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Supplementary Figures 
	

	

Supplementary Figure 1. CD19 mis-splicing in TARGET B-ALL and Orlando datasets. 
(a) CD19 shows extensive mis-splicing in B-ALL patients. Splice junctions were quantified with 
MAJIQ1 for 220 B-ALL patients from the Therapeutically Applicable Research To Generate 
Effective Treatments (TARGET) programme (https://ocg.cancer.gov/programs/target). 
Splicegraph shows all splice junctions with a usage level (percent selected index, PSI) of at 
least 5% in any patient. Junctions and target exon of the local splicing variation (LSV) shown 
in (b) and Figure 1c, d are highlighted. (b) Intron 2 retention is the predominant isoform in B-
ALL patients. Barchart quantifies the fraction of patients (220 B-ALL patients from the 
TARGET B-ALL programme) in which a given junction rises to PSI > 50%. (c) The minigene 
generates the same isoforms as the endogenous CD19 gene in NALM-6 cells. 
Semiquantitative RT-PCR was performed to detect isoforms generated from exons 1-3 of the 
CD19 minigene and the endogenous CD19 gene in NALM-6 cells. Quantifications (mean and 
data points) of individual isoforms corresponding to Figure 1g. Error bars indicate standard 
deviation of mean (s.d.m.) if n > 2 replicates. (d) Patient mutations cause splicing changes in 
the CD19 minigene. Semiquantitative RT-PCR as in (c) for minigene variants including nine 
mutations from B-ALL patients. Quantifications (mean and data points) of individual isoforms 
corresponding to Figure 1i. Patient ID numbers as reported in Orlando et al.2. 14.1 and 14.2 
correspond to distinct mutations from patient #14. Error bars indicate s.d.m., n = 3 replicates. 
(e) The deletion c.269AGATGGGG>A from patient #5 in Orlando et al.2 introduces a frameshift 
(+2) that is compensated by the activation of an out-of-frame cryptic splice site (-2). Shown 
are the major isoforms inclusion and alt-exon2 and their coding potential in the absence (left) 
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or presence (right) of the deletion (orange arrowhead). Schematic representation of depicts 
exons 1-3 (boxes) and introns (horizontal lines) with splice junctions for each isoform (arches). 
Colour indicates coding potential (green, coding; red, non-coding). 
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Supplementary Figure 2. Long-read sequencing identifies the introduced mutations. 
(a) Analysis pipeline for the targeted DNA-seq and RNA-seq data. Left: Long-read DNA-seq 
data (PacBio, Pacific Bioscience) in the form of circular consensus sequences (CSS) were 
filtered by length (1,150-1,500 nt). 15-nt barcodes were extracted and demultiplexed, keeping 
only minigenes supported by at least 4 CSS. Alignment to the minigene reference was 
performed with BLASR3 and variants were called using GATK HaplotypeCaller4. Mutations in 
the minigene were filtered by the “penetrance score” (allele frequency, AF), discarding all the 
barcodes with more than 25% variants of low penetrance (AF < 0.8). Right: Short-read RNA-
seq data (Illumina) were trimmed based on quality using Trimmomatic5 and filtered by length 
(305 nt for read 1, 157 nt for read 2), and adapters were trimmed using Cutadapt6 and 15-nt 
barcodes were extracted and demultiplexed, keeping only minigenes supported by at least 
100 read pairs. Alignment to the specific mutated version of the minigene was performed using 
STAR7. Isoform reconstruction and isoform frequency estimation was done using custom 
scripts (see Methods). Only minigenes with 100 or more read pairs usable for isoform 
reconstruction were kept. (b) Structure of the CD19 minigene fragment for long-read 
sequencing (PacBio) to identify introduced mutations. The minigene covers exons 1-3 with the 
intervening introns, followed by a 15-nt barcode. The fragment for PacBio sequencing is 
defined by the restriction sites for HindIII upstream of exon 1 and EcoRI downstream of the 
barcode sequence. (c) 91.6% of the minigene variants carry five or more mutations. Histogram 
shows number of mutations per minigene for 10,295 mutated minigene variants. (d) 4,255 
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distinct mutations are spread along the CD19 minigene, with an average of 21 mutations per 
position. Barplot shows the sum of mutations per position in the minigene. (e) 81.9% of the 
mutations occur in at least three minigenes, which is sufficient for a reliable estimation of single 
mutation effects (Supplementary Figure 4c). Histogram shows the frequencies of the same 
mutations in different minigene variants.  
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Supplementary Figure 3. Isoform measurements from targeted RNA-seq results are 
consistent between replicates. (a) Description of the short-read RNA-seq strategy (Illumina) 
to capture the splicing products in the CD19 minigene. Read 2 (250 nt) extends beyond 
exon 1, i.e., covering the exon 1/exon 2 junction, while read 1 (350 nt) includes the 15-nt 
barcode and extends beyond exon 3. (b) The isoform measurements correlate well between 
replicates. Scatterplots compare isoform frequencies for five major isoforms as well as the 
sum of 96 cryptic isoforms between replicate 1 and 2. Each dot represents a particular 
minigene captured in both replicates. WT and mutated minigenes appear in black and grey, 
respectively. Pearson correlation coefficients (R) and associated P values (two-sided) are 
given.  
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Supplementary Figure 4. The softmax regression model performs well for training and 
test data. (a) Regression model fits measured combined mutation effects (i.e., minigene 
measurements) with high accuracy. Scatterplots show frequencies of the five major isoforms 
in the measurements (x-axis) against the model fit (y-axis) for two biological replicates and 
9,321 minigene variants used in model training. Pearson correlation coefficients (R) are shown 
for each scatterplot. (b) Cross-validation confirms the predictive power of the model for 
minigenes not used in training. The minigene library was randomly split into ten equally sized 
subsets. During 10-fold cross-validation, the softmax regression model was fitted to all data 



