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Section S1. Plume identification and source attribution protocols

The plume discrimination and attribution approach closely resembles the methodology used in
Cusworth et al. [1]. For plume identification, we generate full scene CH4 maps (Figure S7). These
maps are used in conjunction with RGB imagery from the imaging spectrometer to identify the
origin of plumes. A positive plume detection is recorded if a cluster of CH4 enhancements
corresponds to a plume-like structure and if these enhancements are not exactly correlated to
obvious surface confusers (e.g., rooftops, roads, water bodies, clouds, etc.). The origin of a
positively identified plume corresponds to a region of high relative plume enhancement that
corresponds to a plausible source location (e.g., tank battery, vent stack) as identified with
comparison to available RGB layers.

For source attribution, we used a combination of these RGB layers (DIMAC (~60 cm) imagery,
AVIRIS-NG/GAO RGB, Google Earth). Three human analysts followed the classification
protocols:

- Sites were classified as “Production” if they were clearly associated with well pad
infrastructure (well heads, pumpjacks, well completions, tanks at production sites).
Sources that were visibly connected to tanks at production sites were labelled “tanks”
while all other sites were labelled “well-site.”

- Sites were classified as “Gathering and Boosting” if they were clearly associated with
gathering pipelines or any infrastructure within a compressor station’s footprint. For
example, if a tank at a compressor station was detected as a source, it was labelled
“compression.”

- Sites were classified as “Processing plants” if any sources were detected within the
footprint of the processing plant.

- Sites were classified as “Gas power plants” if any sources were detected within the
footprint of a gas power plant

- Sites were classified as “livestock” if any sources were detected at confined animal
feeding operations (CAFOs), including manure lagoons and pits.

- Sites were classified as “landfills” if plume were detected within the active, intermediate,
or final cover faces, or gas capture system within the footprint of a landfill.

- Sites were classified as “coal” if plumes were clearly emanating from coal mine vents or if
large diffuse enhancements were detected from non-vent related coal infrastructure

Examples of classified sources are shown in Figure S8-S9. We show RGB imagery for each
platform (DIMAC, AVIRIS-NG/GAO, Google Earth), and how the source was classified. Sources
where a clear determination could not be made remained unlabeled. All plume imagery is
available for visualization and download at carbonmapperdata.org
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Section S2. TROPOMI Flux Inversion

Section S2.1 Inversion algorithm

We infer gridded CH4 emission fluxes using TROPOMI XCH4 over roughly the same time period
as an airborne campaign. To ensure sufficient samples to constrain regional fluxes, we performed
TROPOMI inversions for two months surrounding each campaign. We use the Stochastic
Time-Inverted Lagrangian Transport model (STILT; [2]), driven by meteorological reanalysis wind
fields. We use the High Resolution Rapid Refresh (HRRR) 3 × 3 km product, which is available at
a 3 hourly time resolution (https://www.ready.noaa.gov/READYmetdata.php). The STILT model
simulates an influence function or “footprint” at a receptor by releasing an ensemble of particles
backwards in time along the winds. Receptors represent instantaneous atmospheric
observations. Footprints can be thought of as the sensitivity that an observation had to any
upwind emissions in both space and time. Therefore, a single atmospheric observation (y) can be
represented by the following relation:
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TROPOMI XCH4 represents a column averaged concentration, we must generate STILT
footprints at many altitudes, then take their pressure-weighted average, and finally smooth using
the TROPOMI averaging kernel, which is near uniform in the troposphere [3]. Here, we simulate
STILT footprints at 50-m, 500-m, and 1000-m above surface, and assume that sensitivity to
surface emissions is negligible above these heights.

We collect all TROPOMI XCH4 over our observing domain and remove the background to
estimate XCH4 enhancements. For each XCH4 observation, we estimate the background as the
5th percentile of all TROPOMI XCH4 within a 100 km radius of that observation. We simulate
STILT footprints for each TROPOMI XCH4 enhancement ( ) such that we can expand𝑦∈𝑅𝑛×1

Equation S1:
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Where is the collection of STILT footprints, also called the Jacobian matrix. Each row of𝐻∈𝑅𝑛×𝑚

H represents a unique STILT pressure-weighted column footprint.

