DNA change	Amino acid	Location	Effect	Original
	change			Reference
c.103 A>G	M35V	N-terminal	- Unknown	(1)
		region		
c.104 T>A	M35K	N-terminal	- Unknown	(2)
		region		
c.191 G>A	G64E	Transmembrane	- Unknown	(3)
		helix		
c.225 G>A	W75*	Transmembrane	- Severe truncation of	(1)
		helix	protein.	
c.285-310 del insert	L95 fs	N-terminal	- Incorrect protein sequence	(4)
TTC		domain	from L95	
c.337-348 dup	L113-R116	N-terminal	- General disruption of	(5)
	dup	domain	protein fold.	
c.338 T>G	L113R	N-terminal	- Disruption of hydrophobic	(3)
		domain	core through steric clashes,	
			caused by introduction of a	
			large, charged sidechain.	
c.348-349 insert	116-117	N-terminal	- General disruption of	(1)
CTGGCCTTCCGC	insert LAFR	domain	protein fold.	
	125-132	N-terminal	- Loss of stabilising di-	(6)
	del	domain	sulphide bond.	
	CSRDGALL		- General disruption of	
	and insert		protein fold	
c.428_442 del	143_147	N-terminal	- General disruption of	(7)
TGCACTTCTTCATCC	del LHFFI	domain	protein fold	
c.535-536 insert C	G179 fs	N-terminal	- Incorrect protein sequence	(4)
		domain	from G179	
c.607 C>T	Q203*	N-terminal	- Severe truncation of protein	(1)
		domain		
c.679 C>G	R227G	N-terminal	- Loss of hydrogen bonding	(8)
		domain	sidechain. R227 likely to aid in	
			positioning of the loop	
			carrying D213 (possible	
			involved in binding	
			polysaccharides at active site)	(_)
c.687 G>T	W229C	N-terminal	- Disruption of stabilising	(7)
		domain	hydrophobic core.	
c.695 C>1	S232L	N-terminal	- General disruption of	(1)
		domain	structure through	
			introduction of a larger	
			sidechain causing steric	
	1226 1	NI 1	clasnes.	(2)
c.706_708 dup GCC	A236 dup	IN-terminal	- Insertion of additional	(3)
a 747C> C	14/2400	uomain Ni torminal	Pieruntion of stabilizing	(2)
L./4/G/L	VV249C	iv-terminal	- Disruption of stabilising	(3)
		uomam		

Table S1. Mutations identified in MYORG that cause PFBC and the associated structural consequences.

c.782-783 GC>TT R261L N-terminal - Disruption of hydrogen	(1)
c.782 G>T R261L domain bonding involved in the	(8)
positioning of the loop	
carrying the likely active site	
residue D213.	
-Introduction of hydrophobic	
facing solvent	
c.794 C>T T265M N-terminal -Introduction of a bulky	(9)
domain hydrophobic residue causing	
loop disruption.	
c.830 del C P277 fs N-terminal - Incorrect protein sequence	(10)
domain from P277	
c.850 T>C C284R N-terminal -Breaks a disulphide bond	(2)
domain and introduces a bulky	
charged residue causing fold	
disruption.	
c.854_855 dup TG G286W fs N-terminal - Loss of catalytic domain	(11)
domain	
c.856 G>A G286S N-terminal -possible disruption of	(12)
domain hydrophobic network	
affecting N-terminal domain	
fold.	
c.893 G>C R298P Catalytic - Disruption of α-helix	(8)
domain	
c.940 C>T R314* Catalytic - Severe truncation of	(6)
domain catalytic domain	
c.1060_1062delGAC 354 del D Catalytic - D354 Is found in an active	(13)
domain site loop, mutation would	
disrupt bonding of D353 to	
substrate and may also cause	
larger, global structural	
changes to MYORG through	
residue loss.	
c.1078 del T Y360 fs Catalytic - Loss of catalytic domain	(3)
domain	
c.1092- 365-366 Catalytic - F365 forms part of a	(1)
1097delCTTCGA del FD domain hydrophobic core	
- General disruption of	
protein fold	
c.1118 C>A A373D Catalytic - Would cause steric clash	(3)
domain leading to α-helix	
displacement.	
- May make N372 unavailable	
for glycosylation, possibly	
affecting protein production.	
c 1233delC E4111 + fs Insert - Loss of catalytic domain	(13)
c 1300 G>C D434H Insert - Introduction of severe steric	(3)
lister lister lister lister lister	
c 1321 C>G R441G Catalytic - Loss of stabilising salt	(1)
	(-)

