LTDF	A17-12-56pN, B17-L, C17, D17		
3	s12-56pN-DimTDF	A17-12-56pN, B17-L, C17-L, D17		
4	s12-56pN-TriTDF	A17-12-56pN, B17-L, C17-L, D17-L		
5	-10 SCON ASTRE	A17-12-56pN, B17-L, C17, D17,		
5	\$12-56pN-Ap1DF	CoV2-6C-L		
	al2 56nN DimAnTDE	A17-12-56pN, B17-L, C17-L, D17,	Agarose gel electrophoresis	
0	\$12-30pN-DIIIApTDF	CoV2-6C-L	analysis	
7	s12-56pN-	A17-12-56pN(-cy5), B17-L, C17-L,		
/	TriApTDF(cy5)	D17-L, CoV2-6C-L		
0	60 6pN TriApTDE(cy5)	A17-9.6pN(-cy5), B17-L, C17-L,		
8	\$9.0014-111Ap1D1(Cy5)	D17-L, CoV2-6C-L		
0	s4 7pN TriApTDE(cv5)	A17-4.7pN(-cy5), B17-L, C17-L,		
9	s4./pit-map10(cy3)	D17-L, CoV2-6C-L		
10	s12-56pN-TriApTDF	А17-12-56рN, В17-L, С17-L, D17-L,	Cryo-FM	
10	312 3001 111 0101	CoV2-6C-L		
11	TriAnTDF (Alexa 488)	A17, B17-L, C17, D17, Alexa 488-	Flow cytometry analysis	
		CoV2-6C-L		
	s12-56pN-DimApTDF	A17-12-56pN, B17-L, C17-L, D17,		
12	(Alexa $488:cv5=1:1$)	Alexa 488-CoV2-6C-L, cy5-CoV2-		
	(6C-L	Total internal reflection	
	s12-56pN-TriApTDF	A17-12-56pN, B17-L, C17-L, D17-L,	fluorescent microscope	
13	(Alexa 488:cv5=2:1)	Alexa 488-CoV2-6C-L, cy5-CoV2-		
		6C-L		
14	56pN-TriApTDF (cy5)	A17-12-56pN-cy5, B17-L, C17-L,		
		D17-L, CoV2-6C-L, 56pN	Fluorescence microscope	
15	4.7pN-TriApTDF (cy5)	A17-4.7pN-cy5, B17-L, C17-L, D17-	-	
		L, CoV2-6C-L, 4.7pN		
16	12-56pN-TriApTDF	12-56pN-TriApTDF, 12pN or 23pN		
	^	or 33pN or 43pN or 53pN or 56pN		
17	9.6pN-TriApTDF	A17-9.6pN, B17-L, C17-L, D17-L,	Virus-TGT measurement	
		CoV2-6C-L, 9.6pN		
18	4.7pN-TriApTDF	A17-4.7pN, B17-L, C17-L, D17-L,		
	pro-map101	CoV2-6C-L, 4.7pN		

 Table S2. DNA sequences for corresponding experiments.

Title	Measurement object	Method	Journal
Multivalent 9-O-Acetylated- sialic acid glycoclusters as potent inhibitors for SARS- CoV-2 infection ³	SARS-CoV-2/S1 and ACE2	single molecule atomic force microscopy	<i>Nat. Commun.</i> 2022, 13 (1), 2564.
N501Y mutation of spike protein in SARS-CoV-2 strengthens its binding to receptor ACE2 ⁴	RBD and ACE2- expressing cell	single molecule atomic force microscopy	<i>eLife</i> 2021, 10, e69091.
Molecular interaction and inhibition of SARS-CoV-2 binding to the ACE2 receptor ⁵	S1/RBD and ACE2	single molecule atomic force microscopy	<i>Nat. Commun.</i> 2020, 11 (1), 4541.
Molecular insights into receptor binding energetics and neutralization of SARS- CoV-2 variants ⁶	RBD and ACE2	single molecule atomic force microscopy	<i>Nat. Commun.</i> 2021, 12 (1), 6977.
Biomechanical characterization of SARS- CoV-2 spike RBD and human ACE2 protein-protein interaction ⁷	RBD and ACE2	single molecule atomic force microscopy	<i>Biophys. J.</i> 2021, 120 (6), 1011-1019.
Mechanical activation of spike fosters SARS-CoV-2 viral infection ⁸	Spike/RBD and ACE2	single-molecule magnetic tweezers	<i>Cell Res.</i> 2021, 31 (10), 1047-1060.
A tethered ligand assay to probe SARS-CoV-2: ACE2 interactions ⁹	RBD and ACE2	single-molecule magnetic tweezers	<i>Proc. Natl Acad. Sci. USA</i> 2022, 119 (14), e2114397119.

