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1 Power Calculation for Bulk Tissue eQTL Based on

ANOVA

1.1 Introduction

If we would like to test potential non-linear relationship between genotype of a SNP and

expression of a gene, we can use un-balanced one-way ANOVA. Actually, an article published

by the GTEx Consortium in 2013[3] used this approach.

1.2 General formula

Suppose there are k = 3 groups of subjects: (1) mutation homozygotes; (2) heterozygotes;

and (3) wildtype homozygotes. We would like to test if the mean expression µi, i = 1, . . . , k,

of the gene is the same among the k groups of subjects. We can use the following one-way

ANOVA model to characterize the relationship between observed gene expression level yij

and the population mean expression level µi:

yij =µi + εij, εij ∼ N
(
0, σ2

)
,

i =1, . . . , k,

j =1, . . . , ni,

(1)

where yij is the observed gene expression level for the j-th subject in the i-th group, µi is

the mean gene expression level of the i-th group, εij is the random error, k is the number of

groups, ni is the number of subjects in the i-th group. Denote the total number of subjects

as N =
∑k

i=1 ni. That is, we have n1 mutation homozygotes, n2 heterozygotes, and n3

wildtype homozygotes.

We would like to test the null hypothesis H0 and alternative hypothesis H1:

H0 : µ1 = µ2 = µ3,

H1 : not all µi are the same.
(2)
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It is well know that the test statistic for Hypotheses (2) is the F statistic

F =
MSgrp
MSE

, (3)

where MSgrp is the mean square of group effect and MSE is the mean square of error.

We will reject the null hypothesis H0 if the test statistic F is large enough. The type I

error rate α is defined as

α = Pr (F > c|H0) = 1− Pr (F < c|H0) , (4)

where c is the rejection boundary (i.e., cutoff).

Under H0, the test statistic F follows the F distribution with degrees of freedom df1 =

k − 1 and df2 = N − k (Denote it as Fk−1,N−k). Hence, the cutoff c is the upper 100α

percentile of the F distribution Fk−1,N−k. Denote

c = F1−α (k − 1, N − k) . (5)

Under H1, the test statistic F follows the non-central F distribution with degrees of

freedom df1 = k− 1, df2 = N − k, and non-centrality parameter λ (Denote it as Fk−1,N−k,λ).

According to OBrien and Muller (1993)[2], the non-central parameter λ is defined as

λ =
N

σ2

k∑
i=1

ωi (µi − µ)2 , (6)

where µi is the mean value for the i-th level, ωi = ni/N is the weight for the i-th level, and

µ is the overall mean,

µ =
k∑
i=1

ωiµi. (7)

Hence, the power calculation formula for un-balanced one-way ANOVA with k levels is

power =Pr (F > c|H1)

=Pr (F ≥ F1−α (k − 1, N − k)|F ∼ Fk−1,N−k,λ)) .
(8)
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1.3 Simplification of non-central parameter

For our case, k = 3 and the non-centrality parameter λ can be rewritten as

λ =
N

σ2

3∑
i=1

wi (µi − µ)2 . (9)

By assuming Hardy-Weinberg Equilibrium, we have

w1 =
n1

N
= θ2 (genotype frequency for mutation homozygotes),

w2 =
n2

N
= 2θ(1− θ) (genotype frequency for heterozygotes),

w3 =
n3

N
= (1− θ)2 (genotype frequency for wildtype homozygotes),

where θ is the minor allele frequency (MAF).

We assume the mean gene expression levels for the 3 groups are

µ1 = a− δ1 (for mutation homozygotes),

µ2 = a (for heterozygotes),

µ3 = a+ δ2 (for wildtype homozygote).

That is,

µ2 − µ1 = δ1,

µ3 − µ2 = δ2.

Next, we would like to show that the non-centrality parameter λ depends only on δ1 and

δ2, but not depends on a.

We can obtain
µ =ω1µ1 + ω2µ2 + ω3µ3

=
n1

N
(a− δ1) +

n2

N
a+

n3

N
(a+ δ2)

=a
(n1

N
+
n2

N
+
n3

N

)
− n1

N
δ1 +

n3

N
δ2

=a− n1

N
δ1 +

n3

N
δ2.
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Hence,

µ1 − µ = (a− δ1)−
(
a− n1

N
δ1 +

n3

N
δ2

)
=− δ1 +

n1

N
δ1 −

n3

N
δ2

µ2 − µ =a−
(
a− n1

N
δ1 +

n3

N
δ2

)
=
n1

N
δ1 −

n3

N
δ2

µ3 − µ = (a+ δ2)−
(
a− n1

N
δ1 +

n3

N
δ2

)
=δ2 +

n1

N
δ1 −

n3

N
δ2.