8	
	

excluding one subset. Scatterplots compare model-predicted splicing outcome for left-out 
subsets to corresponding experimental data for all major splice isoforms and are an overlay 
of the results of all cross-validation runs. Representation as in (a). (c) The model correctly 
infers single mutation effects. Seven single-mutation minigenes in which inclusion is 
significantly changed were left-out separately from softmax regression fitting and their effects 
were predicted based on the fit to the remaining minigene data. This procedure was repeated 
while additionally excluding random permutations of other minigenes containing the mutation. 
The standard deviation of the prediction error (y-axis) is plotted against the number of 
minigenes used in model training (x-axis). The inference power of the model reaches two 
standard deviations of the WT minigenes (horizontal line) if more than two minigenes 
containing the mutation are considered in model training. See Methods for details. 
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Supplementary Figure 5. RT-PCR measurements confirm the model predictions for 19 
individual point mutations. (a) To test selected regression predictions, we generated 19 
minigenes with individual point mutations that are predicted to affect at least one isoform 
(Supplementary Data 4). Point mutations were introduced by targeted mutagenesis. 
(b) Splicing outcome was quantified using RT-PCR followed by capillary electrophoresis. 
Quantifications (mean and data points) of individual isoforms corresponding to Figure 3e. 
‘NALM-6’, splicing pattern of WT minigenes (RNA-seq) in the mutagenesis screen, ‘HEK293’, 
RT-PCR-based quantification of the baseline minigene containing mutation G742C in HEK293 
cells. G748C* is a minigene containing G748C but lacking G742C. Error bars indicate 
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standard s.d.m. if n > 2 replicates. (c) Splicing patterns in response to single mutations 
correlate with regression predictions. Splicing outcomes from 19 CD19 minigene variants 
containing single point mutations (y-axis) are related to single mutation predictions of the 
regression model (x-axis; mean of two fits, each explaining one mutagenesis replicate). 
Changes in the isoform frequency of the major isoforms are expressed as differences (delta) 
relative to the baseline. Pearson correlation coefficients and P values (two-sided) were 
calculated for each isoform (see Figure 3f for correlation over all isoforms).	  
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Supplementary Figure 6. Multiple mutations give rise to distinct cryptic isoforms. 
(a) Multiple mutations are associated with a specific cryptic isoform. Histogram shows 
distribution of prevalence scores for 38 mutation-isoform pairs (prevalence score > 0.25). A 
prevalence score of 1 indicates perfect correspondence between mutation and isoform. 
(b) SpliceAI8 predictions for gained cryptic splice sites overlap with experimental data. Barplot 
shows the maximum SpliceAI score (“acceptor gain”) for all the mutations that increase the 
probability of a given cryptic splice site to be used (38 mutations with Splice AI score [gain] > 
0.5, including 15 and 23 gained 3’ [left] and 5’ splice sites [right]). Dotted horizontal line 
represents the recommended minimum threshold for a SpliceAI prediction (SpliceAI score > 
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0.2)8. Predicted gained splice sites that also appear in our experimental data are shown in 
green. (c) SpliceAI predicts splice-changing mutations across the full CD19 gene locus. 
Barplots show the maximum SpliceAI score per position. Scores are separately shown for the 
gain (top) or loss (bottom) of splice sites. Colour code indicates overlap with reported variants 
(from gnomAD, ClinVar, COSMIC V94, Ensembl and TARGET B-ALL). 24 and 13 mutations 
reach a SpliceAI score > 0.2 for the gain and loss of splice sites, respectively (Supplementary 
Data 5). (d) SpliceAI-predicted splicing-affecting mutations reside on average within 6 nt from 
the cryptic splice site generated. Scatterplot shows location of the gained cryptic splice sites 
with respect to the mutations. Only the splice site with the highest score for each mutation is 
considered. (e) The 5' splice sites of the main isoforms (red) are stronger than most other 5' 
splice sites in the CD19 minigene sequence. Dotplot shows splice site strengths (MaxEnt 
score)9 for putative 5’ splice sites in WT (blue) and mutated (grey) minigenes in a 9-nt sliding 
window containing a GU dinucleotide at positions 4-5. 5’ splice sites used in the five major 
isoforms are shown in red. (f) Mutation effects at 3’ and 5’ splice sites of CD19 exons 2 and 3 
