Design, synthesis, anti-proliferative evaluation, docking, and MD simulations studies of new thiazolidine-2,4-diones targeting VEGFR-2 and apoptosis pathway

Mohammed S. Taghour^a, Hazem Elkady^a, Wagdy M. Eldehna^b, Nehal El-Deeb^{c,d}, Ahmed M. Kenawy ^e, Eslam B. Elkaeed ^f, Bshra A. Alsfouk ^g, Mohamed S. Alesawy^a, Dalal Z. Husein^h, Ahmed M. Metwaly ^{i,d*} Ibrahim H. Eissa^{a*}

- ^a Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo11884, Egypt.
- ^b Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, P.O. Box 33516, Kafrelsheikh, Egypt.
- ^c Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt.
- ^d Pharmaceutical and Fermentation Industries Development Center, City of Scientific Research and Technological Applications (SRTA city), Alexandria 21934, Egypt.
- ^e Nucleic Acids Research Department, Genetic Engineering and Biotechnology Research Institute. City of Scientific Research and Technological Applications (SRTA-City). Alexandria 21934, Egypt.
- ^f Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia.
- ^g Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
- ^h Chemistry Department, Faculty of Science, New Valley University, El-Kharja 72511, Egypt.
- ⁱ Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt.

*Corresponding authors:

Ibrahim H. Eissa

Medicinal Chemistry Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt. Email: lbrahimeissa@azhar.edu.eg

Ahmed M. Metwaly

Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt. **Email:** ametwaly@azhar.edu.eg

Content

S.1	Biological testing
	S.1.1. Safety assay
	S.1.2. <i>In vitro</i> anti-proliferative activity.
	S.1.3. <i>In vitro</i> VEGFR-2 kinase assay.
	S.1.4. Selectivity index (SI)
	S.1.5. Wound healing assay (Migration assay).
	S.1.6. Gene expression pattern alternation of cancer cell after 14a treatment.
S.2	In silico studies
	S.2.1. Docking studies
	S.2.2. ADMET studies
	S.2.3. Toxicity studies
	S.2.4. MD simulation
	S.2.5. MMPBSA
S.3	Chemistry and materials
S.4	Spectral data
S.5	Raw data for biological testing
S.6	In silico cytotoxicity report

S.1. Biological testing

Mammalian cell lines culture

CaCo-2, and A549 cell lines were cultured on DMEM media, meanwhile MDA-MB-231 and hepG-2 cell line were cultured on RBMI media. The cultured media were supplemented with 200 mM L-glutamine, 10.0% fetal bovine serum (Lonza), and 1.0% penicillin/streptomycin. Cells were seeded into 25.0 cm tissue culture flasks and incubated at 37°C in a 5.0% CO₂ incubator for 24 h or till confluency.

S.1.1. Safety assay

The safety profiles of the tested compounds were checked on one non-cancerous cell line (Vero) to determine the treatments concentrations that do not depict toxic effects against the tested cells. A portion of $100.0 \,\mu l$ of $6\times10^4 \, cell/ml$ cells was seeded into each well of a 96-well plate and then the plates were incubated at $37^{\circ}C$ in a humidified 5.0% CO₂ incubator for 24 h. At the end of incubation period, the exhausted medium was replaced with $100.0 \,\mu l$ of different concentrations of the designated treatment (prepared in RPMI medium starting from $1.0 \, mM$). The inoculated plates were incubated at the same growth conditions for another 24 h. At the end of incubation, cellular viability was assessed using MTS assay kit (Promega) according to the manual instruction.

S.1.2. In-vitro anticancer activity

Anticancer activities of the tested compounds against CaCo-2, MDA-MB-231, and hepG-2 cell lines were quantified using MTS assay kit (Promega) as described by the Manufacturer.

S.1.3. In vitro VEGFR-2 kinase assay

All the synthesized compounds were tested for its inhibitory activity against VEGFR-2. Human VEGFR-2 ELISA kit (Enzyme-Linked Immunosorbent Assay) was utilized in this test. At first, specific antibody for VEGFR-2 was seeded on a 96-well plate and $100~\mu L$ of the standard solution or the tested compound was added, all were incubated at room temperature for 2.5 h. Then washed, $100~\mu L$ of the prepared biotin antibody was added, then incubated at room temperature for additional 1 h. and washed. Then, $100~\mu L$ of streptavidin solution was added and incubated for 45 min. at room temperature. Washed again, $100~\mu L$ of TMB Substrate reagent was added and incubated for 30 min. at room temperature. $50~\mu L$ of the stop solution was added, then read at 450 nm immediately. The standard curve was drawn, concentrations on the X-axis and the absorbance on the Y-axis.