Hence, the non-centrality parameter λ depends only on δ1 and δ2, but not depends on a.

Therefore, we can set a = 0 when we do programming. That is, we can set

µ1 = −δ1 (for mutation homozygotes),

µ2 = 0 (for heterozygotes),

µ3 = δ2 (for wildtype homozygote).

(10)

Next, we simplify the expression of λ.

Denote

p = θ, q = 1− p.

Then we have

w1 = p2, w2 = 2pq, w3 = q2.

The overall mean can be rewritten as

µ =w1µ1 + w2µ2 + w3µ3

=p2(−δ1) + q2δ2

=q2δ2 − p2δ1.

(11)

Denote

ξ =
3∑
i=1

wi (µi − µ)2 .
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We can get

ξ =
3∑
i=1

wi
(
µ2
i − 2µiµ+ µ2

)
=

3∑
i=1

[
wiµ

2
i − 2wiµiµ+ wiµ

2
]

=
3∑
i=1

wiµ
2
i − 2µ

3∑
i=1

wiµi + µ2

3∑
i=1

wi

=
3∑
i=1

wiµ
2
i − 2µ2 + µ2

=
3∑
i=1

wiµ
2
i − µ2

=w1µ
2
1 + w3µ

2
3 − µ2

=p2δ21 + q2δ22 −
(
q2δ2 − p2δ1

)2
=p2δ21 + q2δ22 −

(
q4δ22 + p4δ21 − 2p2q2δ1δ2

)
=
(
p2 − p4

)
δ21 +

(
q2 − q4

)
δ22 + 2p2q2δ1δ2

=p2(1− p)(1 + p)δ21 + q2(1− q)(1 + q)δ22 + 2p2q2δ1δ2

=p2q(1 + p)δ21 + q2p(1 + q)δ22 + 2p2q2δ1δ2.

Hence,

λ =
N

σ2

[
p2q(1 + p)δ21 + q2p(1 + q)δ22 + 2p2q2δ1δ2

]
. (12)

2 Power Calculation for Bulk Tissue eQTL Based on

SLR

2.1 Introduction

If we would like to test linear relationship between genotype of a SNP and expression of a

gene, we can use simple linear regression:

yi =β0 + β1xi + εi, εi ∼ N (0, σ2),

i =1, . . . , n,
(13)
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where yi is the expression level of the gene for the subject i and xi is the genotype of the i-th

subject by using additive coding. That is, xi = 0 for wild-type homozygote (containing zero

minor allele), xi = 1 for heterozygote (containing one minor allele), and xi = 2 for mutation

homozygote (containing two minor allele).

2.2 Mean and variance of additive coded genotype

Denote A as major allele and a as minor allele. Denote X as the random variable recoding

the additive coded genotype and denote the genotype frequencies as

p0 =Pr(AA) = Pr(X = 0),

p1 =Pr(Aa) = Pr(X = 1),

p2 =Pr(aa) = Pr(X = 2).

(14)

Then we can calculate the mean and variance of the genotype

µx =E(X)

=0 · Pr(X = 0) + 1 · Pr(X = 1) + 2 · Pr(X = 2)

=p1 + 2p2,

σ2
x =E(X2)− [E(X)]2

=
[
02 · Pr(X = 0) + 12 · Pr(X = 1) + 22 · Pr(X = 2)

]
− µ2

x

=p1 + 4p2 − µ2
x.

(15)

Equivalently,

p1 =2µx − µ2
x − σ2

x,

p2 =
(σ2

x − µx + µ2
x)

2
.

(16)

2.2.1 Hardy-Weinberg equilibrium

Denote the minor allele frequency (MAF) as θ = Pr(a). Under Hardy-Weinberg equilibrium,

we have the following results:

p0 =Pr(AA) = (1− θ)2,

p1 =Pr(Aa) = 2θ(1− θ),

p2 =Pr(aa) = θ2.

(17)
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In this case, we have

µx =2θ,

σ2
x =2(1− θ)θ,

(18)

and

σ2
x = µx − µ2

x/2. (19)

2.3 Power Calculation of eQTL based on simple linear regression

2.3.1 Power calculation for simple linear regression

The exact power calculation formula derived in this section is an improvement of the appro-

lambdamate power calculation formula derived in Dupont and Plummer (1998). For simple

linear regression (13), the estimate β̂1 of slope is

β̂1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
, (20)

where

x̄ =
1

n

n∑
i=1

xi, ȳ =
1

n

n∑
i=1

yi.