are consistent with predicted splice site strengths. Mutations are coloured according to the 
changed nucleotides. Scores for WT sequence are coloured in black. Splicing-affecting 
mutations (according to our results) are shown as filled circles and labelled. 	  
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Supplementary Figure 7. In silico RBP binding site predictions suggest dozens of 
candidate regulators of CD19 alternative splicing. (a) In silico predictions of RBP binding 
sites were performed with ATtRACT10 and oRNAment11 as well as of point mutations affecting 
RBP binding using DeepRiPe12. For each prediction tool, the total number of available RBPs 
(white circles) is split up into those that are predicted to bind CD19 (grey circles) and whose 
predicted binding sites overlap with splicing-affecting mutations from our data (blue circles). 
Numbers refer to exclusive RBPs in each area. (b) Predicted RBPs were filtered based on 
their mean expression observed in B-ALL patients reported in13. Plot shows ranked mean 
expression values for all detected genes in samples from B-ALL patients (n = 57,773 genes, 
1,988 patients), normal B-cells14 (n = 57,773 genes, 147 samples) and NALM-6 cells15 (n = 
19,110 genes, 1 sample). Highlighted in red are the RBP candidate genes (n = 11) tested in 
knockdown experiments. TPM, transcripts per million. FPKM-UQ, fragments per kilobase of 
transcript per million mapped reads upper quartile, a modified RNA-seq normalisation method 
(https://docs.gdc.cancer.gov/Encyclopedia/pages/HTSeq-FPKM-UQ/). 
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Supplementary Figure 8. Knockdown experiments show significant effects on 
endogenous CD19 splicing for seven candidate RBPs. (a) The tested RBPs are expressed 
in patients. Barplot shows RBP mRNA levels (TPM) for normal B-cells (n = 21) and TARGET 
B-ALL patient samples (n = 220). (b) All tested RBPs are efficiently depleted upon shRNA 
knockdown (KD). Barplot shows mean qPCR measurements of remaining transcripts (relative 
to WT) for 11 candidate RBPs. Error bars indicate standard deviation of the mean (s.d.m.), n 
= 3 replicates. (c, d) Seven RBP knockdowns significantly affect CD19 alternative splicing. 
Semiquantitative RT-PCR was performed to detect isoforms generated from exons 1-3 of the 
endogenous CD19 gene. Gel-like representation (c), with major isoforms indicated on the 
right, and quantification (d), as difference in isoform frequency compared to WT, are shown. 
Error bars indicate s.d.m., n = 3 replicates. * P value < 0.05, ** P value < 0.01, *** P value < 
0.01, n.s., not significant, two-sided Student’s t-test. Source data including P values are 
provided as a Source Data file.	  
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Supplementary Figure 9. PTBP1 regulates CD19 protein surface expression. 
(a, b) Western blot analysis shows reduced PTBP1 and CD19 protein expression upon siRNA-
mediated PTBP1 knockdown in P493-6 (a) and MHHCALL4 (b) cells, two human B-cell lines 
derived from immortalised lymphocytes and B-ALL tumour cells, respectively (n = 2, 
exemplary data are shown). Actin B (ACTB) served as loading control. Uncropped images of 
the gels are provided in Supplementary Figure 10. (c, d) CD19 intron 2 retention is increased 
upon PTBP1 knockdown in P493-6 (c) and MHHCALL4 (d) cells. Barplots show qPCR 
quantification of different exon-exon and exon-intron junctions as indicated below. Samples 
were normalised to GAPDH mRNA and the non-targeting control siRNA condition. Error bars 
indicate standard deviation (n = 2 biological replicates). (e) Gating strategy for the flow 
cytometry analysis of CD19 surface protein exposure. The first gate was set for the cell 
population, the next gate for singlets and finally, immunostaining of CD19 surface protein was 
measured in the allophycocyanin (APC) channel. (f) CD19 cell surface staining is reduced 
upon PTBP1 knockdown in P493-6 (left panel; replicate 2) and MHHCALL4 (right panel; 
replicate 2) cells. Distributions of CD19 surface protein, as measured in 45-50x103 cells per 
replicate by CD19 antibody staining and flow cytometry, in cells transfected with PTBP1 siRNA 
(orange) or non-targeting control siRNA (blue). The results for replicate 1 are shown in 
Figure 6d, e.  
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Supplementary Figure 10. Uncropped images for Western blots in Supplementary 
Figure 9a, b. Western blot analysis shows reduced PTBP1 and CD19 protein expression upon 
siRNA-mediated PTBP1 knockdown in P493-6 and MHHCALL4 cells. Actin B (ACTB) served 
as loading control. 
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Supplementary Tables 
 
