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Supplementary Text S1

1. Handling the Impact of Radiocarbon Measurement Error and Calibration
Plateau

Estimates of farming dispersal rates are typically obtained by regressing the distance of focal sites
from a putative point of origin against the mean or the median calibrated radiocarbon date of the
earliest evidence of farming on those sites (6,9,10,38,42). The rate is then computed by taking the
negative (in case time is represented by BP and positive values) reciprocal of the slope coefficient (but
see (9) for fitting time against distance instead). Confidence intervals of the derived rate estimates do
not, however, account for the impact of the measurement error of the radiocarbon dates, nor the fact
that these errors are non-random due to calibration effects. Figure S1 illustrates the implication of this
issue, showing a hypothetical dispersal of 2.85 km/year with four observation points in calendar time
(black points) and their corresponding median calibrated dates (red points). The latter converge to
nearly identical values due to the effect of the calibration plateau, leading to a slope approximately
equal to 0, which in turn corresponds to an estimated instantaneous dispersal.

A possible solution, first introduced by Steele (65), and later adopted in other studies (e.g. (6,43)),
consists of fitting the regression model to iteratively sampled calendar dates from each calibrated
distribution and obtaining multiple estimates from which confidence intervals are derived. While this
solution accounts for the uncertainty of each measurement, it holds a conservative stance where
effectively each point is treated separately, without acknowledging that these uncertainties are
correlated to each other. Furthermore, these approaches often consist of aggregating the estimates of
individual iterations but not their associated errors (but see (43)); hence the resulting confidence
intervals could potentially fail to properly account for the uncertainty derived from sampling error.

1.1 Bayesian Quantile Regression

An alternative approach is to fit a hierarchical measurement error model, following the same
principles adopted in Bayesian phase models (66), and more recently in radiocarbon-based
demographic inference (64). In this case, the regression model can be conceptualised as follow:

𝜃i ~ Normal(𝜇i , ε) [1]
𝜇i = 𝛽0 + 𝛽1di [2]
Xi ~ Normal(f (𝜃i),σi) [3]

where 𝜃i is the true calendar date of the date at each site focal site i, di is the distance of the site from
the putative source of dispersal, f (𝜃i) is its corresponding 14C age on the IntCal20 calibration curve
(59), and Xi is the observed conventional radiocarbon age of the sample, and σi is the square root of
the sum of the squares of the samples’ 14C age error and the error on the calibration curve. Equation
[3] effectively handles the measurement error of 𝜃 and establishes its relationship to the observed 14C
age and its associated error. In practice, equations [1] and [2] can be replaced by any model and
following recent works advocating the use of quantile regression (38,39,43) we use an asymmetric
Laplace likelihood (60), so that 𝜃 is defined as follows:

𝜃i ~ AsymLaplace(𝜇i, λ, 𝜏) [4]



where 𝜇i is the same linear model as equation [2] above, and λ is the scale parameter, and the 𝜏 is the
user-defined quantile of interest. Because we are interested in the distribution of the earliest dates,
previous applications of quantile regression for dispersal processes employed extreme values such as
90th (𝜏=0.9) and 99th percentiles (𝜏=0.99).

Fig.S1. Impact of systematic measurement error on a putative relationship between distance and time for dates falling the calibration plateau. True rate (black)
shows a positive slope indicative of a dispersal rate of ca 2.85 km/year, whilst median calibrated dates (red) have a flat slope with an instantaneous (i.e. infinite)
dispersal rate.

Figure S2 shows the result of the quantile regression model described above fitted to the earliest
charred rice dates from each archaeological site, using as the putative source of dispersal the earliest
date in our sample (Ukikunden Shell Midden in Northern Kyushu; 130.0087, 33.411, Fig.1 main text).
We fitted our model using the following priors:

𝛽0 ~ Normal(3000, 200) [5]
𝛽1 ~ Exponential(1) [6]
λ ~ Exponential(0.01) [7]

setting 𝜏 equal to 0.9.