Denote

Lxx =
n∑
i=1

(xi − x̄)2 =
n∑
i=1

x2i − n(x̄)2

Lxy =
n∑
i=1

(xi − x̄)(yi − ȳ) =
n∑
i=1

xiyi − nx̄ȳ.

Then

β̂1 =
Lxy
Lxx

.

We are interested in testing the hypotheses:

H0 : β1 = 0 versus H1 : β1 = δ(δ 6= 0). (21)

Under the alternative hypothesis H1,

β̂1 ∼ N

(
δ,

σ2

Lxx

)
. (22)
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We can construct the following test statistic to test if β1 = 0:

t =
β̂1√
σ̂2/Lxx

,

where

σ̂2 =
1

n− 2

n∑
i=1

(yi − ŷi)2

is the unbiased estimate of σ2 (i.e., E (σ̂2) = σ2), and

ŷi = β̂0 + β̂1xi

and

β̂0 = ȳ − β̂1x̄.

It can be shown that

(n− 2)
σ̂2

σ2
∼ χ2

n−2. (23)

Under H0 : β1 = 0,
β̂1√
σ2/Lxx

∼ N(0, 1).

It can be shown that β̂1 is independent of σ̂2.

Note that if Z ∼ N(0, 1), V ∼ χ2
ν , and Z and V independent, then Z/

√
V/ν ∼ tν , where

tν is the t distribution with ν degrees of freedom. Hence, we have

t =
β̂1√
σ̂2/Lxx

=

β̂1√
σ2/Lxx√

(n− 2) σ̂
2

σ2/(n− 2)

H0∼ tn−2.

Hence, the Type I error rate α for two-sided test is

α = Pr (|t| > tn−2(α/2)|H0) , (24)

where tn−2(α/2) is the upper 100(α/2)% percentile of the t distribution with degree of

freedom n− 2.
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We use the following fact: if Z ∼ N(0, 1), V ∼ χ2
ν , and Z and V are independent, then

Z + λ√
V/ν

∼ tν,λ,

where tν,λ is the non-central t distribution with ν degrees of freedom and non-centrality

parameter λ.

Hence, based on (22), we have

β̂1√
σ2/Lxx

H1∼ N (λ, 1) ,

where

λ =
δ√

σ2/Lxx
=

δ√
σ2/ [(n− 1)σ̃2

x]
, (25)

and σ̃2
x is an unbiased estimate of σ2

x:

σ̃2
x =

1

n− 1

n∑
i=1

(xi − x̄)2 .

Under H1 we have

t =
β̂1√
σ̂2/Lxx

=

β̂1√
σ2/Lxx√

(n− 2) σ̂
2

σ2/(n− 2)

H1∼ tn−2,λ. (26)

Hence, the exact power is calculated as

1− β =Pr (|t| > tn−2(α/2)|H1)

=Pr (t > tn−2(α/2)|H1) + Pr (t < −tn−2(α/2)|H1)

=1− Tn−2,λ [tn−2(α/2)] + Tn−2,λ [−tn−2(α/2)] ,

(27)

where Tn−2,λ(a) is the value at a of CDF of non-central t distribution with (n − 2) degrees

of freedom and non-centrality parameter λ.

Formula (25) shows that λ depends on the standard deviation σ of random error, which

is not easy to estimate or to set its value in design stage of a study. Instead, the standard

deviation of the outcome σy is relative easier to estimate or set based on historical data.

Formulas (1) and (2) in Dupont and Plummer (1998)[1] describe the relationships among
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the slope β1, the variance of the outcome σ2
y , the variance of predictor σ2

x, and the variance

of the random error σ2:

σ2 = σ2
y − β2

1σ
2
x. (28)

Hence, we can rewrite the non-centrality parameter λ as

λ =
δ√(

σ2
y − δ22(1− θ̂)θ̂

)
/
[
(n− 1)2(1− θ̂)θ̂

] . (29)

Since σ2 > 0, we require

σ2
y − δ22(1− θ)θ > 0.

We can get

− σy√
2θ(1− θ)

< δ <
σy√

2θ(1− θ)
. (30)

and (
θ − 1

2

)2

>
1

4
−

σ2
y

2δ2
.