Supplementary Table 1. Mutations from relapsed B-ALL patients reported in Orlando et 
al. that were tested in the CD19 minigene splicing reporter. Patient IDs are given as 
reported in Orlando et al.2. Note that for patient #14, two separate minigene variants were 
tested (#14.1 and #14.2), and that #14.2 is a combination of two adjacent mutations reported 
in patient #14, namely c.509A>AGTGG and c.510GCCTC>GTGGGGGAG. 
 

patient 
ID 

mutation genomic 
coordinate (hg38) 

position in 
minigene 

reference 
allele (REF) 

alternative 
allele (ALT) 

#2 c.259G>GGGG
GC 

chr16:28932516 646 G GGGGGC 

#4 c.517TGTCTCC
CACCG>T 

chr16:28933072 1202 TGTCTCCCA
CCG 

T 

#5 c.269AGATGG
GG>A 

chr16:28932526 656 AGATGGGG A 

#8 c.265CA>C chr16:28932522 652 CA C 

#11 c.264TCAACAG
ATGGGGGGCT
TCTACCTGTG
C>T 

chr16:28932521 651 TCAACAGAT
GGGGGGCT
TCTACCTGT
GC 

T 

#13 c.421T>TC chr16:28932976 1106 T TC 

#14.1 c.297GGGGC>
G 

chr16:28932554 684 GGGGC G 

#14.2 c.510AGCCTC>
AGTGGGGGAG 

chr16:28933065 1195 AGCCTC AGTGGGG
GAG 

#15 c.271ATGGGG
GGCTTCTACC
TGTGCCAGCC
GGGGCCC>AA
GACGT 

chr16:28932528 658 ATGGGGGG
CTTCTACCT
GTGCCAGCC
GGGGCCC 

AAGACGT 
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Supplementary Table 2. Oligonucleotides used to clone the different shRNA sequence 
carrying vectors in this study. Oligonucleotides were purchased from Integrated DNA 
Technologies. 
 
