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Supplemental Figure 1. Single-cell transcriptomic profiling of µPASE development. 

Related to Figure 1. 

(A) Representative confocal micrographs showing µPASEs at t = 0 h (left) and t = 12 h (right) 

stained for OCT4 and NANOG. Plasma membrane is stained with fluorescently labelled wheat 

germ agglutinin (WGA). 

(B) Feature plots showing selected lineage markers used for cell identity annotations in the 

UMAP plots of µPASEs at t = 24, 36 and 48 h, respectively.  

(C) UMAP plots of µPASEs at t = 24, 36, 48 h, separated from the integrated UMAP plot in 

Figure 1D. n indicates the cell number. 

(D) Integrated UMAP plots of datasets from µPASEs at t = 48 h and the published dataset in 

Ref.(Zheng et al., 2019b). Left: Datasets are color-coded according to sources, with n indicating 

the cell number; right: Cells are color-coded according to cell identity annotations.   

(E) Dot plot showing expression of key marker genes across the cell clusters as indicated 

(µPASEs at t = 48 h from this paper (red) and Ref.(Zheng et al., 2019b) (blue)). The sizes and 

colors of dots indicate the proportion of cells expressing the corresponding genes and their 

averaged scaled values of log-transformed expression, respectively. 

 

In A, experiments were repeated four times with similar results. Nuclei were counterstained with 

DAPI. Scale bars, 50 µm.   



DAPI ISL1 GATA3 TBXT Merged DAPI TFAP2A MIXL1 TBXT Merged

Signaling pathways regulating pluripotency of stem cells - Homo sapiens (human) (KEGG: 04550)

NasAMLC > EpiLC PSLC > EpiLCJ

lo
gF

C

-1.0

-0.5

0.0

0.5

1.0

S
O

X
2

ID
4

TB
X

3

H
A

N
D

1

W
N

T5
B

IS
L1 ID
3

N
A

N
O

G

D
LX

5

ID
1

JA
R

ID
2

B
M

P
4

ID
2

S
K

IL

P
IK

3R
1

IL
6S

T

M
Y

C

FZ
D

7

P
O

U
5F

1B

W
N

T5
A

ZF
H

X
3 lo

gF
C

-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0

S
O

X
2

W
N

T5
B

TB
X

3

N
A

N
O

G

ID
3

ID
4

JA
R

ID
2

H
A

N
D

1

N
O

D
A

L

FG
F2

P
IK

3R
1

W
N

T5
A

lo
gF

C

-1.0

-0.5

0.0

0.5

1.0

B
A

M
B

I

ID
4

ID
3

ID
1

N
O

G

B
M

P
4

FS
T

ID
2

TG
FB

1

B
M

P
7

M
Y

C

lo
gF

C

-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6

ID
3

B
A

M
B

I
ID

4
FS

T
N

O
D

A
L

TG
FB

1

TGF-β signaling pathway - Homo sapiens (human) (KEGG: 04350)

144
(37.7%)

198
(51.8%)

40
(10.5%)