If 1
4
− σ2

y

2δ2
> 0, we then require

(
θ − 1

2

)
>

√
1

4
−

σ2
y

2δ2

or (
θ − 1

2

)
< −

√
1

4
−

σ2
y

2δ2

Since θ < 0.5, we require

0 < θ <
1

2
−
√

1

4
−

σ2
y

2δ2
. (31)

3 Power Calculation for Single-Cell eQTL

3.1 A Linear Mixed Effects Model

We are interested in testing if a SNP is associated with the expression of a gene based on

single cell RNAseq data, which contain n subjects. For each subject, we obtain m cells. For

each cell, we measured the expression of G genes.
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We assume the following linear mixed effects model to characterize the association be-

tween genotype of a given SNP and expression of a given gene:

yij =β0i + β1xi + εij,

β0i ∼N
(
β0, σ

2
β

)
,

εij ∼N
(
0, σ2

)
,

i =1, . . . , n,

j =1, . . . ,m,

(32)

where the random intercepts β0i and the random error terms εij are independent, n is the

number of subjects, m is the number of cells per subject, yij is the gene expression of the

j-th cell for the i-th subject, and xi is the genotype for the i-th subject. xi = 0 indicates

that the i-th subject is a wildtype homozygote, xi = 1 indicates that the i-th subject is a

heterozygote, and xi = 2 indicates that the i-th subject is a mutation homozygote.

Note that the random intercept β0i helps incorporate intra-class correlation between yij

and yik, for j 6= k. The covariance between yij and yik is

Cov (yij, yik) =Cov (β0i + β1xi + εij, β0i + β1xi + εik)

=V ar (β0i)

=σ2
β.

3.2 Hypotheses

The mean gene expression for the 3 genotypes are

E (yij) =β0 if subject i is a wildtype homozygote,

E (yij) =β0 + β1 if subject i is a heterozygote,

E (yij) =β0 + 2β1 if subject i is a mutation homozygote.

If the slope β1 = 0, then all three genotypes have the same mean gene expression E (yij) =

β0. Hence, to test if a SNP is associated with a gene is equivalent to test if the slope β1 = 0

or not.
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We would like to test the following null hypothesis (H0) and alternative hypothesis (H1):

H0 :β1 = 0,

H1 :β1 = δ,
(33)

where δ 6= 0.

3.3 Power calculation formula

For a given SNP-gene pair, we derived the power calculation formula for testing Hypotheses

(33) as shown below:

power = 1− Φ

(
zα/2 −

σ̂x
σy

δ
√
m(n− 1)√

1 + (m− 1)ρ

)
+ Φ

(
−zα/2 −

σ̂x
σy

δ
√
m(n− 1)√

1 + (m− 1)ρ

)
, (34)

where α is the type I error rate, zα/2 is the upper 100α/2 percentile of the standard normal

distribution N(0, 1), σy =
√
σ2
β + σ2 is the standard deviation of yij (i.e., σy =

√
V ar (yij)),

σ̂x =
√∑n

i=1 (xi − x̄)2 /(n− 1) is the sample standard deviation of the predictor (i.e., geno-

type) xi, and ρ = σ2
β/
(
σ2
β + σ2

)
is the intra-class correlation (i.e., correlation between yij

and yik).

The power calculation formula for testing Hypotheses (33) for genotypes under Hardy-

Weinberg Equilibrium is:

power =1− Φ

(
zα/2 −

√
2θ (1− θ)
σy

δ
√
m(n− 1)√

1 + (m− 1)ρ

)

+ Φ

(
−zα/2 −

√
2θ (1− θ)
σy

δ
√
m(n− 1)√

1 + (m− 1)ρ

)
.

(35)

where θ is the minor allele frequency of the SNP.

The details of the derivations are shown in Appendices.

3.4 Discussion

Note that we assume the gene expression levels yij are normally distributed. However,

RNAseq data are counts and many counts are zero. So yij could not be normally dis-

tributed. We might use data transformations (e.g., R package countTransformers [5] devel-
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oped in Zhang et al., 2019[6]). However, usually we can only make sure the median and mean

are close, while the transformed data are still not normally distributed. The effect of using

normal assumption to fit non-normal data is false-positive inflation. So the power calculated

will be higher than the true power. In future, we will derive power calculation formula based

on mixed effects negative binomial regressions that are popular in fitting RNAseq data. The

challenge is that no closed-form power calculation formulas can be derived for negative bino-

mial regressions, let alone mixed effects negative binomial regressions. We will try to derive

approximate power-calculation formulas and to use simulation approach.

