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SUPPLEMENTAL INFORMATION

Figure S1. DMOG treated endothelial cells maintain viability and stabilize HIF-a (related to
Figure 1). (A) Representative images of immunostaining of HIF-1a and HIF-2a proteins in control
and DMOG-treated cells. Scale bars, 50um. (B) Immunoblot analysis of HIF-1a and HIF-2a in
nuclear extracts isolated from control and DMOG-treated cells. (C) Shown are percentages of
Annexin V/propidium iodide (PI) positive cells after 24 h treatment with vehicle (control) or DMOG
(1 mM). Data are pooled from 3 independent experiments and represented as mean + SEM.
Statistics were determined by two-tailed t-test. **, P<0.01.

Figure S2. DMOG induces broad transcriptional reprogramming in endothelial cells
(related to Figure 2). (A) Volcano plot of RNA-seq data showing number of significantly up-
regulated and down-regulated genes in DMOG-treated cells compared to control. (B) Heatmaps
showing the top 50 up-regulated (top) and top 50 down-regulated genes (bottom) in the
transcriptome of HPAECs treated with DMOG for 24h. (C) Pathway map illustrating transcriptional
changes induced by DMOG in genes involved in glycolysis, TCA cycle and ETC. Up-regulated
and down-regulated genes by DMOG are shown in red and blue color respectively, whereas
genes in black color showed no significant transcriptional changes. TCA, tricarboxylic acid cycle;
ETC, electron transport chain.

Figure S3. DMOG mimics transcriptional response to hypoxia (related to Figure 2) (A) Venn
diagrams show the DEGs demonstrating uniquely or commonly up-regulation (left graph) or down-
regulation (right graph) by exposure to hypoxia or DMOG (B). Bubble charts for Hallmark
pathways of overlapped up-regulated (left) or down-regulated DEGs (right) in HPAEC by DMOG
and hypoxia. (C) Table shows the up-regulated glycolytic genes (left table) and down-regulated
genes of MC1 following hypoxia exposure.

Figure S4. Metabolomic analysis of DMOG treated ECs compared to control (related to
Figure 3). (A) Experimental workflow for the metabolomic analysis of cellular lysates and media
from control and DMOG treated HPAEC. Shown in (B) and (C) are biochemical importance plots
generated by random forest classification of metabolites measured in cells and media,
respectively from control and DMOG-treated HPAEC.

Figure S5. Supplementation of membrane permeable derivatives of pyruvate (methyl
pyruvate) and aspartate (methyl aspartate) do not affect angiogenic defects induced by
DMOG (related to Figure 4). (A) Effect of pyruvate supplementation (2 mM, 1 mM and 0.5 mM)
on HPAEC proliferation assessed by MTT assay. (B) Representative images of 2D scratch wound
assay of control, DMOG, DMOG + pyruvate and pyruvate (0.5mM) treated cells and semi-
quantitative analysis of healed area after 24h. (C) Effect of aspartate supplementation (5mM,
2mM and 0.5mM) on HPAEC proliferation assessed by MTT assay. (D) Representative images
of 2D scratch wound assay of control, DMOG, DMOG + aspartate and aspartate (0.5mM) treated
cells and semi-quantitative analysis of healed area after 24 h. (E) Representative images of tubes
formed at indicated time points in control, DMOG, DMOG + pyruvate, DMOG + aspartate,
pyruvate (0.5 mM) and aspartate (0.5 mM) treated cells and semi-quantitative analysis of different
parameters at 20 h time point. Data are pooled from 3 independent experiments and represented
as mean = SEM. Statistics were determined by one-way ANOVA with Sidak correction for multiple
comparisons. ***, P<0.001; ****, P< 0.0001; ns, not significant. Asterisks/ns above bars indicate
significance level between control and treated group, whereas asterisks/ns above the lines
indicate significance level between DMOG and DMOG + pyruvate or DMOG + aspartate treated
groups. Scale bars, 200um.



Figure S6. DCA treatment does not rescue angiogenic defects induced by DMOG (related
to Figure 4). (A) Representative immunoblots of Phospho-PDHE1q, total PDHE1a and GAPDH
following 24 h treatment with 2, 5 and 10 mM DCA. Quantitative analysis of the blots is shown in
the lower graph. (B) Effect of DCA on HPAEC proliferation assessed by BrdU assay. Scale bar,
50um. (C) Representative images of 2D scratch wound assay of control, DMOG, DMOG+DCA
and DCA (10 mM) treated cells and semi-quantitative analysis of healed area after 24 hr. Scale
bar, 200pum. (D) Representative images of tubes formed at indicated time points in control,
DMOG, DMOG+DCA, and DCA (10mM) treated cells and semi-quantitative analysis of different
parameters at 20 h time point. Scale bar, 200um. Data are pooled from 3 independent
experiments and represented as mean + SEM. Statistics were determined by one-way ANOVA
with Sidak correction for multiple comparisons. *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001;
ns, not significant. Asterisks/ns above bars indicate significance level between control and treated
group, whereas asterisks/ns above the lines indicate significance level between DMOG and
DMOG + DCA treated groups.

Figure S7. Effect of citrate on cell cycle progression, HIF-a protein and NAD" levels (related
to Figure 4). HPAEC were treated with different compounds for 24 h. (A) Histogram of cell cycle
analysis for control, DMOG, DMOG + citrate, and citrate (0.5 mM) treated cells. (B)
Representative images of immunostaining for HIF-1a and HIF-2a proteins in control, DMOG,
DMOG + citrate and citrate treated cells. Scale bars, 50um. (C) Immunoblot analysis of HIF-1a
and HIF-2a in nuclear extracts isolated from control, DMOG, DMOG + citrate, and citrate treated
cells. (D) Relative abundance of NAD" levels in cellular extracts from control, DMOG, DMOG +
citrate, and citrate treated cells. Data are represented as mean + SEM. Statistics were determined
by one-way ANOVA with Sidak correction for multiple comparisons. *, P<0.05; **, P<0.01; ***,
P<0.001; ****, P< 0.0001; ns, not significant. Asterisks/ns above bars indicate significance level
between control and treated group, whereas asterisks/ns above lines indicate significance level
between DMOG and DMOG + citrate treated groups. D + Citr., DMOG + citrate treated group.



Figure S1. DMOG treated endothelial cells maintain viability and stabilize HIF-a.
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Figure S2. DMOG induces broad transcriptional reprogramming in endothelial cells.
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Figure S3. DMOG mimics transcriptional response to hypoxia.
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Figure S4. Metabolomic analysis of DMOG treated ECs compared to control.
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Figure S5. Supplementation of pyruvate and aspartate do not affect angiogenic defects induced by DMOG.
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Figure S6. DCA treatment does not rescue angiogenic defects induced by DMOG.
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Figure S7. Effect of citrate on cell cycle progression, HIF-a protein and NAD+ levels.
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