Simple Fluorescence Sensing Approach for Selective Detection of Fe³⁺ Ion: Live Cell Imaging and Logic Gate Functioning

Puthiyavalappil Rasin^a, Vipin Manakkadan^a, Vishnunarayanan Namboothiri Vadakkedathu Palakkeezhillam^a, Jebiti Haribabu^b, Cesar Echeverria^{b,} and Anandaram Sreekanth^a*

Department of Chemistry, National Institute of Technology-Tiruchirappalli, Tamil Nadu, India-620015

^bFacultad de Medicina, Universidad de Atacama, Los Carreras 1579, 1532502, Copiapo, Chile * Corresponding Author: E-mail: <u>sreekanth@nitt.edu</u>;Tel: +91 431 2503642 ; Fax: +91 431 2500133

List of Contents

- 1. Synthetic Procedure and Spectral Data of Sensor APSB
- 2. ¹H NMR and 13C NMR Spectra of **APSB**
- 3. HR-MS spectra of **APSB** and its **Fe³⁺** Complex
- 4. Linear Response of Fluorescence Titration of APSB
- 5. Solvatochromic Study of APSB
- 6. Time-dependence study
- 7. Effect of pH on receptor **APSB**
- 8. UV/vis Spectral Responses of APSB
- 9. Job's Plot for 1:1 Complexation of APSB and Fe^{3+}
- 10. Cyclic Voltammetry of APSB
- 11. Proposed Optimized Geometries of **APSB** and its Fe³⁺ Complex

1. Synthetic Procedure and Spectral Data of Sensor APSB

A solution of pyrene-1- carboxaldehyde (0.230g, 1mmol) in hot ethanol (25 mL), was added dropwise to a solution of 2-amino anthracene (0.193g, 1mmol) in ethanol (5 mL), 4-5 drops of glacial acetic acid was added to the reaction. Then the reaction mixture was further refluxed for 8 h. Finally, the precipitate formed was filtered, washed well with cold ethanol, and dried. Yield 92%; IR (ATR) umax/cm-1 3037,1577. ¹H NMR (500 MHz, CDCl₃) δ 9.72 (s, 1H), 8.52 (s, 1H), 8.50 (s, 2H), 8.37 (d, *J* = 9.2 Hz, 2H), 8.34 (d, *J* = 9.6 Hz, 3H), 8.32 – 8.29 (m, 6H), 8.15 (d, *J* = 4.8 Hz, 2H), 8.3 (s, 1H), 7.71 (d, *J* = 9.1 Hz, 1H) ppm.

¹³C NMR (126 MHz) δ 193.08, 158.64, 135.58, 132.22, 131.40, 130.86, 130.74, 129.71, 129.15, 128.27, 128.02, 127.53, 127.23, 127.07, 126.86, 126.59, 126.28, 126.27, 126.26, 126.00, 125.65, 125.35, 125.14, 124.58, 123.85, 123.82, 123.06, 122.63, 122.51, 120.04, 117.34 ppm. (HR-MS) m/z: calcd for $C_{31}H_{19}N$: 405.15, found: 406.04 [M+H]⁺

2. ¹H NMR and 13C NMR Spectra of APSB

Figure S2: ¹³C NMR spectra of APSB

3. HR-MS spectra of APSB and its Fe³⁺ Complex

Where $M' = APSB-Fe^{3+}$

(B)

Figure S3: HR-MS spectra of chemosensor APSB (A) and APSB-Fe³⁺ complex (B)

4. Linear Response of Fluorescence Titration of APSB

Figure S4: Linear response of fluorescence titration of APSB (1×10^{-5} M) in the presence of the increasing amount of Fe³⁺ (0-1.5 Equiv.) in CH3CN/H2O (95/5 v/v,) medium, $\lambda em = 520$ nm

0.75 - 0.75 - 0.75 - 0.50 -

5. Solvatochromic study of APSB

Figure S5: Solvatochromic studies of APSB in DMF and DMSO solvents and water mixture (solvent/H2O, 95/5 v/v) medium.

6. Time-dependence study

Figure S6: Fluorescent Intensity of APSB-Fe³⁺ complex at different time intervals (λ_{em} =520 nm, λ_{ex} =413 nm)

7. Effect of pH on receptor APSB

Figure S7: Fluorescence intensity (520 nm) of free receptor APSB (Black) (1×10^{-5} M) and after the addition of Fe³⁺ (1×10^{-3} M) (Red circles) in DMSO/Water (95/5, v/v) solutions as a The function of pH.

8. UV/vis Spectral Responses of APSB

Figure S8: UV/vis absorption spectra of APSB (1×10^{-5} M) in DMSO/H2O (95/5 v/v) medium with various metal ions (1×10^{-3} M, $\lambda abs = 290$ and 375 nm).

Figure S9: UV/vis absorption spectra of APSB $(1 \times 10^{-5} \text{ M})$ with the increasing amount of Fe³⁺ (0–1.5 Equiv.) in DMSO/H2O (95/5 v/v) medium.

Figure S10: Linear response of UV/vis titration of APSB $(1 \times 10^{-5} \text{ M})$ in the presence of the increasing amount of Fe³⁺ (0–1.5 Equiv.) in DMSO/H2O (95/5 v/v) medium

9. Job's Plot for 1:1 Complexation of APSB and Fe³⁺

Figure S11: Job's plot for 1:1 complexation of APSB and Fe³⁺ (λ em = 520 nm) in DMSO/H2O (95/5 v/v) medium.

Figure S12: Job's plot for 1:1 complexation of APSB and Fe^{3+} ($\lambda abs = 413$ nm) in DMSO/H2O (95/5 v/v) medium.

10. Cyclic Voltammetry of APSB

Figure S13: Cyclic voltammetry of APSB $(1 \times 10^{-5} \text{ M})$ with Fe³⁺ $(1 \times 10^{-3} \text{ M})$ in PBS (7) potential range: -1.5 V up to 1.5 V, v = 0.1 V s-1.

11. Proposed Optimized Geometries of APSB and its Fe³⁺ Complex

Figure S14: Proposed optimized geometries of APSB (A) and APSB with the Fe³⁺ complex (B)