4 Power Calculation for Single-Cell eQTL via Simula-

tion based on ZINB Mixed Effects Regression Model

One approach to analyze single-cell RNAseq (scRNAseq) data is to directly use the read

counts as outcome variable in generalized linear regression. For example, Zheng (2016)[7]

used zero-inflated negative binomial (ZINB) regression model to detect differentially ex-

pressed genes based on scRNAseq and to simulate scRNAseq data. Vieth et al. (2017)[4]

also mentioned to use ZINB for differential expression (DE) analysis based on scRNAseq

data.

As the best of our knowledge, no studies have used ZINB mixed effects regression model

yet to calculate power of single cell expression quantitative loci (sc-eQTL) analysis. Since

there is no closed-form power-calculation formula for ZINB mixed effects regression model,

we use a simulation approach.

4.1 ZINB mixed effects regression model

We assume that the gene expression levels (read counts) follow zero-inflated negative binomial

distribution. Denote Yij as the read counts for the j-th cell of the i-th subject, i = 1, . . . , n,

j = 1, . . . ,m, n is the number of subjects, and m is the number of cells per subject. Denote

p as the probability that Yij = 0 is an excess zero. With probability 1 − p, Yij follows a

negative binomial distribution NB(µ, θ), where µ is the mean (i.e., µ = E(Yij)) and θ is the

dispersion parameter. The variance of the NB distribution is µ + µ2/θ. The relationship

between gene expression and genotype for the i-th subject is characterized by the equation

µi = exp(β0i + β1xi), (36)
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where β0i is the random intercept following a normal distribution N(β0, σ
2) to account for

within-subject correlation of gene expression, β0 is the mean of the random intercept, σ is

the standard deviation of the random intercept, β1 is the slope, and xi is the additive-coded

genotype for the SNP with minor allele frequency MAF .

We assume that the SNP satisfies the Hardy-Weinberg Equilibrium. That is, the proba-

bilities of the 3 genotypes (0, 1, 2) are (1−MAF )2, 2MAF (1−MAF ), MAF 2, respectively.

For simplicity, we assume that excess zeros are caused by technical issues, hence are not

related to genotypes.

4.2 Power calculation via simulation

To calculate power via simulation, we perform the following steps:

Step 1 Simulate nSim datasets. Each dataset contains read counts of one gene and geno-

type of one SNP for n subjects, each with m cells.

Step 2 Simulate genotypes for the SNP. We assume that each subject’s genotypes are the

same across cells. We also assume the Hardy-Weinberg Equilibrium.

Step 3 The read counts of the gene follows a mixture of 2-component distributions. One

component takes only one value: zero. The other component is negative binomial

distribution, which takes non-negative values 0, 1, 2, .... The log mean of the negative

binomial distribution is linear function of the genotype (Formula 36).

Step 4 For each simulated dataset, we fit data via ZINB mixed effects regression model.

The p-value for testing if the slope β1 for genotype is equal to zero will be calculated.

Step 5 The proportion of p-values < α is the estimated power, where α = 0.05/nTests,

and nTests is the number of all (SNP, gene) pairs in sc-eQTL analysis.

4.3 Parameter estimates for ZINB mixed effects regression model

Currently, there are two R packages (GLMMadaptive and glmmTMB) in CRAN that can fit

ZINB mixed effects. We included both R packages in powerEQTL. By default, GLMMadap-

tive is used to obtain the p-value for testing if the slope β1 is equal to zero or not.
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4.4 Parallel computing

The simulation approach is computational intensive. Parallel computing would improve the

speed. We used the function mclapply in the R packagle parallel to calculate power via

parallel computing.
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Appendix

A Vector representation

In this section, we derive the vector representations of Model (32).

We represent β0i by

β0i = β0 + ξi,

where

ξi ∼ N
(
0, σ2

β

)
.

Denote

eij = ξi + εij.

Then

eij ∼ N
(
0, σ2

β + σ2
)
.

Denote

σ2
y = σ2

β + σ2.

Note that

V ar (yij) = V ar (β0i) + V ar (εij) = σ2
β + σ2 = σ2

y. (A1)

Model (32) can be rewritten as

yij =β0 + β1xi + eij,

eij ∼N
(
0, σ2

y

)
,

i =1, . . . , n,

j =1, . . . ,m,

(A2)

with Cov (yij, yik) = σ2
β for j 6= k.