Posterior estimates of the model parameters were obtained using Markov Chain Monte-Carlo
(MCMC) sampling via the nimble (61) and nimbleCarbon (63,64) packages in R (67). We used four
chains, each with 6 million iterations (half dedicated to burn-in) and parameters sampled every 300
steps to reduce file size. We used Metropolis-Hasting adaptive random walk sampler for all
parameters using default settings, with the exception of the age estimates 𝜃, where we used an
adaptInterval of 20,000 and an adaptFactorExponent to 0.1 which yielded better mixing in test runs.
Convergence was evaluated using the Gelman-Rubin diagnostic and visual inspection of the trace
plots. Results showed good mixing with the highest R-hat equal to 1.015..



Figure S2 contrasts this Bayesian model (shown in red) against a non-Bayesian quantile regression
model fitted with the median calibrated dates using the quantreg (68) R package. The result mirrors
the expectations of figure S1, with the median date model (in blue) showing a flatter slope and,
consequently, a much higher expected rate of dispersal compared to the Bayesian model (in red). This
discrepancy is due to the impact of the so-called ‘Hallstatt plateau’ in the calibration curve and is
made evident by the larger discrepancies between the median calibrated dates and the median
posterior values of 𝜃. The discrepancy is almost absent for periods where the impact of the plateau is
small and the model overall provides little additional information concerning individual dates.
However, dates in the plateau region, which typically show wider and flatter posterior calibrated
distributions, are largely “informed” by the overall model, with a resulting shrinking of the
measurement error, and in this case, an offset of the resulting median date. While it is worth noting
that this model does not account for regional variation in the dispersal rates, the reciprocal of the
posterior of the parameter 𝛽1 (figure S3) provides an estimate of the average dispersal rate of charred
rice farming between 1.59 and 2.51 km/year.

Fig.S2. Quantile regression model fitted on median calibrated dates (blue line) and accounting for measurement error via Bayesian hierarchical model (red line).
Hollow dots are the median calibrated dates while the filled dots are the median posterior of the Bayesian model accounting for the overall model. The offset
between median dates and the model posterior is largest in the calibration plateau region, where the calibrated dates generally show flat distributions and the
overall model can provide the highest amount of additional information.



Fig. S3. Estimated dispersal rate for the spread of charred rice farming in Japan using Bayesian quantile regression.

2. Bayesian Gaussian Process Quantile Regression

The linear model formalised in equation [2] assumes that 1/𝛽1 is constant across the geographic
window of analyses and hence not able to identify local episodes of acceleration and slow-down in the
dispersal process. A slight modification of the linear model can account for such local processes:

𝜇i = 𝛽0 +di (si - 𝛽1) [7]

Here the additional term si allows for a site-level variation in the dispersal rate. This local deviation
parameter can be assumed to be a random effect within a hierarchical setting, but with the important
additional assumption that s is spatially autocorrelated. A Gaussian process model (69) can satisfy
these two assumptions so that the parameter is modelled as a multivariate normal distribution:

si ~ MVNormal(0, 𝚺) [8]

with a mean of 0 and with a covariance matrix 𝚺 defined by a quadratic exponential model (see also
figure S4):

𝚺i,j = η2 exp(-0.5(di,j/ρ)2) + Ii,jε2 [9]

where the covariance 𝚺i,j between sites i and j is portrayed as an exponential decay based on their
inter-distance di,j with length scale parameter ρ and maximum covariance equal to the square of the
marginal deviation parameter η. The term Ii,jε2 provides an additional covariance ε2 in case the i and j
are identical.



Fig.S4. The quadratic exponential model and its relationship to its parameters ρ, η, and di,j assuming i≠j.

Figure S5 shows the result of simulated dispersal rates under different settings of ρ and η. With all
things equal, larger values of ρ yield wider regions with similar dispersal rates, whilst larger values of
η lead to a wider range of values of s, and consequently greater diversity in the dispersal rate.



Fig.S5. Simulated local dispersal rates with different settings of ρ and η, with 300 site locations and 𝛽0 = 3000 and 𝛽1 = 1

It is worth mentioning here that the local deviation parameter s is based on the slope and hence should
not be directly interpreted in terms of dispersal rate. For example with 𝛽1 = -0.5 and s=0, the dispersal
rate is equal to 2 km/year (i.e. -1/(0-0.5)), with s = 0.2 the rate increases to ca. 3.33km/year (i.e an
increase of 1.33 km/year), whilst s = -0.2 decreases the rate to 1.42 km/year (i.e. a decrease of 0.58
km/year). In other words, the impact of s is symmetric towards the slope, but not towards the rate.
This is due to the very nature of the reciprocal of slopes which accelerates quickly towards 0 with a
limit of infinite velocity when the slope is equal to 0 (see figure S6).