S.1.4. Selectivity index (SI)

The selectivity index values of the tested compounds on cancer cells were calculated as described by Koch et al. [57], with slight modifications; $SI=IC_{50}nc/IC_{50}cc$, where $IC_{50}nc$: the IC_{50} value of the tested compound on normal cells and $IC_{50}cc$: IC_{50} of the tested compound on cancer cell line.

S.1.5. Wound healing assay (Migration assay)

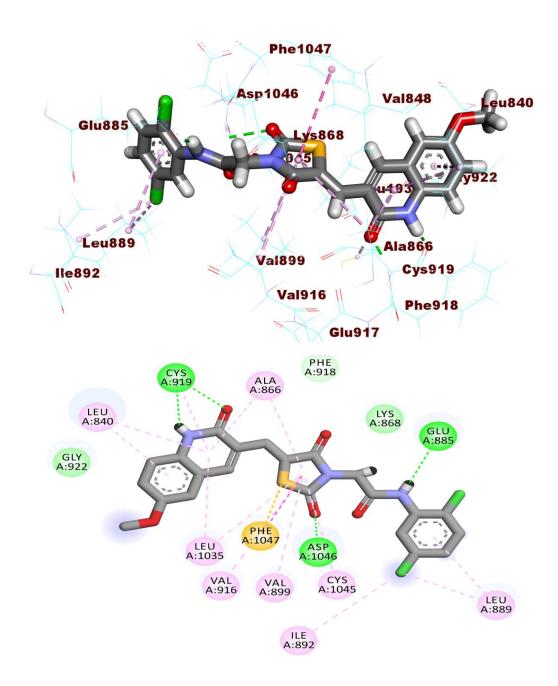
CaCo-2 cells were grown to 95.0% confluency in a complete DMEM medium and then the wounds were formed using a plastic tip. After washing with pre-warmed PBS, the cells were incubated in the specific medium or the **14a** treatment. After incubation at 37°C and 5.0% CO₂ for 24h, the cells were washed with PBS and the wounds distance was determined as the scratch width of the treated and untreated groups using ImageJ software.

S.1.6. Gene expression pattern alternation of cancer cell after 14a treatment

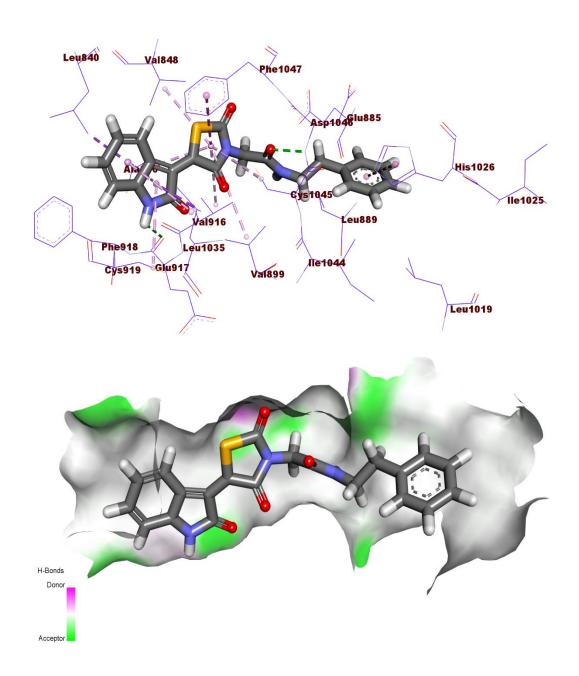
The molecular anticancer mode of action of **14a** was investigated by screening their ability to affect the gene expression levels of Bcl2, Bcl-xl, TGF and Survivin genes using specific forward and reverse primers and RTq-PCR technique (Table 1) in CaCo-2 cells (chosen as the most sensitive cancer cell line). After cellular treatment, CaCo-2 cell line was cultured into 12 well plates (6×10³ cell/ml) for 24 h. with the sub-IC50 concentration of **14a**. After treatment, total RNA extraction was performed using RNA extraction kit (Qiagen, Germany). Then, 1 ug of the obtained RNA was used to synthesiz cDNA using cDNA synthesis kit (Promega Corp., Madison, WI) as recommended by the manufacturer. Simultaneously, GAPDH forward and reverse primers (Table 1) were used to amplify the house keeping gene as internal control for standardization of PCR products. The RTq-PCR was done using SYBR Green dye (QuantiTect SYBR Green PCR Kits) and Light Cycler fluorimeter (Bio-RAD S1000 Tm thermal cycler). The PCR cycling program was as follows: 95°C for 2 min, followed by 40 cycles of 95°C for 30s, 55°C for 30 s, and 60°C for 45s, and finally 60°C for 5 min.

