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Supplementary information



1 Dataset description 

Several datasets were used in this study for profiling the ungated cell, method development and 

result evaluation, viz. Levine 13 dim (Levine et al., 2015), Levine 32 dim (Levine et al., 2015), 

Samusik (Samusik et al., 2016), Multi-center datasets (Nassar et al., 2015) and POISED (Table 

1). The Samusik and Multi-center datasets were used for both method development and its 

evaluation, while POISED was used as an independent dataset for the method’s evaluation. 

The Levine 13 dim is a CyTOF dataset in which samples were taken from human bone marrow 

cells of a single healthy donor, with a panel composed of 13 protein markers and 24 manually 

gated cell types. Similarly, Levine 32 dim is a CyTOF dataset composed of 32 protein markers 

with 14 manually gated cell types from human bone marrow cells from two healthy donors 

(Levine et al., 2015). The “Samusik” (or PANORAMA) CyTOF dataset was obtained from 

(Samusik et al., 2016) and contains samples from bone marrow of 10 different mice in which the 

expression profile is measured using a panel of 39 markers. The “Multi-center” dataset contains 

16 samples and a panel of 26 markers, wherein only 8 were used for building the classification 

models, and samples were run across two different centers (or batches) (Nassar et al., 2015). In 

this work, we utilized the same set of lineage markers for the Samusik and Multi-center datasets 

as used in the original publications. While the Samusik dataset contains data of 24 different cell 

populations, the Multi-center dataset contains only four cell types. In the Samusik dataset, the 

cell type HSC had a very small cell count (< 10 cells; mean ~3 cells per sample) in the overall 

dataset and was therefore excluded from the training set, however, the HSC cells remained as 

part of the test set. The publicly available CyTOF datasets used in this study were obtained from 

the respective publications or HDCytoData R package (Weber and Soneson, 2019). Despite 

being commonly used in many studies, we found that these and other public datasets with 



manually gated cell type labels have one or more of the following limitations for testing any cell 

type prediction algorithm. The shortcomings include small sample size, small number of batches 

(£ 2), mostly distinct with only few closely related cell types, and no varying biological 

treatments. In fact, the limited sample size did not allow us to perform exhaustive model 

evaluation on large independent datasets belonging to untrained batches or stimulations. 

Therefore, we relied on an additional dataset (i.e. POISED (Chinthrajah et al., 2019)) of 30 

CyTOF samples from human PBMCs, from peanut-allergic individuals, for testing our 

algorithm. These samples were run across 7 batches with a panel of 21 lineage markers and 18 

functional markers (Table S1) and under two different stimulations, i.e., unstimulated and peanut 

stimulated. 21 cell types were manually gated (including closely related cell types). The non-

canonical peanut reactive T cells used in this study were CD69+ CD40L+ CD4+ T cells and 

CD69+ CD8+ T cells (Neeland et al., 2020). 

 

2 POISED dataset: Experimental details 

2.1 Sample collection 

From each study participant, 40 mL blood was drawn by venipuncture at baseline, and at various 

time points over the course of peanut OIT. Using validated, standardized, and published 

procedures (Fuss et al., 2009), PBMCs and plasma isolated by ficoll-based density gradient 

centrifugation were frozen in aliquots and stored in liquid nitrogen and at -80°C, respectively, until 

thawing for respective assays. In this analysis, we used samples taken at baseline (i.e., during the 

initial screening phase or at week 0 post-enrollment). 

 

 



2.2 Mass cytometry  

The detailed panel of metal-conjugated antibodies used for mass cytometry analysis of PBMCs is 

shown in Supplemental Table S1. In-house metal conjugation of purified antibodies as indicated 

in this table was carried out using Maxpar antibody labeling kits (Fluidigm Co., South San 

Francisco, CA). PBMCs were thawed and rested overnight at 37°C with 5% CO2 in a combination 

of RPMI, 10% FBS, and Pen-Strep. Cells were plated in a round-bottom, 96-well plate at the 

density of 3x106 cells in culture with 300 µL RPMI, 5% FBS, Pen-Strep per well. To evaluate 

peanut-specific response, PBMCs were stimulated with 200 µg/mL peanut solution for 24 hours 

with the addition of brefeldin A (5 µg/mL; Biolegend, San Diego, CA) for the last 4 hours. 