Fig.S6. Relationship between regression slope (here s-β1) and its negative reciprocal, i.e. rate of dispersal.

2.1 Priors

Priors for the Gaussian Process Quantile Regression (hereafter GPQR) model were weakly informed
by independent lines of archaeological evidence. As for the non-spatial quantile regression model
described above, the intercept was based on a normal distribution with a mean of 3,000 and a standard
deviation of 200 (see equation [5]) which broadly assumes the arrival of rice to be somewhere
between the second half of the 2nd millennium BC and the first half of the 1st millennium BC.
Sensible priors for the slope parameter can be based on known archaeological examples of farming
dispersal rates, for our case this is equivalent to a reciprocal of s - 𝛽1 . The variance of the local
dispersal rate s is equal to η2 in the case of a complete lack of spatial autocorrelation. This can be used
as the basis for building a prior predictive check model to establish which prior combination yields
sensible dispersal rates. Figure S7 shows the result when an exponential prior with a rate of 1 is
applied for 𝛽1 (cf. equation [6]) and an exponential prior with a rate of 20 is used for η2. The results
have a wide range of dispersal rates that include observed values from other archaeological contexts.
Given the premise and assumptions of the spread of rice farming in Japan, the parameter was also
censored to ensure that the dispersal rate is always positive.



The prior for the length scale parameter ρ was modelled using a gamma distribution modelled with a
shape of 10 and a rate of 0.06 and truncated between 1 and 1350 km (the smallest and largest
inter-distance between sampled sites). The gamma distribution enforces positive values, with a fairly
long tail and, in this case, a mode around 200km. These settings ensure a fairly wide range of scales
for regional patterns of local dispersal rates (Fig. S8).

Fig.S7. Prior predictive check for β0 (modelled as a Gaussian with a mean of 3000 and a standard deviation of 200), β1 (modelled as an exponential with a rate of
1), and η2 (modelled as an exponential with a rate of 20). The slope was derived by sampled values of s - β1, with s drawn from a gaussian with a mean of 0 and
a standard deviation equivalent to η. Dashed lines represent the slope for specific rates of dispersal.

Fig.S8. Prior predictive check for η2 (modelled as an exponential with a rate of 20) and ⍴ (modelled as a truncated gamma distribution with a shape of 10 and a
rate of 0.06, bounded between 1 and 1350).



2.2 Tactical Simulation

To establish whether the Gaussian Process model described above can recover local variations in
dispersal rates, we generated a simulated set of n=150 radiocarbon dates from an equivalent number
of sites within our window of analysis. Calendar dates were sampled using a normal distribution (see
equations [1], [7-9] above) using the following parameter values: ε = 100 ; 𝛽0 = 3000; 𝛽1 = 0.6; ρ =
150; and η2 = 0.08. Dates were back-calibrated in 14C age with an error of 20 years.

We fitted our dataset using our Gaussian Process model using the same prior as in our observed
dataset and setting 𝜏 to 0.9. Model fitting was performed using four chains with 1 million iterations
each (half discarded as burn-in, and sampled every 50 steps). MCMC diagnostics showed good
convergence, with the highest R-hat (70) equal to 1.003.

Our results indicate that the model does capture the spatial variation in dispersal rates (figure S9),
with most of the random effect parameters (figure S10) and all the key fixed effect parameters (figure
S11) recovering their respective true values within their 95% quantile intervals.

Fig.S9. Simulated and predicted (median posterior) dispersal rates.



Fig.S10. Simulated and predicted values of the spatial random effect parameter s.

Fig.S11. Posterior distribution of key model parameters for the simulated dataset with corresponding “true” values shown as a dashed line. Notice that in the
case of 𝛽0 the line represents the 90th percentile matching the value of 𝜏used for inference.



2.3 MCMC Settings, Diagnostics, and Posteriors

As for the non-spatial quantile regression, the model fitting was carried out using the nimble and the
nimbleCarbon R packages. We ran four chains, each with 2 million iterations, half of which were used
for burn-in, and values sampled every 100 steps. We used a Metropolis-Hasting adaptive random walk
sampler for all parameters except for 𝛽1 and si in the GPQR model, which were inferred using an
automated factor slice sampler (71) to account for correlation between the two parameters. As for the
non-spatial quantile regression, the random walker sampler for 𝜃 was modified from the default
settings (see section 1 above).