NasAMLC > EpiLC PSLC > EpiLC

MIXL1
TBXT
CDX1
SERPINE2
GATA6
NODAL
APLNR
FOXH1
CDH2

CLDN10
ISL1
TFAP2C
BMP4
ANXA2
SAMD1
CDH1
DIO3

HAND1
CDX2
VIM
TFAP2A
MSX2
SAMD11
WNT5A
WNT5B
KRT8

BAMBI
GATA3
ID3
JUND
KRT19
MSX1
TBX3
SOX17
WLS

I

ISL1 TBXT

Bright-field, t = 24 h

A B

C D

E

0

1

2

3

0.0 0.5 1.0 1.5 2.0

1

2

3

0.0 0.5 1.0 1.5 2.0
0.0
0.2
0.4
0.6

0.0 0.5 1.0 1.5 2.0
1

2

3

0.0 0.5 1.0 1.5 2.0

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0
0.0
0.2
0.4
0.6

0.0 0.5 1.0 1.5 2.0
0.0
0.2
0.4
0.6
0.8

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5 2.0

pseudotime

E
xp

re
ss

io
n 

le
ve

l
HAND1 CLDN10 GATA2 KRT8

ID2 BMP4 WNT5B WNT6

0.0
0.5
1.0
1.5

0.0 0.5 1.0 1.5
0.0
0.2
0.4
0.6

0.0 0.5 1.0 1.5
0.0

0.2

0.4

0.0 0.5 1.0 1.5
0.0
0.2
0.4
0.6

0.0 0.5 1.0 1.5

0.00
0.25
0.50
0.75
1.00

0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

0.0 0.5 1.0 1.5
0.0

0.5

1.0

0.0 0.5 1.0 1.5
0.0

0.5

1.0

0.0 0.5 1.0 1.5

MESP1 HOXB6 HOXB8 SNAI1

CDH2 BMP4 WNT5A WNT5B

pseudotime

E
xp

re
ss

io
n 

le
ve

l

MeLC1
MeLC2

t =
 2

4 
h

t =
 3

6 
h

t =
 4

8 
h

t =
 2

4 
h

t =
 3

6 
h

t =
 4

8 
h

Supplemental Figure 2

DAPI CDX2 MIXL1 GATA6 Merged

t =
 4

8 
h

In
te

ns
ity

DAPI CDX2 MIXL1 TBXT Merged

t =
 4

8 
h

In
te

ns
ity

F G  BF Edu Merged

AMLC1 > NasAMLC
Top 20

S100A10
TCIM
LCP1
GABRP
ACTC1
FLRT3
S100A11
WFDC2
ACKR3
SESN3
LUM

DIO3
STOM
MALAT1
HAPLN1
EZR
WLS
ISL1
CXCL12
TAGLN2
RGS5
CLDN10

H
AMLC2 > AMLC1

Top 20

HAND1
CTSV
IGFBP3
PLA2G2A
ATP2B1
EPAS1
KRT19
TPM1
DOK4

CTNNB1RAD51

MSX1

HOXB6

WLS
FTL

CTSH

CDH1

ISL1

POU5F1

CLDN10

SOX2

KRT7
CLDN4

JUND

GABRP

ID1 KRT19

GATA3

0

50

100

150

−1 0 1 2
avg_log2FC

−l
og
10
(p
_v

al
_a

dj
)

K With IWP2 vs. Without IWP2



Supplemental Figure 2. Trajectory inference and gene expression dynamics during µPASE 

development. Related to Figure 2. 

(A) Expression dynamics (pseudotime) of selected genes during AMLC lineage development. 

Level of confidence (0.95) is indicated by band width. 

(B) Expression dynamics (pseudotime) of selected genes during PSLC / MeLC lineage 

development. Level of confidence (0.95) is indicated by band width. 

(C) Representative confocal micrographs showing µPASEs at indicated time points stained for 

ISL1, GATA3 and TBXT. 

(D) Representative confocal micrographs showing µPASEs at indicated time points stained for 

TFAP2A, MIXL1 and TBXT. 

(E) Bright-field and immunofluorescence images showing an array of µPASEs at t = 24 h, 

stained for ISL1 and TBXT. 

(F) Representative confocal micrographs showing µPASEs at t = 48 h stained for CDX2, MIXL1 

and GATA6 (top); CDX2, MIXL1 and TBXT (bottom). Intensity maps show relative intensities 

of corresponding markers as indicated. 

(G) Representative confocal micrographs showing proliferating cells in µPASEs. Images were 

taken at t = 27 h. Cell nuclei with newly synthesized DNA within the last 3 hours were labeled 

using Click-iT EdU Imaging Kit (Invitrogen). Note: The low intensity of the Edu signal from 

cells embedded in the gel is caused by insufficient dye diffusion.  

(H) Venn diagram showing top 20 upregulated genes in AMLC1 vs. NasAMLC and AMLC2 vs. 

AMLC1. The full DEG lists can be found in Mendeley Data Table 3.   

(I) Venn diagram showing selected upregulated genes in NasAMLC and PSLC, as compared to 

EpiLC. The full DEG lists can be found in Mendeley Data Table 3.   

(J) DEGs related to pluripotency signaling pathway (KEGG: 04550) and TGF-β signaling 

pathway (KEGG: 04350) in NasAMLC and PSLC, as compared to EpiLC. Blue and green colors 

highlight genes identified only for NasAMLC and PSLC, respectively. 

(K) Volcano plots showing DEGs between AMLCs from µPASEs with or without IWP2 at t = 

48 h, with selected genes labelled. The full DEG list can be found in Mendeley Data Table 3.   

 

In C-G, experiments were repeated three times with similar results. Nuclei were counterstained 

with DAPI. Scale bars, 50 µm.    
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Supplemental Figure 3. PGCLC specification during µPASE development. Related to 

Figure 3. 

(A) Diffusion map of EpiLC, PSLC, MeLC1 and PGCLC clusters from the UMAP plot in 

Figure 1D. PGCLC cluster is discontinuous from other clusters. K-Branches algorithm failed to 

identify branches or branching points with sufficient confidence. 