-Sequence of the primers

Primer ID	Sequence
Bcl-F	5'-TATAAGCTGTCGCAGAGGGGCTA-3'
Bcl-R	5'-GTACTCAGTCATCCACAGGGCGAT-3'
Bcl-Xlf	5'CAGAGCTTTGAACAGGTAG-3'
Bcl-XlR	5'GCTCTCGGGTGCTGTATTG-3'


Surv-F	5'-TGCCCCGACGTTGCC-3'
Surv-R	5'-CAGTTCTTGAATGTAGAGATGCGGT-3'
TGF-F	5'CAAGGGCTACCATGCCAACT3'
TGF-R	5'AGGGCCAGGACCTTGCTG3'
β-actin-F	5'-GTGGGGCCCCCAGGCACCA-3'
β-actin-R	5'-CTCCTTAATGTCACGCACGATTTC-3'

S.2. *In silico* studies


S.2.1. Docking studies

The docking studies were performed utilizing MOE.14 software to explore the binding mode of the synthesized compounds towards VEGFR-2. The 3D crystal structures of the target macromolecules VEGFR-2 were downloaded from the protein databank, http://www.pdb.org (PDB ID; 20H4 and 4ASD). Sorafenib was used as reference ligand. To prepare the target protein, water molecules were removed, and the valances of atoms were corrected through protonation of the whole molecule. Then energy minimization was carried out by applying CHARMM and MMFF94 force fields. After that, the active binding site was defined and prepared for docking. The validation process was performed by redocking the co-crystallized ligand. The designed compounds together with sorafenib were drawn using ChemBioDraw Ultra 14.0 and saved as MDL-SD format. The sketched compounds were constructed from fragment libraries in MOE program, protonated, followed by energy minimization then prepared for docking. Docking process was carried through Triangle matcher placement inserted in compute window, and the scoring function was London dG. Ten conformers (poses) for each molecule were generated using genetic algorithm searches. The free energies and binding modes of the designed molecules against VEGFR-2 were determined. The most ideal pose was selected according to its binding free energy as well as its binding mode with target molecule.

S.2.1.1. The predicted binding pattern of **14b** with the active site of VEGFR-2

S2.1.2. The predicted binding pattern of 14c with the active site of VEGFR-2

S.2.2. ADMET studies

ADMET descriptors (absorption, distribution, metabolism, excretion and toxicity) of the synthesized compounds were determined using Discovery studio 4.0. At first, the CHARMM force field was applied then the compounds were prepared and minimized according to the preparation of small molecule protocol. Then ADMET descriptors protocol was applied to carry out these studies.

S.2.3. Toxicity studies

The toxicity parameters of the synthesized compounds were calculated using Discovery studio 4.0. Sorafenib was used as a reference drug. At first, the CHARMM force field was applied then the compounds were prepared and minimized according to the preparation of small molecule protocol. Then different parameters were calculated from toxicity prediction (extensible) protocol.