Since we do not know the true emissions , we employ an atmospheric inversion to estimate𝑥
these values. Often inverse problems for CH4 have used a Bayesian framework [4], where prior
emissions are used to constrain the optimal solution. However, the most recent gridded prior for
each basin that includes all sectors dates back to 2012 [5], which could mischaracterize the
magnitude and spatial distribution of emissions given rapid changes in many basins since 2012
(e.g., Permian). We apply an alternative approach, called regularized regression that does not
rely on a prior [6]. This approach, sometimes called Tikhonov regularization, uses a regularization
term (e.g., a flat prior) to stabilize the solution. Here we seek a solution that balances model-data
mismatch with the stability of the solution:
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Where R is the observational error covariance matrix, and the term represents the L-2‖ • ‖
2

norm. We find the solution by implementing coordinate-gradient descent [6]. The parameter isλ
the regularization term, which can be estimated by analyzing an L-curve [7]. In this process, many
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potential solutions are solved using a large array of fixed values. The solutions are thenλ
visualized on a 2-D plot, where the y-axis represents the first term of the right hand side of
Equation S3 (model-data mismatch) and the x-axis represents the second term (L-2 norm of
emission vector). The solution that occupies the lowermost left part of the plot (i.e., the “elbow”) is
considered the optimal solution . Figure S6 shows an example of an L-curve, where one can𝑥

^

select an appropriate value. The error covariance matrix R accounts for instrument error ( ),λ σ
𝑜
2

transport model error ( ),  and error in background determination ( ), which we assume to beσ
𝑚
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diagonal to speed computation, taking the following form:
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TROPOMI column precision is reported to be approximately 0.7%, which translates to roughly 11
ppb. Studies have shown that STILT simulations with high 1 km resolution meteorological data
incurs approximately 4 ppb transport error [8]. Given the coarser resolution of HRRR winds, we
assume 10 ppb transport error here. We also estimate 17 ppb variability in the background. We
populate the entries of R using these uncertainty parameters.

We estimate ensemble uncertainty on posterior fluxes by performing inversions following
Equation S3 on random samples of y for each inversion time period. Reported uncertainties
represent the 1σ standard deviation of posterior flux estimates due to random sampling.

Section S2.2: Validation of inversion algorithm

The inversion algorithm described in Section S2.1 can be validated against multiple
near-simultaneous fluxes derived from independent observations. These include a tower network
in the Uinta Basin [9], a tower network in the Permian (PermianMap.org), and mass-balance
flights flown by Scientific Aviation in the Permian (PermianMap.org). For each of these
independent flux estimates, we clip our TROPOMI inverse flux grid spatially to match the grid of
the independent estimate. We compare our TROPOMI-derived inverse fluxes against these
observations in Table S1. Flux estimates from tower networks span time ranges akin to our
TROPOMI flux inversions, except for the Uinta, which represents a yearly average. Aircraft mass
balance estimates represent a daytime average flux. However, relative differences between flux
estimates vary between -36% to 42% across basins and time periods. These relative differences
do not exceed the 2σ uncertainties of the TROPOMI flux inversions in any basin.

Table S1 also includes flux estimates for studies carried out asynchronously from our campaigns
and where spatial flux domains do not overlap (Marcellus, Denver-Julesburg). These cannot be
used for direct validation of our inversion approach, but are still useful for comparison. Relative
differences between these campaigns and our flux estimates vary between -18% to 43%, again
within 2σ uncertainties of our flux estimates. Finally, Table S2 lists the retrieval parameters and
data density of TROPOMI retrievals that were used for each basin inversion.
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Figure S1. Flight lines overflown for each of the campaigns described in the survey. Red coloring
indicates lines that were flown with AVIRIS-NG. Teal coloring indicates lines that were flown with
GAO.
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Figure S2. Regional TROPOMI-based flux inversions for the indicated basins and time periods.
Note that the colorbars are not consistent.
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Figure S3. Regional TROPOMI-based flux inversions for the indicated basins and time periods.
Note that the colorbars are not consistent.
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Figure S4. Regional TROPOMI-based flux inversions for the indicated basins and time periods.
Note that the colorbars are not consistent.
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Figure S5. Domains for the Permian that correspond to the convex hull of airborne overflights
(Figure S1, S3). The inner white boxes represent the region of overlap across campaigns that
were used to assess trends in aggregated point source budgets.
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Figure S6. Example L-curve described in Section S2.1 that is used to identify an optimal
regularization parameter (purple dot) for L-2 regularized regression.
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Figure S7. Example of full scene collect from AVIRIS-NG. The left panel shows RGB imagery
from AVIRIS-NG. The right panel shows the full strip CH4 retrieval (black and white) that is used
to identify plume geolocations, which are then used to generate unique plume imagery and
quantify emissions.
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Figure S8. Examples of source attributions that were performed using GAO RGB, DIMAC, and
Google Earth.
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Figure S9. Examples of source attributions that were performed using GAO RGB, DIMAC, and
Google Earth.
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Table S1: Validation of TROPOMI XCH4 flux inversion