c.1328 G>A	W443*	Catalytic domain	- Loss of catalytic domain	(1)
c.1333 C>T	Q445*	Catalytic domain	- Loss of catalytic domain	(14)
c.1394 dup G	E466 fs	Catalytic domain	- Loss of catalytic domain	(3)
c.1427 C>A	T476N	Catalytic domain	- Likely to cause steric clashes.	(3)
c.1431 C>A	Y477*	Catalytic domain	- Loss of catalytic domain	(7)
c.1530 del G	N511T fs	Catalytic domain	- Loss of catalytic domain	(15)
c.1511 G>C	R504P	Catalytic domain	- Conserved residue associated with binding sugar substrates.	(8)
c.1538_1540 del CCT	513 del S	Catalytic domain	 -Loss of stabilising hydrogen bond. Would alter positioning of N511 possibly hindering glycosylation and protein processing. Global structural issues likely from loss of amino acid. 	(3)
c.1802_1804 del TGG	601 del V	Catalytic domain	- Loss of amino acid in α-helix affecting register/fold.	(8)
c.1831 C>T	R611W	Catalytic domain	 Disruption of important hydrogen bonding network. Severe steric clashes introduced. 	(3)
c.1865 T>C	L622P	Catalytic domain	- Disruption of α-helix	(3)
c.1967 T>C	1656T	Proximal β- sheet domain	- Disruption of stabilising hydrophobic core, anchoring proximal β-sheet domain to catalytic domain.	(16)
c.1979 T>A	L660Q	Proximal β- sheet domain	- Disruption of stabilising hydrophobic core, anchoring proximal β-sheet domain to catalytic domain.	(3)

References

1. Yao XP, Cheng X, Wang C, Zhao M, Guo XX, Su HZ, et al. Biallelic Mutations in MYORG Cause Autosomal Recessive Primary Familial Brain Calcification. Neuron. 2018;98(6):1116-23.e5.

2. Chen SY, Lin WC, Chang YY, Lin TK, Lan MY. Brain hypoperfusion and nigrostriatal dopaminergic dysfunction in primary familial brain calcification caused by novel MYORG variants: case report. BMC Neurol. 2020;20(1):329.

3. Grangeon L, Wallon D, Charbonnier C, Quenez O, Richard AC, Rousseau S, et al. Biallelic MYORG mutation carriers exhibit primary brain calcification with a distinct phenotype. Brain. 2019;142(6):1573-86.

4. Malaquias MJ, Martins RC, Oliveira J, Freixo JP, Magalhães M. MYORG gene disease-causing variants in a family with primary familial brain calcification presenting with stroke-like episodes. Clin Genet. 2020;98(5):517-9.

5. Du J, Zhu X, Liu J, Tan Y. Paroxysmal Kinesigenic Dyskinesia Secondary to Brain Calcification with a Homozygous MYORG Mutation. Mov Disord. 2021.

6. Taglia I, Kuipers DJS, Breedveld GJ, Mignarri A, Dotti MT, Federico A, et al. Primary familial brain calcification caused by MYORG mutations in an Italian family. Parkinsonism Relat Disord. 2019;67:24-6.

7. Chen Y, Fu F, Chen S, Cen Z, Tang H, Huang J, et al. Evaluation of MYORG mutations as a novel cause of primary familial brain calcification. Mov Disord. 2019;34(2):291-7.

8. Chen Y, Cen Z, Chen X, Wang H, Chen S, Yang D, et al. MYORG Mutation Heterozygosity Is Associated With Brain Calcification. Mov Disord. 2020;35(4):679-86.

9. Kume K, Takata T, Morino H, Matsuda Y, Ohsawa R, Tada Y, et al. The first Japanese case of primary familial brain calcification caused by an MYORG variant. J Hum Genet. 2020;65(10):917-20.

10. Gao L, Chen J, Dong H, Li X. A novel mutation in MYORG leads to primary familial brain calcification and cerebral infarction. Int J Neurosci. 2021:1-5.

11. Ferreira LD, de Oliveira JRM. New homozygous indel in MYORG linked to brain calcification, thyroidopathy and neuropathy. Brain. 2019;142(9):e51.

12. Tekin Orgun L, Besen Ş, Sangün Ö, Bisgin A, Alkan Ö, Erol İ. First pediatric case with primary familial brain calcification due to a novel variant on the MYORG gene and review of the literature. Brain Dev. 2021;43(7):789-97.

13. Arkadir D, Lossos A, Rahat D, Abu Snineh M, Schueler-Furman O, Nitschke S, et al. MYORG is associated with recessive primary familial brain calcification. Ann Clin Transl Neurol. 2019;6(1):106-13.

14. Peng Y, Wang P, Chen Z, Jiang H. A novel mutation in MYORG causes primary familial brain calcification with central neuropathic pain. Clin Genet. 2019;95(3):433-5.

15. Ramos EM, Roca A, Chumchim N, Dokuru DR, Van Berlo V, De Michele G, et al. Primary familial brain calcification caused by a novel homozygous MYORG mutation in a consanguineous Italian family. Neurogenetics. 2019;20(2):99-102.

16. Forouhideh Y, Müller K, Ruf W, Assi M, Seker T, Tunca C, et al. A biallelic mutation links MYORG to autosomal-recessive primary familial brain calcification. Brain. 2019;142(2):e4.