Denote

yi =


yi1
...

yim

 , ei =


ei1
...

eim

 , ui =

(
1

xi

)
, β =

(
β0

β1

)
.

Also, denote 1m as the m× 1 vector of ones, 0m as the m× 1 vector of zeros, and Im as the

18



m×m identity matrix.

Model (A2) can be rewritten as

yi =1mu
T
i β + ei,

ei ∼N (0m,Σ) ,

i =1, . . . , n,

(A3)

where yi is a m× 1 vector, 1m is a m× 1 vector, uTi is a 1× 2 vector, β is a 2× 1 vector,

ei is a m× 1 vector, Σ is a m×m matrix

Σ =


σ2
y σ2

β

. . .

σ2
β σ2

y

 = σ2
y


1 ρ

. . .

ρ 1

 ,

and

ρ =
σ2
β

σ2
y

=
σ2
β

σ2
β + σ2

.

Note that ρ is also called intra-class correlation (ICC).

Denote

R =


1 ρ

. . .

ρ 1

 .

Then

Σ = σ2
yR.

Denote

y =


y1
...

yn

 , U =


1mu

T
1

...

1mu
T
n

 , e =


e1
...

en

 , Ω =


Σ 0

. . .

0 Σ

 .

Model (A3) can be rewritten as

y =Uβ + e,

e ∼N
(
0(n×m)×1,Ω

)
,

(A4)
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where y is a (n×m)× 1 vector, U is a (n×m)× 2 matrix, β is a 2× 1 vector, and e is a

(n×m)× 1 vector.

B Generalized least squares estimate when variance-

covariance matrix is known

Denote the weighted distance between y and the linear part Uβ in Model (A4) as

g (β) = (y −Uβ)T Ω−1 (y −Uβ)

=yTΩ−1y − 2yTΩ−1Uβ + βTUTΩ−1Uβ.
(A5)

The generalized least squares estimate of β when the variance-covariance matrix Ω is

known is obtained by solving the following minimization problem:

minβg (β) . (A6)

The first order partial derivative of g (β) to β is

∂g (β)

∂β
= −2UTΩ−1y + 2UTΩ−1Uβ.

Let the first partial derivative be equal to zero, we can get

β̂ =
(
UTΩ−1U

)−1
UTΩ−1y. (A7)

The second order partial derivative of g (β) to β is

∂2g (β)

∂β∂βT
= 2UTΩ−1U ,

which is positive definite. Hence, β̂ minimizes, not maximize, the objective function g (β).

We call β̂ the generalized least squares estimate of β when Ω is known.
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C Mean, variance, and distribution of the generalized

least squares estimate

The mean of β̂ is

E
(
β̂
)

=
(
UTΩ−1U

)−1
UTΩ−1E (y)

=
(
UTΩ−1U

)−1
UTΩ−1Uβ

=β.

That is β̂ is an unbiased estimate of β.

The variance-covariance matrix of β̂ is

Cov
(
β̂
)

=
(
UTΩ−1U

)−1
UTΩ−1Cov (y) Ω−1U

(
UTΩ−1U

)−1

=
(
UTΩ−1U

)−1
UTΩ−1ΩΩ−1U

(
UTΩ−1U

)−1

=
(
UTΩ−1U

)−1
.

(A8)

Since y is normally distributed, hence β̂ is also normally distributed.

D Calculating the power for testing if the slope is equal

to zero

To test the null hypothesis H0 : β1 = 0 versus the alternative hypothesis H1 : β1 = δ, where

δ 6= 0, we can construct the test statistic

Z =
β̂1√

V ar
(
β̂1

) . (A9)

Note that we assume Ω is known. Hence, Z is a statistic. Otherwise (i.e., if Ω is unknown),

Z is not a statistic since it contains unknown parameters.

Under H0 : β1 = 0, Z follows standard normal distribution N(0, 1). Under H1 : β1 = δ,
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where δ 6= 0,
β̂1 − δ√
V ar

(
β̂1

) ∼ N(0, 1).

If we set the decision rule as

reject H0 : β1 = 0 if |Z| > zα/2,

then the Type I error rate is equal to α, where zα/2 is the upper 100α/2 percentile. That is,

Pr
(
|Z| > zα/2|H0

)
= α

We also can calculate the power for testing he null hypothesis H0 : β1 = 0 versus the

alternative hypothesis H1 : β1 = δ, where δ 6= 0.

power =Pr
(
|Z| > zα/2|H1

)
=Pr

(
Z > zα/2|H1

)
+ Pr

(
Z < −zα/2|H1

)
.