 
shRNA_FUS TGCTGTTGACAGTGAGCGCACAGGATAATTCAGACAACAATAG

TGAAGCCACAGATGTATTGTTGTCTGAATTATCCTGTTTGCCTA
CTGCCTCGGA 

shRNA_HNRNPK TGCTGTTGACAGTGAGCGACGAGTTGAGGCTGTTGATTCATAG
TGAAGCCACAGATGTATGAATCAACAGCCTCAACTCGCTGCCT
ACTGCCTCGGA 

shRNA_HNRNPM TGCTGTTGACAGTGAGCGAAGCAGACATTCTTGAAGATAATAGT
GAAGCCACAGATGTATTATCTTCAAGAATGTCTGCTCTGCCTAC
TGCCTCGGA 

shRNA_MBNL1 TGCTGTTGACAGTGAGCGCCAGCACAATGATTGACACCAATAG
TGAAGCCACAGATGTATTGGTGTCAATCATTGTGCTGTTGCCTA
CTGCCTCGGA 

shRNA_PCBP2 TGCTGTTGACAGTGAGCGCTCCATCATTGAGTGTGTCAAATAGT
GAAGCCACAGATGTATTTGACACACTCAATGATGGATTGCCTAC
TGCCTCGGA 

shRNA_PTBP1 TGCTGTTGACAGTGAGCGCTAGCAAGATGATACAATGGTATAG
TGAAGCCACAGATGTATACCATTGTATCATCTTGCTATTGCCTA
CTGCCTCGGA 

shRNA_PUM2 TGCTGTTGACAGTGAGCGCAACATAGTTGTTGACTGTTAATAGT
GAAGCCACAGATGTATTAACAGTCAACAACTATGTTATGCCTAC
TGCCTCGGA 

shRNA_RBM10 TGCTGTTGACAGTGAGCGCCGGCAAGACCATCAATGTTGATAG
TGAAGCCACAGATGTATCAACATTGATGGTCTTGCCGTTGCCTA
CTGCCTCGGA 

shRNA_SF3B4 TGCTGTTGACAGTGAGCGCTGCCTTCAAGAAGGACTCCAATAG
TGAAGCCACAGATGTATTGGAGTCCTTCTTGAAGGCATTGCCTA
CTGCCTCGGA 

shRNA_SRSF3 TGCTGTTGACAGTGAGCGCTAAGATGTTTTAGCTGTTCAATAGT
GAAGCCACAGATGTATTGAACAGCTAAAACATCTTAATGCCTAC
TGCCTCGGA 

shRNA_TAF15 TGCTGTTGACAGTGAGCGATCAGGCTATGATCAACATCAATAGT
GAAGCCACAGATGTATTGATGTTGATCATAGCCTGACTGCCTAC
TGCCTCGGA 

 
  



19	
	

Supplementary Table 3. qPCR oligonucleotide pairs used in this study. Oligonucleotides 
were purchased from Sigma-Aldrich. 
 
  Forward primer Reverse primer 

qPCR_FUS AAGGCCTGGGTGAGAATGTT GGCTGTCCCGTTTTCTTGTT 

qPCR_HNRNPK GCGAGTTGAGGCTGTTGATT TCAGTGGAATGAGGACAGCA 

qPCR_HNRNPM GTCAAGGGGATGTGCTGTTG TCCGCTCAGACTATGCTTGT 

qPCR_MBNL1 CGGTTTGCTCATCCTGCTGA TTTGCACTTTTCCCGAGAGC 

qPCR_PCBP2 CCAGCTCTCCGGTCATCTTT CTGGTGCAGCTTGGTCAAAT 

qPCR_PTBP1 CGAGATGAACACGGAGGAGG CTGGATGTAGATGGGCTGGC 

qPCR_PUM2 TCAGCGTCCTCTTACTCCCA CCAGTAGCAAGACCCTGACC 

qPCR_RBM10 TGTTCCCGACGTCTCTACCT TCTCCCCATCCCAGTACAGG 

qPCR_SF3B4 GAACGACTTCTGGCAGCTCA CACAGGATTGGGAGCAGAGG 

qPCR_SRSF3 CCCGGCTTTGCTTTTGTTGA TTCCACTCTTACACGGCAGC 

qPCR_TAF15 GGTCACAGGGAGGAGGTAGA CAGCATCTGTTCTGGGTCCA 

qPCR_CD19_E3
E4 

TGAGATCTGGGAGGGAGAG ATCGTCCTTCAGCTCTAGGC 

qPCR_CD19_E1
0E12 

TCCTTCTCCAACGCTGAGTC GAAGTCCATTGTCCTGGCGA 

qPCR_CD19_e2
i2 

TGGCTGGACAGTCAATGTG TCTCTCCAGCTCCATTGTGG 

qPCR_CD19_i2
e3 

TCAGTATGAGCTGCTTCCTGT
CC 

AGCTCCCCTGGGAAGAGACC 

qPCR_CD19_E2
E3_1 

AGGCCTGGGAATCCACATGA GGAACAGCTCCCCGCTG 

qPCR_CD19_E2
E3_2 

AGTCCCCGCTTAAACCCTTC AGCTCCCCGCTGCCC 

qPCR_GAPDH ATGGGGAAGGTGAAGGTCG GGGGTCATTGATGGCAACAA
TA 

qPCR_ACTB AGCATCCCCCAAAGTTCAC AAGGGACTTCCTGTAACAAC
G 
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