Unstimulated cells treated with brefeldin A for 4 hours before harvesting served as controls. Cells 

were harvested and stained as previously published (Lin et al., 2015) with an added barcoding step 

post-permeabilizing the cells. Cell-ID 20-plex Palladium barcoding set (Fluidigm Co.) was used 

for barcoding according to manufacturer’s instructions. Barcoded and pooled samples were 

acquired on a Helios mass cytometer (Fluidigm Co.). Data normalization, concatenation, and 

debarcoding were performed using CyTOF software (Fluidigm Co.). Manual gating on raw data 

files was carried out using FlowJo v10 (FlowJo LLC., Ashland, OR).  

 

3 Data availability  

The publicly available datasets can be obtained from HDCytoData R package (Weber and 

Soneson, 2019). Multi-center dataset can be obtained as publicly available datasets from GitHub 

(Abdelaal et al., 2019) (https://github.com/tabdelaal/CyTOF-Linear-Classifier). Raw unlabeled 

POISED dataset files in FCS 3.0 format and normalized labelled CSV format can be obtained 

from FlowRepository (FR-FCM-Z2V9) (Spidlen et al., 2012). 



 

4 ML parameter tuning and error estimation 

For XGboost, decision tree algorithm with base learner “gbtree” is used with learning task 

objective set to “binary:logistic” for binary classification per cell type. For random grid search 

space, the set of gamma Î {0.5, 1.0, 1.5, 2.0, 5.0, 10}, validation subsampling Î{0.3, 0.2} and 

the learning rate Î{0.01, 0.1, 0.3} are used with maximum tree depth of 6. For feature selection, 

“thrifty” selector with setting of top 5 features per group are used, with L1 regularization weight 

(reg_alpha) set to 0.005. Models are evaluated using validation dataset with two different 

evaluation matrices- logloss matrix and binary classification error rate (#FP / #(FP+TP)) in 

which the cell label prediction score larger than 0.6 are used as positive instances. Usually, the 

prediction score of >0.5 for the binary classification should be sufficient, however, the score of 

0.6 ensures for higher precision in outcome. Early stopping parameter is also used, in which 

model training terminates if validation score does not improve in 10 consecutive iterations. For 

MLP, Stochastic gradient descent (sgd) solver is used for weight optimization with adaptive 

learning rate. For hyper-parameter optimization, the sets of L2 regularization term Î{1, 0.1, 

0.01} and initial learning rate Î{0.01, 0.1, 1.0} are used with validation subsampling Î{0.3, 

0.2}. Early stopping parameter is set to 10 which terminates model training if validation score 

does not improve by value of 0.001 in 10 consecutive iterations. For SVM classifier, Radial 

Basis Function (rbf) kernel trick is used for building non-linear classification boundaries. Here, 

hyper-parameters set of ∁Î{0.1, 0.01, 0.001} and g Î{1, 0.1, 0.01} are used for balancing SVM 

classification error, regularization and bandwidth estimation. In all of the cases, a total of 10 

random hyper-parameters combinations are used for model training and evaluation.  

  



5 Comparison with existing methods 

To evaluate the efficacy of CyAnno, we applied the proposed pipeline to the Samusik, Multi-

center and POISED CyTOF datasets. The three methods (CyAnno, DeepCyTOF, LDA) were 

tested across five independent runs, in which, during each run, 20% of the randomly selected 

samples were used for training the model (i.e., training set), whereas the rest of the samples were 

evaluated for model testing (i.e., test set). During each run, a F1 score (see below; section 6) is 

computed for each sample and after five independent runs the mean F1 score for each sample of 

a given dataset was computed as, 

𝑓!# = 	
∑ 𝑓"!"#$
"#%

𝑡  

Where,	𝑓!#  is the mean F1 score (f) for each sample s in a given dataset averaged across t (here 

t=5) independent runs. Wherein, TP ‘ungated’ cells were excluded for estimating the F1 score, in 

order to avoid any biasness in evaluating the efficacy of different methods in predicting the gated 

cell populations. 