We can get

Pr
(
Z > zα/2|H1

)
=Pr

 β̂1√
V ar

(
β̂1

) > zα/2

∣∣∣∣∣∣∣∣H1



=Pr

 β̂1 − δ + δ√
V ar

(
β̂1

) > zα/2

∣∣∣∣∣∣∣∣H1



=Pr

 β̂1 − δ√
V ar

(
β̂1

) > zα/2 −
δ√

V ar
(
β̂1

)
∣∣∣∣∣∣∣∣H1



=1− Φ

zα/2 − δ√
V ar

(
β̂1

)
 ,
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where Φ is the cumulative distribution function of the standard normal distribution N(0, 1).

Similarly, we can get

Pr
(
Z < −zα/2|H1

)
=Pr

 β̂1√
V ar

(
β̂1

) < −zα/2
∣∣∣∣∣∣∣∣H1



=Pr

 β̂1 − δ + δ√
V ar

(
β̂1

) < −zα/2
∣∣∣∣∣∣∣∣H1



=Pr

 β̂1 − δ√
V ar

(
β̂1

) < −zα/2 − δ√
V ar

(
β̂1

)
∣∣∣∣∣∣∣∣H1



=Φ

−zα/2 − δ√
V ar

(
β̂1

)
 .

Therefore the power is

power = 1− Φ

zα/2 − δ√
V ar

(
β̂1

)
+ Φ

−zα/2 − δ√
V ar

(
β̂1

)
 . (A10)

E Calculation of the variance of the slope estimate

Based on Formula (A8), we have

Cov
(
β̂
)

=
(
UTΩ−1U

)−1
.
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We first calculate Ω−1. We have

Ω−1 =


Σ−1 0

. . .

0 Σ−1

 .

We then calculate Σ−1. We have

Σ−1 =
1

σ2
y

R−1.

We next calculate R−1. We can rewrite R to

R = (1− ρ)

(
Im +

ρ

1− ρ
1m1Tm

)
.

Then we have

R−1 =
1

(1− ρ)

(
Im +

ρ

1− ρ
1m1Tm

)−1

.

Based on the matrix theories, we have the following results

(
A+ bcT

)−1
= A−1 − A−1bcA−1

1 + cTA−1b
,

where A is a matrix, b and c are vectors.

Let A = Im, b = ρ
1−ρ1m, c = 1m. We have A−1 = Im, 1Tm1m = m, and

(
Im +

ρ

1− ρ
1m1Tm

)−1

=Im −
ρ

1−ρ1m1Tm

1 + ρ
1−ρm

=Im −
ρ1m1Tm

(1− ρ) + ρm

=Im −
ρ1m1Tm

1 + (m− 1)ρ
.

Hence, we have

R−1 =
1

(1− ρ)

[
Im −

ρ1m1Tm
1 + (m− 1)ρ

]
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and

Σ−1 =
1

σ2
y(1− ρ)

[
Im −

ρ1m1Tm
1 + (m− 1)ρ

]
. (A11)

Next, we calculate

UTΩ−1U =
(
u11

T
m, . . . ,un1

T
m

)
Σ−1 0

. . .

0 Σ−1


(

1mu
T
1

...

1mu
T
n

)

=
n∑
i=1

ui1
T
mΣ−11mu

T
i

=1TmΣ−11m

n∑
i=1

uiu
T
i .

We have

1TmΣ−11m =
1

σ2
y(1− ρ)

[
1Tm1m −

ρ1Tm1m1Tm1m
1 + (m− 1)ρ

]
=

1

σ2
y(1− ρ)

[
m− ρm2

1 + (m− 1)ρ

]
=

m

σ2
y(1− ρ)

[
1− ρm

1 + (m− 1)ρ

]
=

m

σ2
y(1− ρ)

[1 + (m− 1)ρ− ρm]

[1 + (m− 1)ρ]

=
m

σ2
y(1− ρ)

(1− ρ)

[1 + (m− 1)ρ]

=
m

σ2
y [1 + (m− 1)ρ]

.

We also can get

uiu
T
i =

(
1

xi

)
(1, xi)

=

(
1 xi

xi x2i

)
.
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Hence, we have

UTΩ−1U =1TmΣ−11m

n∑
i=1

uiu
T
i

=
m

σ2
y [1 + (m− 1)ρ]

(
n

∑n
i=1 xi∑n

i=1 xi
∑n

i=1 x
2
i

)

=
nm

σ2
y [1 + (m− 1)ρ]

(
1 x̄

x̄
∑n

i=1 x
2
i /n

)
.