(B) Expression dynamics (pseudotime) of selected genes during PGCLC lineage development. 

Level of confidence (0.95) is indicated by band width. 

(C) Representative confocal micrographs showing µPASEs at indicated time points stained for 

TFAP2C, NANOG and SOX17. 

(D) Heat map of correlation matrix for PGCLCs in µPASEs, human PGCs (Ref. (Tyser et al., 

2021)) and PGCLCs derived using other protocols (Ref. (Chen et al., 2019; Sasaki et al., 2015)). 

Correlation coefficients between indicated cell types are calculated based on PGC ontogenic 

genes identified for cynomolgus embryo transcriptome data. 

(E) DEGs related to HIF-1 signaling pathway (KEGG: 04066) in PGCLC as compared to 

PGCLC-branch NasAMLC. 

(F) Representative confocal micrographs showing arrays of µPASEs at t = 48 h, stained for 

SOX17; control (top); with LY294002 supplemented into the basal medium from t = 0 h 

(bottom). 

 (G) Percentage of SOX17+ PGCLCs in µPASEs at t = 48 h under indicated conditions. n = 20 

µPASEs for each condition. Data were pooled from n = 2 independent experiments. Red lines 

represent the median. 

 

In C and F, experiments were repeated three times with similar results. Nuclei were 

counterstained with DAPI. Scale bars, 50 µm.   
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Supplemental Figure 4. scRNA-seq data integration of Carnegie Stage 7 human gastrula 

and downsampled µPASEs and single-cell transcriptomic profiling of cultured hPSCs, 

µPASEs at t = 0 h and t = 12 h. Related to Figure 4. 

(A) UMAP plots of integrated dataset of CS7 human gastrula (all 1,195 cells) and downsampled 

µPASEs (from Figure 1D, 100 cells per cluster). Left: color-coded according to original cell 

identity annotations of CS7 human gastrula; grey color indicates cells from µPASEs. Right: 

color-coded according to cell identity annotations of µPASEs as indicated in Figure 1D; grey 

color indicates cells from CS7 human gastrula.  

(B) UMAP plots of integrated dataset of CS7 human gastrula (647 cells, excluding irrelevant 

cells) and downsampled µPASEs (from Figure 1D,100 cells per cluster). Left: color-coded 

according to original cell identity annotations of CS7 human gastrula; grey color indicates cells 

from µPASEs. Right: color-coded according to cell identity annotations of µPASEs as indicated 

in Figure 1D; grey color indicates cells from CS7 human gastrula.  

(C) Principal component analysis (PCA) plot of cultured hPSCs, µPASEs at t = 0 h and µPASEs 

at t = 12 h, EpiLCs from µPASEs in Figure 1D (at t = 24, 36 and 48 h), d.p.f. 9 (n = 108) and 

d.p.f. 11 (n = 62) epiblasts from in vitro cultured human embryos (Ref.(Molè et al., 2021)), 

epiblasts from CS7 human gastrula (n = 133) (Ref. (Tyser et al., 2021)), d.p.f. 5-7 epiblasts from 

human blastocysts and d.p.f. 3-5 human morula cells (Ref.(Petropoulos et al., 2016)). PCAs were 

calculated using epiblast ontogenic genes identified from cynomolgus embryos (Nakamura et al., 

2016, see Mendeley Data Table 5). To prevent datasets with high number of cells dominating 

PCA calculation, cultured hPSCs, µPASEs at t = 0 h, µPASEs at t = 12 h, EpiLCs from µPASEs 

(at t = 24, 36 and 48 h), d.p.f. 5-7 epiblasts from human blastocysts and d.p.f. 3-5 human morula 

cells were downsampled to 100 cells.  

(D) Heatmap showing expression levels of selected genes reportedly related to human epiblast 

pluripotency states (Kinoshita et al., 2021; Takashima et al., 2014; Wang et al., 2021). Color 

codes are consistent with C. 
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Supplemental Figure 5. Intercellular communication network analysis of µPASEs, 

cynomolgus embryos and mouse embryos at the peri-gastrulation stage. Related to Figure 

6. 

(A), (D), (G), Heatmaps showing contributions of individual signaling pathways as incoming 

and outgoing signals for each cell type in µPASEs at t = 24 h (A), in vitro cultured cynomolgus 

embryos at Day 12 (D), and mouse embryos at E6.5 (G). Grey bars on the right indicate relative 

signal strengths of each pathway across all cell types within local tissue environments.  