Next, we also computed the mean F1 score for each cell type per dataset using the following 

equation: 

𝑓&̅ =	
∑ 𝑓"&
"#($×)!)
"#%
(𝑡 × 𝑛𝑠) 	 

Where, 𝑓&̅ is the mean F1 score (f) computed for each cell type c in a dataset with ns samples 

across t independent runs (here t=5). In an additional analysis (Figure 3), the F1 scores for each 

sample or cell type were also computed without ungated live cells in the test sample. For 

CyAnno, we used ungated cells in the training set for cell type classification, unlike the LDA and 

DeepCyTOF methods which did not allow the inclusion of ungated cells for model training.  

 



6 Performance matrices  

The CyAnno performance was compared and evaluated in terms of F1 score which was defined 

as: 

𝐹1 = 2	 ×	
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 × 	𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙  

Where, 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃 (𝑇𝑃 + 𝐹𝑃)⁄  and 𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃 (𝑇𝑃 + 𝐹𝑁)⁄ . For a given dataset (e.g., 

Samusik), we estimated the F1 score of each sample. Similarly, we also computed the mean F1 

score for each cell type, across different samples of a given dataset (e.g., 20 samples of the 

POISED dataset).  

To further confirm the accuracy of built models in predicting correct cell labels, we also 

performed a permutation test of predicted labels to calculate the significance of predictions. 

Wherein, the classification accuracy of CyAnno was compared after randomly permuting the cell 

label 1000 times and examining the change in sample F1 score. The statistical significance was 

measured by p value which reflected the probability of obtaining a high F1 by chance, and 

calculated as: 

𝑝 = 	
∆{𝐹1+,-. 	≥ 	𝐹1}

𝑛  

Where, D is the cardinality of set when the F1 scores of permuted samples were larger than or 

equal to the F1 score obtained with original sample cell labels. Low p value (e.g., p < 0.05) 

suggest high accuracy in correctly predicting cell labels. 

  



7 ML classifiers evaluation  

7.1 Computation cost 

Since three different CTSMs can be built for each cell type, or they can be used together with the 

ensemble method, the total computational cost for running CyAnno is directly proportional to the 

number of cells, cell types and ML algorithms used. Figure S11A depicts the total time taken to 

build an optimized CTSM based on XGboost, MLP and SVM for each cell type in the POISED 

dataset. Here most of the time is used in hyper-parameter optimization which is an essential part 

of any ML based pipeline. For faster results, we found that XGboost outperforms any of the 

other ML algorithms used. Although, for highest accuracy we recommend using ensemble 

classifier as it uses prediction results from multiple ML algorithms and thus less likely to 

produce over-fitted results. 

 

7.2 Evaluation of different ML classifiers 

Figure S11B-D shows the F1 score achieved by CyAnno with different classifiers for predicting 

cells of each cell type in the test datasets, wherein XGboost outperforms both MLP and SVM in 

predicting the correct cell type labels. However, for the evaluation, instead of the single XGboost 

classifier, we used the consensus of prediction results from all of the classifiers using a majority 

voting approach to build a cell type specific ensemble classifier. Such Ensemble or hybrid 

classifiers are less likely to misclassify unseen data and also less probable to over-fit the training 

set (Ranawana and Palade, 2016; Hsu, 2017). 

  