The Gelman-Rubin convergence statistics (70) were below 1.01 for all parameters, and the trace plots
of the four key fixed parameters showed good mixing of the chains (fig. S12 & S13). Figures S14 and
S15 show the marginal distribution of these four parameters, whilst tables S1 and S2 provide
summary statistics and diagnostics of all fixed parameters.

Fig.S12. Traceplots for 𝛽0, 𝛽1, ρ, and η2 for the 𝜏=0.9 GPQR model.



Fig.S13. Trace Plots for 𝛽0, 𝛽1, ρ, and η2 for the 𝜏=0.99 GPQR model.



Fig.S14. Marginal posterior distribution of 𝛽0, 𝛽1, ρ, and η2 in the 𝜏=0.90 GPQR model.



Fig.S15. Marginal posterior distribution of 𝛽0, 𝛽1, ρ, and η2 in the 𝜏=0.99 GPQR model.

Parameter Median Posterior 90% HPDI (low) 90% HPDI (high) R-hat ESS

𝛽0 2744 2644 2835 1.00 22266

𝛽1 0.75 0.43 1.10 1.00 28394

ρ 173.70 96.03 258.68 1.00 3032

η2 0.0888 0.0147 0.1992 1.00 23224

Table S1 Summary statistics and diagnostics for 𝛽0, 𝛽1, ρ, and η2 in the 𝜏=0.90 GPQR model.

Parameter Median Posterior 90% HPDI (low) 90% HPDI (high) R-hat ESS

𝛽0 2825 2776. 2881 1.00 7432

𝛽1 0.70 0.42 1.01 1.00 2704

ρ 112.32 48.26 195.85 1.01 765

η2 0.0998 0.0185 0.2063 1.01 3475

Table S2 Summary statistics and diagnostics for 𝛽0, 𝛽1, ρ, and η2 in the 𝜏=0.99 GPQR model.



3. Bayesian Hierarchical Phase Models with Constraints

Bayesian phase models of radiocarbon dates typically used in stratigraphic contexts have been
occasionally applied to study regional phenomena, such as the dating of cultural phases (72,73) or the
arrival date of populations (40) or cultural traits (74). These models have been recently used to
estimate the arrival dates of crops in different geographic regions (15,75), typically employing
uniform distribution models as follows:

𝜃i,k ~ Uniform(νk, υk) [10]

where 𝜃i,k is the calendar date of sample i from Area k, and νk and υk are the start and end dates of the
Area k. The relationship between 𝜃i,k and the radiocarbon sample is established using the same
procedure described above in the model [2].

The parameter of interest, in this case, is νk which provides an estimate of the arrival time of the crop
in the focal Area k. While there are some interesting non-Bayesian alternatives to this problem (76),
the advantage of this approach is the possibility to add constraints and priors in multi-regional settings
(see below).

A key assumption of this approach, however, is that in order to have unbiased estimates of νk and υk

samples must be randomly and independently selected. For many real statistical applications, this
assumption is never truly met, but in the case of crop dispersal, a particular problem arises from the
fact that charred remains are often found in distinctive recovery contexts or sites, and as such, samples
cannot be regarded as truly independent. A trivial example is to contrast a situation where the
inference is carried out on 20 samples from 20 different sites against a situation where the same
number of samples are recovered from a single site. In the former case, estimates of νk and υk are
more representative of the start and end dates of a region, but in the latter case, these would represent
the start and end date of the particular site from which the samples are taken. While such extreme
situations are rare, multiple samples are frequently taken from the same site or context and as such,
might represent a substantial portion of the dates from a particular region. For example, Leipe and
colleagues (15) estimated the arrival date of rice farming in the Japanese central highlands using 32
dates, but ca. 40% of them (n=13) were from a single site (Chikarishijori).