Basin

TROPOMI
inversion

time
period

TROPOMI
derived

CH4
fluxes (t
CH4 h-1)

Independent
measurement

systema

Independent
measurement
system time

period

Independent
flux rate (t
CH4 h-1)

Difference
relative to

independent
flux

estimate
Spatial / Temporal Overlapping studies

Permian Sep-Nov
2019 107 ± 43 Aircraft

mass-balance Oct 17, 2019 167 ± 31 -36%

Permian July-Aug
2020 118 ± 25 Tower

network
July-Aug

2020 142 -17%

Permian July-Aug
2020 118 ± 25 Aircraft

mass-balance Jul 13, 2020 123 -4%

Permian July-Aug
2021 112 ± 27 Tower

network
July-Aug

2021 134 -16%

Uinta July-Aug
2020 33.9 ± 5.5 Tower

network 2020 24 42%

Non-Spatial / Temporal Overlapping studies

Denver-J
ulesburg

June-July
2021 21.1 ± 4.1

Aircraft
mass-balance

b

2 flights:
May 2012 26.0 ± 7.4 -18%

Denver-J
ulesburg

Sep-Oct
2021 25.2 ± 6.8 Aircraft

mass-balance
2 flights:
May 2012 26.0 ± 7.4 -3.1%

Marcellus May-Jun
2021 109 ± 39

Aircraft
mass-balance

c

3 flights;
Aug-Sep

2015
76.3 ± 7.2 43%

aIndependent flux estimates from the Permian were retrieved from the Environmental Defense
Fund’s PermianMAP (PermianMap.org). Flux estimates from the Uinta Basin can be found in Lin
et al. [9], https://doi.org/10.1038/s41598-021-01721-5
bPetron et al., [10], https://doi.org/10.1002/2013JD021272
cRen et al., [11], https://doi.org/10.1029/2018JD029690
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Table S2: TROPOMI data density and retrieval parameters/observing conditions for each
inversion

Basin
Inversion

time
period

Area of
inversion
domain
(km2)

Number of
observations

Average
Shortwave

Infrared
Albedo

Average
Aerosol
Optical

Thickness

Average
Surface

Altitude (m)

San Joaquin
Valley

July-Sep
2020 5.60E+03 7.59E+03 1.98E-01 2.04E-02 1.95E+02

San Joaquin
Valley

Oct-Nov
2020 5.60E+03 5.83E+03 1.98E-01 1.78E-02 1.83E+02

San Joaquin
Valley

Oct-Nov
2021 5.60E+03 5.21E+03 2.10E-01 2.89E-02 1.83E+02

Permian Sep-Nov
2019 5.40E+04 2.99E+04 2.35E-01 4.39E-02 1.01E+03

Permian July-Aug
2020 8.40E+03 9.20E+03 2.70E-01 6.82E-02 9.24E+02

Permian July-Aug
2021 8.90E+03 6.79E+03 2.36E-01 5.65E-02 9.08E+02

Permian Sep-Oct
2021 8.90E+03 1.14E+04 2.46E-01 2.77E-02 9.10E+02

Uinta July-Aug
2020 6.20E+03 3.99E+03 2.58E-01 1.73E-01 1.67E+03

Denver-Jules
burg

June-July
2021 4.80E+03 5.85E+03 1.80E-01 4.88E-02 1.52E+03

Denver-Jules
burg

Sep-Oct
2021 4.80E+03 4.44E+03 1.88E-01 4.97E-02 1.53E+03

Southwest
Pennsylvania

May-Jun
2021 1.03E+04 2.84E+03 8.12E-02 5.64E-02 3.70E+02
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