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Figure S1. Average accuracy of logistic classifiers trained for predicting missing links in the Spanish corruption network,
Brazilian corruption network, and Brazilian criminal intelligence network with (A) node2vec, (B) LINE, and (C) Mercator
representations of nodes and different binary operators. The bars stand for the average accuracy in the test sets over ten replicas
of the embedding and training processes (error bars represent one standard deviation). The test sets are generated by randomly
removing 10% of network edges and sampling the same number of false connections. The horizontal dashed lines indicate the
baseline accuracy.
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Figure S2. Average accuracy in tasks of predicting future partnerships evaluated in test sets of the Brazilian corruption
networks as a function of the threshold year for different binary operators. The upper left panel shows the results obtained
using logistic classifiers and all other panels depict the accuracy for kNN classifiers with different number of neighbors (k,
shown above the panels). The markers represent the average accuracy on the test sets estimated from ten realizations of the
embedding and training processes (shaded regions stand for one standard deviation band). The horizontal dashed line indicates
the baseline accuracy.
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Figure S3. Average accuracy in tasks of predicting future partnerships evaluated in test sets of the Spanish corruption
networks as a function of the threshold year for different binary operators. The upper left panel shows the results obtained
using logistic classifiers and all other panels depict the accuracy for kNN classifiers with different number of neighbors (k,
shown above the panels). The markers represent the average accuracy on the test sets estimated from ten realizations of the
embedding and training processes (shaded regions stand for one standard deviation band). The horizontal dashed line indicates
the baseline accuracy.
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