One way to approach this problem and to take into account the fact that samples are typically
recovered from the same site is to employ a hierarchical model:

𝜃i,j,k ~ Uniform(𝛼j,k, 𝛼j,k + δj,k ) [11]
𝛼j,k ~ Uniform(νk, υk) [12]

where 𝛼j,k is the start date of crop use at site j in region k, and δj,k is the duration of rice farming in the
same site. Inference of the regional start date is then no longer based on the individual charred dates
𝜃i,j,k but instead from the start date of individual sites. This effectively acknowledges sample
independence; sites with a larger number of dates will still provide more information, but mainly in
terms of having more accurate estimates of 𝛼j,k. From an interpretative point, [12] is slightly different
from [10] as the former represents the distribution of start dates at each site while the latter represents
just the distribution of dates within the area k. However, the interpretation of our primary parameter of
interest (i.e. νk) as the arrival time of the crop in the practical area remains the same. Model [11] is



parameterised in a way so that the end date is effectively defined by the duration parameter δj,k.
Inference of this parameter is actually helped by the presence of sites yielding multiple dates and by
the choice of some weakly informative prior that conveys assumptions on site duration. Of course, if
the entirety of the dataset consists of one date per site, then there is effectively no way to infer δj,k, but
under those circumstances, arrival dates can be safely estimated using model [10].

3.1 Tactical Simulation

To illustrate the difference between the standard model [10] and the proposed hierarchical
modification depicted in [11] and [12], we simulated an artificial archaeological dataset consisting of
30 radiocarbon dates distributed exponentially across 10 archaeological sites within a single region (n1

= 13, n2 = 3, n3 = 5, n4 = 3, n5 = n6 = n7 = n8 = n9 = n10 = 1). Start dates of occupation (i.e. 𝛼j ) were
modelled using a uniform distribution with regional start and end dates ν and υ dates equal to 3500
and 3000 cal BP. The site duration parameter δj was randomly sampled from a gamma distribution
with shape parameter 5 and rate parameter 0.02. The simulated calendar dates were back-calibrated in
14C age and assigned to an error of 20 years.

We estimated ν and υ using both the conventional non-hierarchical approach (model [10]) and the
proposed solution (model [11-12]) using three chains and 2 million iterations (half discarded for
burnin and sampled every 100 steps). For model [10] we used a uniform prior for ν and υ between 0
and 10000, with the constraint ν > υ (i.e. ν earlier than υ). For model [11-12] we additionally modelled
δj using a uniform hyper-prior for the rate (bounded between 1 and 20) and a normal distribution with
a mean 200 and standard deviation 100 truncated between 1 and 500 for the mode, where the rate is
equal to (shape-1)/mode. MCMC diagnostic showed good convergence for all parameters (Rhat <
1.01).
Figure S16 shows the difference in the marginal posterior distribution of ν and υ in the two models.
The conventional model has a narrower posterior given the inference is made on 30 samples, whilst
the hierarchical model has a wider posterior as the inference is primarily driven on the sites. However,
the posterior of the conventional model is less accurate and fails to capture the true start date (dashed
line), which is instead recovered by the hierarchical model.



Fig.S16. Marginal posterior distribution of the stard and end dates ν and υ in the hierarchical and non-hierarchical models .

3.2 Implementation details for the observed data

The hierarchical phase model described in section 3.1 was fitted to the charred rice dates from the
eight geographic areas (table S3), whose boundaries were informed by previous archaeological studies
and the results of our GPQR analysis, to ensure that dispersal rates within each area were as consistent
as possible. We particularly made an effort to avoid having instances where a major change in
dispersal rate occurred within each area so that an early estimate of arrival date was the consequence
of dates occurring at sites located at the boundary of adjacent areas.

Area Prefectures Number of Dates Number of Sites

I Saga | Fukuoka | Nagasaki 32 19

II Miyazaki | Oita | Kumamoto
|Kagoshima

49 22

III Ehime | Kochi | Hiroshima | Okayama |
Tottori | Shimane | Yamaguchi

22 14

IV Hyogo | Kagawa | Kyoto | Mie | Nara |
Osaka | Shiga | Tokushima | Wakayama

32 11

V Aichi | Gifu | Ishikawa | Fukui |
Kanagawa | Niigata | Nagano | Toyama |
Shizuoka | Yamanashi