Supplementary Table S1. Panel of metal-conjugated antibodies used for mass cytometry 
analysis of PBMCs for POISED dataset. 
Marker antibody Marker type 
CD19 Nd142Di Lineage 
CD49b Nd143Di Lineage 
CD4 Nd145Di Lineage 
CD8 Nd146Di Lineage 
CD20 Sm147Di Lineage 
CD38 Nd148Di Lineage 
CCR4 Sm149Di Lineage 
LAG3 Nd150Di Lineage 
CD123 Eu151Di Lineage 
CD45RA Eu153Di Lineage 
CD3 Sm154Di Lineage 
HLA-DR Gd157Di Lineage 
CD33 Gd158Di Lineage 
CD11c Tb159Di Lineage 
CD14 Gd160Di Lineage 
CD69 Dy162Di Lineage (To identify pea-specific cells) 
CXCR3 Dy163Di Lineage 
CD127 Ho165Di Lineage 
CD27 Er167Di Lineage 
CD40L Er168Di Lineage (To identify pea-specific cells) 
CCR7 Tm169Di Lineage 
CD25 Yb173Di Lineage 
CD56 Yb174Di Lineage 
TCRgd Lu175Di Lineage 
CD16 Bi209Di Lineage 
CD86 In113Di Functional (Not used in analysis) 
OX40 Pr141Di Functional (Not used in analysis) 
CD28 Gd155Di Functional (Not used in analysis) 
GPR15 Gd156Di Functional (Not used in analysis) 
PD1 Er170Di Functional (Not used in analysis) 
beta 7 integrin Yb172Di Functional (Not used in analysis) 
CLA Yb176Di Functional (Not used in analysis) 
CD57 Y89Di Functional (Not used in analysis) 
IL-4 Nd144Di Functional (Not used in analysis) 
IL9 Sm152Di Functional (Not used in analysis) 
IFNg Dy161Di Functional (Not used in analysis) 
IL-17 Dy164Di Functional (Not used in analysis) 
LAP Er166Di Functional (Not used in analysis) 



IL-10 Yb171Di Functional (Not used in analysis) 
* Only Lineage markers were subjected to CyAnno for model training and cell type 
identification. 
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Supplementary Figures 

 
Fig. S1. Manual gating of CD4+ Peanut reactive cell type. The hierarchical schema illustrates the 
process involved in identification and gating of CD4+ Peanut reactive cells. Each gating event 
discards a population of cells as undefined, i.e. ungated. It is to be noted that each gating event 
can further lead to a hierarchical series of downstream child-gating for identification of other cell 
types (highlighted on the left). Therefore, once all the mutually exclusive cell types are 
identified, the cells that are ungated for all cell types together form a major population composed 
of heterogeneous pool of live cells, that are expected to be detected as ungated class of cells by 
(semi-)automated approaches. 



              
Fig. S2. LandMark (LM) cells. A. Schematic representation of LM cells for a cell type. Each 
blue dot represents a cell of a given cell type with its marker expression profile decomposed in a 
2D space computed by principal component analysis (PC1 and PC2). The red dots represent LM 
candidates shortlisted for further screening. The LM cells on the edges represent diverse 
candidate cells computed via alpha shapes (see methods). B. The number of unique LM cells in 
each cell type, in each dataset used in this study. The proportion represents the number of 
shortlisted LM cells with respects to the total number of cells present in the training dataset for a 
given cell type (i.e., cell type size). Since the process of LM cell selection is stochastic in nature, 
the number of LM cells selected may vary during the individual runs of CyAnno for the same 
dataset. 



 
Fig. S3. Percentage of ungated cells within live cells, after manual gating, in each sample of the 
4 public datasets. 
 

 

 

 

 

  



       

           
 

Fig. S4A. DeepCyTOF. The change in precision and recall score of prediction if ungated cells 
were excluded from or included in the test dataset. The precision vs recall rate shows that the 
models’ (DeepCyTOF) ability to classify gated cells in each sample decreases when ungated 
cells are taken into consideration. When ungated cells were included in testing set, for most of 
the cell types, we observed a low precision rate, which suggests that most of these ungated cells 
are misclassified to one of the cell types.  



  
Fig. S4B. LDA. The change in precision and recall score of prediction if ungated cells were 
excluded from or included in the testing dataset. The precision vs recall rate shows that the 
models’ (LDA) ability to classify gated cells in each sample decreases when ungated cells are 
taken into consideration. When ungated cells were included in testing set, for most of the cell 
types, we observed a low precision rate, which suggests that most of these ungated cells are 
misclassified to one of the cell types.  



 
Fig. S5A. DeepCyTOF on Samusik dataset. For each cell type, the posterior probability 
distribution observed for cells labeled as the respective cell type after subjecting the dataset to 
DeepCyTOF.   
 

 

 

 

 

 

 

 

 

 



 
Fig. S5B. LDA on Samusik dataset. For each cell type, the posterior probability distribution 
observed for original cell labels after subjecting the dataset to LDA.   
 

