Cell Reports Methods, Volume 2

Supplemental information

Functional microvascularization

of human myocardium in vitro

Oisín King, Daniela Cruz-Moreira, Alaa Sayed, Fatemeh Kermani, Worrapong Kit-Anan, Ilona Sunyovszki, Brian X. Wang, Barrett Downing, Jerome Fourre, Daniel Hachim, Anna M. Randi, Molly M. Stevens, Marco Rasponi, and Cesare M. Terracciano

Supplementary Figures

Fig. S1 Fibrin hydrogel culture scaffold enables mechanical coupling between EC and CM a, Optimisation of cell density for confluence in 3D fibrin hydrogel. hiPSC-CM (red) and hCMVEC (yellow) were visualised with immunofluorescent confocal microscopy in low and high density co-cultures to establish requisite conditions for confluence in 3D fibrin hydrogel. Scale bar = 50 μ m. b, Experimental outline of live imaging of RFP-HUVEC to detect and quantify physical displacement of EC by CM contractility. Scale bar = 50 μ m. c, Reduction of RFP-HUVEC displacement via inhibition of CM contractility via Blebbistatin treatment. Each

datapoint represents average value from 6 dishes, N=3. **d**, EC displacement rate depends on CM electrical simulation frequency. Data is shown as mean \pm SEM. *=p<0.05. Related to figure 1 and 2 of main text.

Fig. S2 Organisation of microvascular network in EC-FB microfluidic co-culture

a, Widefield tile showing distribution of RFP-HUVEC in microfluidic chip after 1 week coculture with hLVFB. Scale bar = 1mm **b**, Confocal z-stack showing endothelial network with

continuous open lumen. White asterisks indicate open luminal spaces. Scale bar = 50 μ m. c, Perfusion of 40kDa FITC-Dextran through microvasculature in EC-FB co-culture. Scale bar = 50 μ m. Related to figures 3 and 4 of main text.