94 35

VI Chiba | Gunma | Ibaraki | Tokyo |
Saitama | Tochigi

38 14

VII Akita | Fukushima | Iwate | Miyagi |
Yamagata

18 9



VIII Aomori 9 8

TOTAL 294 132

Table S3. Number of sites and radiocarbon dates from each area

Priors of the start and end dates ν and υ were based on a uniform distribution bounded between 500
and 5000 cal BP, with the constraint ν > υ. The duration parameter δ was modelled using a gamma
distribution, with the shape and rate parameters modelled using a uniform hyper-prior for the rate
(bounded between 1 and 20) and a normal distribution with a mean 200 and standard deviation 100
truncated between 1 and 500 for the mode, where the rate is equal to (shape-1)/mode. Figure S17
shows the prior predictive check with these settings and illustrates how our model includes a wide
range of possible settlement durations.

Fig.S17. Prior predictive check for the duration parameter δ. Generating using 5,000 random samples from relevant priors.

We considered two different versions of the hierarchical model. In model a, we infer all parameters
without any constraints, hence allowing for all possible temporal orders of our primary parameter of
interest ν. This allows us to infer the arrival date of rice in each area on the exclusive basis of the dates
from that focal area. In model b, we add the following constraints: νI > νkII , νI > νIII > νIV > νV , νIV > νVI

, νIV > νVII , and νIV > νVIII. This effectively incorporates the assumption of a wave-of-advance-like
model originating from northern Kyushu (Area I), whilst allowing for possible leap-frogging after the
dispersal reached the Kansai area (Area IV).

Both models were fitted using 6 million iterations, half of which were dedicated to burn-in, and
sampled every 300 steps. We used Metropolis-Hasting adaptive random walk sampler for all
parameters using default settings, with the exception of the age estimates 𝜃, where we used an



adaptInterval of 20,000 and an adaptFactorExponent to 0.1. Model convergence was assessed via
visual inspections of the trace plots and Gelman-Rubin convergence statistics. All parameters yielded
an R-hat below 1.01, with the exception of one 𝜃166 which returned an Rhat of 1.03 in model b. Visual
inspection of the trace plot indicated that this was most likely due to the multi-modal shape of the
posterior. The high agreement index (98.4, (77)), as well as comparison with the associated calibrated
date, suggests that there are no concerns from an inferential point of view.

3.3 Posterior Distributions

Table S4 shows the summary statistics of the arrival date estimates ν for the two models, whilst
figures S18 and S19 show their marginal posterior distribution. Figure S20 indicates the probability
that ν values of row areas are smaller (i.e. later) than column areas, with cells coloured in blue
supporting a wave-of-advance scenario, while those coloured in red indicate possible leap-frog
dispersals. Finally, figure S21 shows the pairwise difference in ν (column area minus row area)
obtained from the posterior samples, with portions of the 90% highest posterior density interval
coloured in blue for positive values (column earlier than row) and in red for negative values (row
earlier than column).

Model Area Median Posterior 90% HPDI (low) 90% HPDI (high) Rhat ESS

Model a

I 986 BC 1176 BC 845 BC 1 39981

II 572 BC 740 BC 430 BC 1 39424

III 887 BC 1176 BC 669 BC 1.001 11796

IV 905 BC 1179 BC 695 BC 1 30453

V 655 BC 771 BC 552 BC 1 38439

VI 273 BC 478 BC 122 BC 1 39026

VII 153 BC 458 BC 44 AD 1 40000

VIII 469 BC 943 BC 177 BC 1 38182

Model b

I 1039 BC 1251 BC 872 BC 1 39658

II 570 BC 735 BC 430 BC 1 40326

III 910 BC 1061 BC 779 BC 1 30742

IV 824 BC 946 BC 703 BC 1 23067

V 648 BC 754 BC 560 BC 1 36917

VI 271 BC 471 BC 124 BC 1 35089

VII 152 BC 434 BC 42 AD 1 39185

VIII 428 BC 709 BC 203 BC 1 37394

Table S4. Summary statistics and diagnostics for the ν parameters in the two models.



Fig.S18. Marginal posterior distribution of ν for model a



Fig.S19. Marginal posterior distribution of ν for model b



Fig.S20. Probability of row areas’s ν being after colum area’s  ν for model a



Fig.S21. Posterior estimates of pairwise difference (column minus row) of ν in model a. Highlighted regions represent the 90% HPDI (red: row is earlier; blue: row is later)
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