Table S3. Comparison of previous SARS-CoV-2 virus-related studies to Virus-TGTin this work.

References

1. Wang, X., and Ha, T. (2013). Defining single molecular forces required to activate integrin and notch signaling. Science *340*, 991-994. 10.1126/science.1231041.

2. Yin, F., Li, M., Mao, X., Li, F., Xiang, X., Li, Q., Wang, L., Zuo, X., Fan, C., and Zhu, Y. (2020). DNA Framework-Based Topological Cell Sorters. Angew. Chem. Int. Ed. *59*, 10406-10410. 10.1002/anie.202002020.

3. Petitjean, S.J.L., Chen, W., Koehler, M., Jimmidi, R., Yang, J., Mohammed, D., Juniku, B., Stanifer, M.L., Boulant, S., Vincent, S.P., et al. (2022). Multivalent 9-O-Acetylated-sialic acid glycoclusters as potent inhibitors for SARS-CoV-2 infection. Nat. Commun. *13*, 2564. 10.1038/s41467-022-30313-8.

4. Tian F, Tong B, Sun L, Shi S, Zheng B, Wang Z, Dong X, and P., Z. (2021). N501Y mutation of spike protein in SARS-CoV-2 strengthens its binding to receptor ACE2. eLife *10*, e69091. 10.7554/eLife.69091.

5. Yang, J., Petitjean, S.J.L., Koehler, M., Zhang, Q., Dumitru, A.C., Chen, W., Derclaye, S., Vincent, S.P., Soumillion, P., and Alsteens, D. (2020). Molecular interaction and inhibition of SARS-CoV-2 binding to the ACE2 receptor. Nat. Commun. *11*, 4541. 10.1038/s41467-020-18319-6.

 Koehler, M., Ray, A., Moreira, R.A., Juniku, B., Poma, A.B., and Alsteens, D. (2021). Molecular insights into receptor binding energetics and neutralization of SARS-CoV-2 variants. Nat. Commun. *12*, 6977. 10.1038/s41467-021-27325-1.

7. Cao, W., Dong, C., Kim, S., Hou, D., Tai, W., Du, L., Im, W., and Zhang, X.F. (2021). Biomechanical characterization of SARS-CoV-2 spike RBD and human ACE2 protein-protein interaction. Biophys. J. *120*, 1011-1019. 10.1016/j.bpj.2021.02.007.

8. Hu, W., Zhang, Y., Fei, P., Zhang, T., Yao, D., Gao, Y., Liu, J., Chen, H., Lu, Q., Mudianto, T., et al. (2021). Mechanical activation of spike fosters SARS-CoV-2 viral infection. Cell Res. *31*, 1047-1060. 10.1038/s41422-021-00558-x.

9. Bauer, M.S., Gruber, S., Hausch, A., Gomes, P., Milles, L.F., Nicolaus, T., Schendel, L.C., Navajas, P.L., Procko, E., Lietha, D., et al. (2022). A tethered ligand assay to probe SARS-CoV-2:ACE2 interactions. Proc. Natl Acad. Sci. USA *119*, e2114397119. 10.1073/pnas.2114397119.