(B), (E), (H), Circle plots showing inferred signal networks of selected pathways in µPASEs at t 

= 24 h (B), in vitro cultured cynomolgus embryos at Day 12 (E), and mouse embryos at E6.5 

(H). The dot size is proportional to the number of cells for each cell type, and the line thickness 

corresponds to the communication probability.  

(C), (F), (I), Dot plots showing expression levels of selected ligands and receptors in µPASEs at 

t = 24 h (C), in vitro cultured cynomolgus embryos at Day 12 (F), and mouse embryos at E6.5 

(I). The sizes and colors of dots indicate the proportion of cells expressing the corresponding 

genes and their averaged scaled values of log-transformed expression, respectively. 
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Supplemental Figure 6. NODAL is essential for MeLC lineage development in µPASEs. 

Related to Figure 6. 

(A) Generation of NODAL-KO hPSCs. Two crRNA:tracrRNA duplexes were used 

simultaneously to delete a 58-bp portion of genomic DNA within the exon1 of NODAL. 

(B), (C) Genomic DNA sequences of NODAL exon1 before and after CRISPR/Cas9-mediated 

gene deletion. 

(D) Phase-contrast microscopy images of wildtype and NODAL-KO hPSC clones after exposure 

to CHIR99021 (10 µM) for 36 h. 

(E) Western blot showing NODAL protein expression in wildtype and NODAL-KO hPSCs after 

exposure to CHIR 99021 (10 µM) for 24 h. 

(F) Representative confocal micrographs showing NODAL-KO µPASEs at indicated time points 

stained for ISL1, GATA3 and TBXT. 

(G) Representative confocal micrographs showing NODAL-KO µPASEs at indicated time points 

stained for TFAP2C, NANOG and SOX17. 

(H) Volcano plot showing DEGs between PGCLCs from wildtype and NODAL-KO µPASEs, 

with selected genes labelled. The full DEG lists can be found in Mendeley Data Table 7. 

(I) Representative confocal micrographs showing wildtype µPASEs with SB431542 

supplemented into the basal medium from t = 0 h, stained for ISL1, GATA3 and TBXT (i); 

TFAP2A, MIXL1 and TBXT (ii); TFAP2C, NANOG and SOX17 (iii). 

(J) Representative confocal micrographs showing NODAL-KO µPASEs with ACTIVIN A 

supplemented into the channel opposite to BMP4 stimulation from t = 0 h, stained for ISL1, 

GATA3 and TBXT (i); TFAP2C, NANOG and SOX17 (ii); TFAP2C, BLIMP1 and FOXA2 

(iii). 

(K) Representative confocal micrographs showing wildtype µPASEs with ACTIVIN A 

supplemented into the channel opposite to BMP4 stimulation from t = 0 h, stained for ISL1, 

GATA3 and TBXT (i); TFAP2C, NANOG and SOX17 (ii); TFAP2C, BLIMP1 and FOXA2 

(iii). 

 

In D, E and I-K, experiments were repeated twice with similar results. In F and G, experiments 

were repeated three times with similar results, and nuclei were counterstained with DAPI. Scale 

bars, 100 µm (D) and 50 µm (F, G, I-K).   
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Supplemental Figure 7. Stringent criteria for identifying human trophoblast and amniotic 

ectoderm. Related to Figure 7.  

(A) Highly expressed genes identified using stringent criteria in human trophoblast, as compared 

with the amniotic/embryonic ectoderm from Ref. (Tyser et al., 2021) shared between the 

trophoblast data from Ref. (Petropoulos et al., 2016) and Ref. (Blakeley et al., 2015) as indicated. 

(B) Highly expressed genes identified using stringent criteria in human amniotic/embryonic 

ectoderm from Ref. (Tyser et al., 2021), as compared with the trophoblast from Ref. 

(Petropoulos et al., 2016) and Ref. (Blakeley et al., 2015) as indicated. 

(C) Representative micrographs showing human trophoblast stem cells (TSCs) and amniotic 

ectoderm-like cells derived by treating hPSCs with BMP4, stained for ISL1 and GATA3; GCM1 

and HAVCR1; TFAP2A or TFAP2C, as indicated. 

(D) Representative micrographs showing µPASEs at t = 36 h stained for GCM1, GATA3 and 

TBXT (top); ISL1, MIXL1 and HAVCR1 (bottom). 

In C and D, experiments were repeated twice with similar results. Nuclei were counterstained 

with DAPI. Scale bars, 50 µm. 

 