Note that based on the matrix theories, the inverse of a 2× 2 matrix

A =

(
a b

c d

)

is

A−1 =

(
d −b
−c a

)
ad− bc

.

Therefore,

Cov
(
β̂
)

=
(
UTΩ−1U

)−1

=
σ2
y [1 + (m− 1)ρ]

nm

1

(
∑n

i=1 x
2
i /n− x̄2)

( ∑n
i=1 x

2
i /n −x̄

−x̄ 1

)

=
σ2
y [1 + (m− 1)ρ]

nm

1
1
n

∑n
i=1 (xi − x̄)2

( ∑n
i=1 x

2
i /n −x̄

−x̄ 1

)

=
σ2
y [1 + (m− 1)ρ]

m

1∑n
i=1 (xi − x̄)2

( ∑n
i=1 x

2
i /n −x̄

−x̄ 1

)

=
σ2
y [1 + (m− 1)ρ]

m(n− 1)

1

σ̂2
x

( ∑n
i=1 x

2
i /n −x̄

−x̄ 1

)

=
[1 + (m− 1)ρ]

m(n− 1)

σ2
y

σ̂2
x

( ∑n
i=1 x

2
i /n −x̄

−x̄ 1

)
,

(A12)

where

σ̂2
x =

1

(n− 1)

n∑
i=1

(xi − x̄)2 .
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Finally, we obtain

V ar
(
β̂1

)
=

[1 + (m− 1)ρ]

m(n− 1)

σ2
y

σ̂2
x

. (A13)

Note that V ar
(
β̂1

)
is the variance conditional on x1, . . ., xn.

F Power calculation formula revisit

Based on Formulas (A10) and (A13), the power calculation formula for testing Hypotheses

(33) can be rewritten as:

power =1− Φ

zα/2 − δ√
V ar

(
β̂1

)
+ Φ

−zα/2 − δ√
V ar

(
β̂1

)


=1− Φ

(
zα/2 −

σ̂x
σy

δ
√
m(n− 1)√

1 + (m− 1)ρ

)
+ Φ

(
−zα/2 −

σ̂x
σy

δ
√
m(n− 1)√

1 + (m− 1)ρ

)
,

where α is the type I error rate, zα/2 is the upper 100α/2 percentile of the standard normal dis-

tribution N(0, 1), σy =
√
σ2
β + σ2, σ̂x =

√∑n
i=1 (xi − x̄)2 /(n− 1), and ρ = σ2

β/
(
σ2
β + σ2

)
.

G Variance of genotype under Hardy-Weinberg Equi-

librium

For the given SNP, suppose its minor allele frequency (MAF) is θ (0 < θ < 0.5). Then under

Hardy-Weinberg Equilibrium, the genotype frequencies are

Pr (xi = 2) =θ2,

P r (xi = 1) =2θ (1− θ) ,

P r (xi = 0) = (1− θ)2 ,
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The mean genotype is

E (xi) =2× Pr (xi = 2) + 1× Pr (xi = 1) + 0× Pr (xi = 0)

=2θ2 + 2θ (1− θ)

=2θ.

We also can derive the second moment of genotype

E
(
x2i
)

=22 × Pr (xi = 2) + 12 × Pr (xi = 1) + 02 × Pr (xi = 0)

=4θ2 + 2θ (1− θ)

=2θ2 + 2θ

=2θ (1 + θ) .

The variance of genotype is

V ar
(
x2i
)

=E
(
x2i
)
− [E (xi)]

2

=2θ (1 + θ)− 4θ2

=2θ (1− θ) .

H Power calculation formula for genotypes under Hardy-

Weinberg Equilibrium

Hence, the power calculation formula for testing Hypotheses (33) for genotypes under Hardy-

Weinberg Equilibrium is:

power =1− Φ

(
zα/2 −

√
2θ (1− θ)
σy

δ
√
m(n− 1)√

1 + (m− 1)ρ

)

+ Φ

(
−zα/2 −

√
2θ (1− θ)
σy

δ
√
m(n− 1)√

1 + (m− 1)ρ

)
.

where α is the type I error rate, zα/2 is the upper 100α/2 percentile of the standard normal

distribution N(0, 1), σy =
√
σ2
β + σ2, θ is the minor allele frequency, and ρ = σ2

β/
(
σ2
β + σ2

)
is the intra-class correlation.
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