 

 

 

 

 

 

 

 



 
Fig. S6. F1 Score variability in each sample after 5 different runs with CyAnno. Each run 
involves varying training samples. For POISED dataset, training and test sets are completely 
independent, mixed with samples from 7 different batches and 2 different stimulations.  
 

 

 

 

 



  
Fig. S7A. Samusik dataset. For all the cells in each of the original cell types, the composition (as 
percentage) of different cell type labels predicted by the models is shown. Ideally, for each cell 
type, an algorithm should predict low proportion of FP cells with no or minimum number of cells 
from other gated cell types. The different cell type labels predicted for a given original cell type 
suggests that most of the FP prediction in CyAnno corresponds to ungated class of cells. Here, 
‘Red’ tiles represent high percentage of corresponding cell type labels predicted for a given 
original cell type, whereas blue represent low and white represent that the corresponding cell 
type label is not predicted for any of the cells from the original cell type. 



 
Fig. S7B. Multi-Class dataset. For all the cells in each of the original cell types, the composition 
(as percentage) of different cell type labels predicted by models. The composition of different 
cell type labels predicted for a given cell type reflects large FP prediction. Ideally, for each cell 
type, an algorithm should predict low proportion of FP cells with no or minimum number of cells 
from other gated cell types.  Red boxes represent high percentage of corresponding cell type 
labels predicted for a given cell type, whereas blue represent low and white represent that the 
corresponding cell type is not predicted for any of the cells from original cell type. 
 



 
Fig. S7C. POISED dataset. For all the cells in a given cell type, the composition (as percentage) 
of different cell type labels predicted by models. The composition of different cell type labels 
predicted for a given cell type reflects large FP prediction. Ideally, for each cell type, an 
algorithm should predict low proportion of FP cells with no or minimum number of cells from 
other gated cell types. Red boxes represent high percentage of corresponding cell type labels 
predicted for a given cell type, whereas blue represent low and white represent that the 
corresponding cell type is not predicted for any of the cells from original cell type. 
 



 
Fig. S8A. POISED dataset. tSNE visualization for POISED dataset from one sample. Maximum 
of 2000 cells per cell type was used for plotting the different hand-gated cell types used in this 
study. For clarity, ungated cells were removed from the dataset to highlight rare/small group of 
gated cells, e.g., peanut reactive cells (i.e., CD4+ PeaRective and CD8+ PeaReactive). It is 
observed that even certain gated cell types are difficult to distinguish and share non-linear 
classification boundaries in a 2D space, e.g., CD8+ Peanut reactive T cells or Memory B cells. 
 

 

 

 

 

 

 



 
Fig. S8B. Samusik dataset. tSNE visualization for Samusik dataset. Maximum of 2000 cells per 
cell type, from all the samples, was used for plotting the different hand-gated cell types used in 
this study. For clarity, ungated cells were removed from the dataset to highlight rare/small group 
of gated cells, e.g., HSC.  
 

 

 



 
 
 
 

 
Fig. S8C. MultiCenter dataset. tSNE visualization for MultiCenter dataset. Maximum of 2000 
cells per cell type, from all the samples, was used for plotting the different hand-gated cell types 
used in this study. For clarity, ungated cells were removed from the dataset. 
 
 

 

 

 

 

 

 

 

 

 



 
Fig. S9. CyAnno prediction with sample size variation. The F1 score per sample in independent 
testing set when CyAnno was executed with varying number of samples (n) in training set, 
ranging from n=1 to n=10. 
 

 

 

 

 

 

 

 

 



 
Fig. S10. The F1 score observed with CyAnno in test set samples (n=20) colored by their 
stimulation status with training set composed of only peanut stimulated samples.  
  



 
Fig. S11A. ML classifiers evaluation. Time taken by different ML classifiers used in CyAnno 
to train and build the hyper-parameter optimized CTSM.  
 
 

 

 

 

 

 

 

 

 

 



  
Fig. S11B-C. ML classifiers evaluation. F1 training accuracy achieved for each cell type with 
different classification algorithms used in CyAnno in A. Samusik dataset and B. Multi-Class 
dataset.  



 

 
Fig. S11D. ML classifiers evaluation. F1 training accuracy achieved for each cell type with 
different algorithms used in CyAnno in POISED dataset. 
 