S.2.4. Molecular dynamics simulation

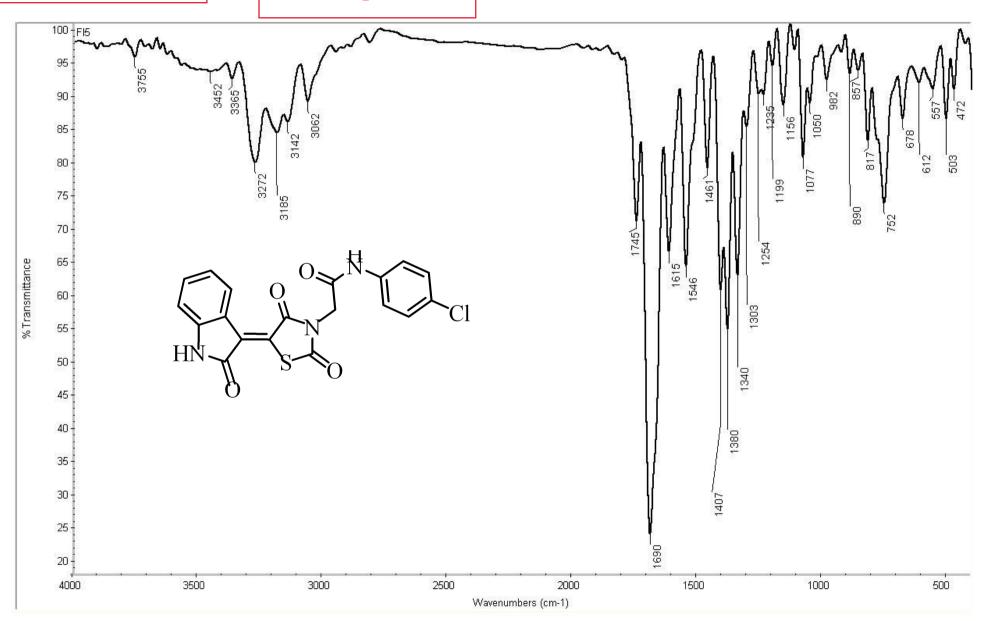
Molecular dynamics simulation of the protein-ligand complexes was performed using GROMACS 2021 and Linux 5.4 package. The GROMOS96 54a7 forcefield was selected as the force field for proteins and the ligand topologies were generated from the PRODRG server. All the complexes were solvated using simple point charge (SPC) water molecules in a rectangular box. To make the simulation system electrically neutral, required number of Na⁺ and Cl⁻ ions were added while 0.15 mol/L salt concentrations were set in all the systems. Using the steepest descent method, all the solvated systems were subjected to energy minimization for 5000 steps. Afterwards, NVT (constant number of particles, volume, and temperature) series, NPT (constant number of particles, pressure, and temperature) series, and the production run were conducted in the MD simulation. The NVT and the NPT series were conducted at a 300 K temperature and 1 atm pressure for the duration of 300 ps. V-rescale thermostat and Parrinello-Rahman barostat were selected of the performed simulation. Finally, the production run was performed at 300 K for a duration of 100 ns (nanoseconds). Thereafter, a comparative analysis was performed measuring root mean square deviation (RMSD), root mean square fluctuation (RMSF), radius of gyration (Rg), solvent accessible surface area (SASA) and hydrogen bonds to analyze their stability. The Xmgrace program was used to represent the analyses in the form of plots.

S.2.5. MM/PBSA

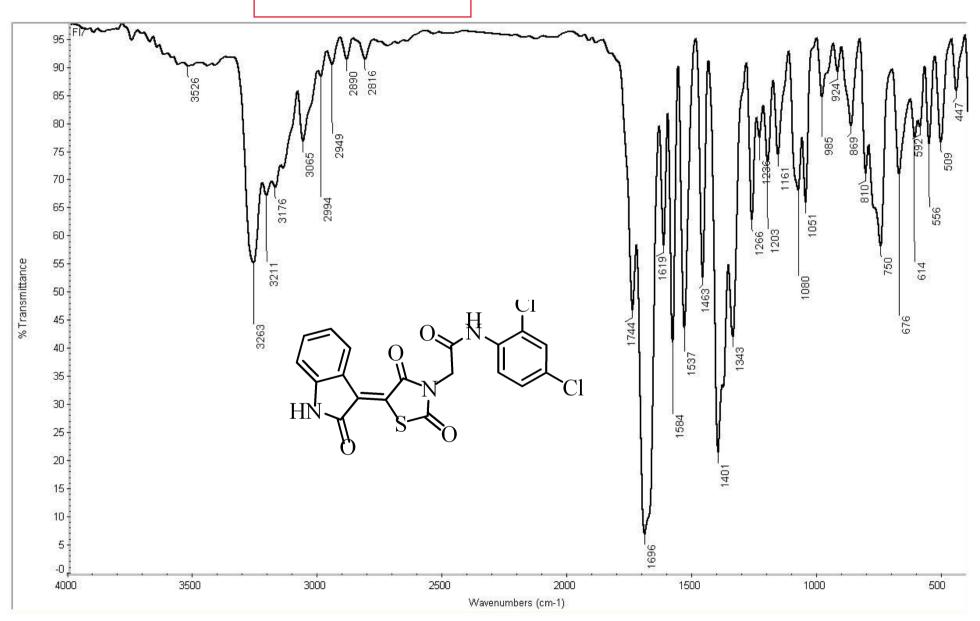
The g_mmpbsa package of GROMACS was utilized to calculate the MM/PBSA (Molecular Mechanics/Poisson Boltzmann Surface Area) binding free energies followed by final MD production run to get a detailed overview of the molecular interactions between the protein and ligand. The free solvation energy (polar and nonpolar solvation energies) and potential energy (electrostatic and Van der Waals interactions) of each protein-ligand complex were analyzed to determine the total ΔG_{bind} of the complex. The binding energies were calculated using the following equation in this method:

$$\Delta G_{binding} = G_{complex} - (G_{protein} + G_{ligand})$$

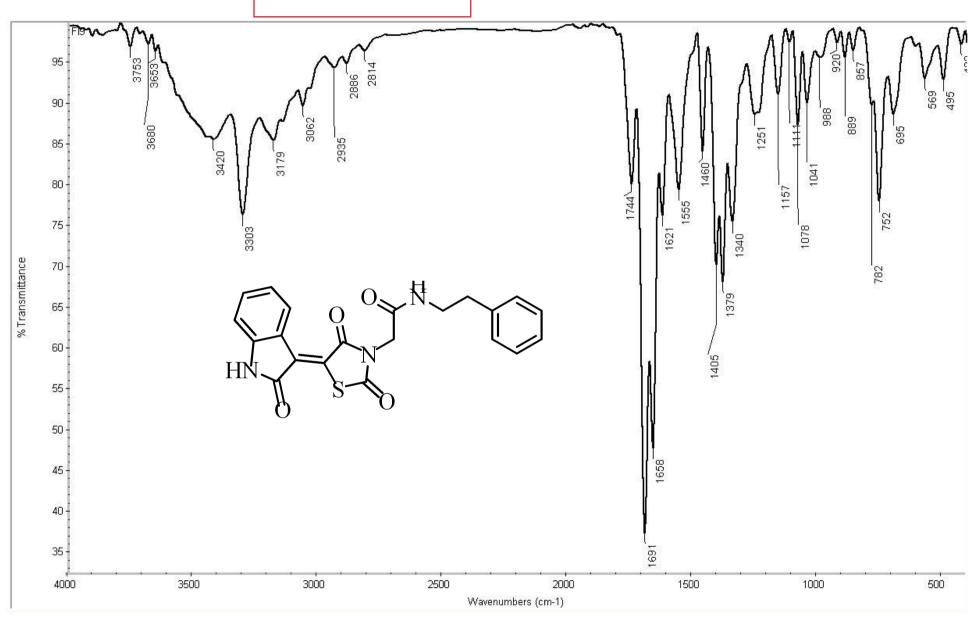
Here, the $\Delta G_{binding}$ = the total binding energy of the protein-ligand complex, $G_{protein}$ = the binding energy of free protein, and G_{ligand} = the binding energy of unbounded ligand.

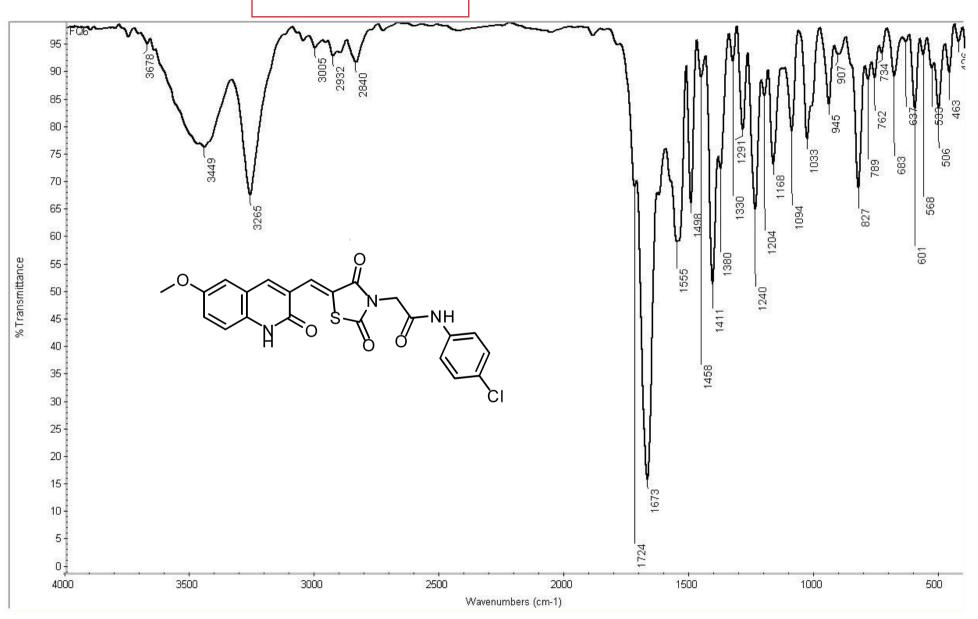

S.3. Chemistry and material

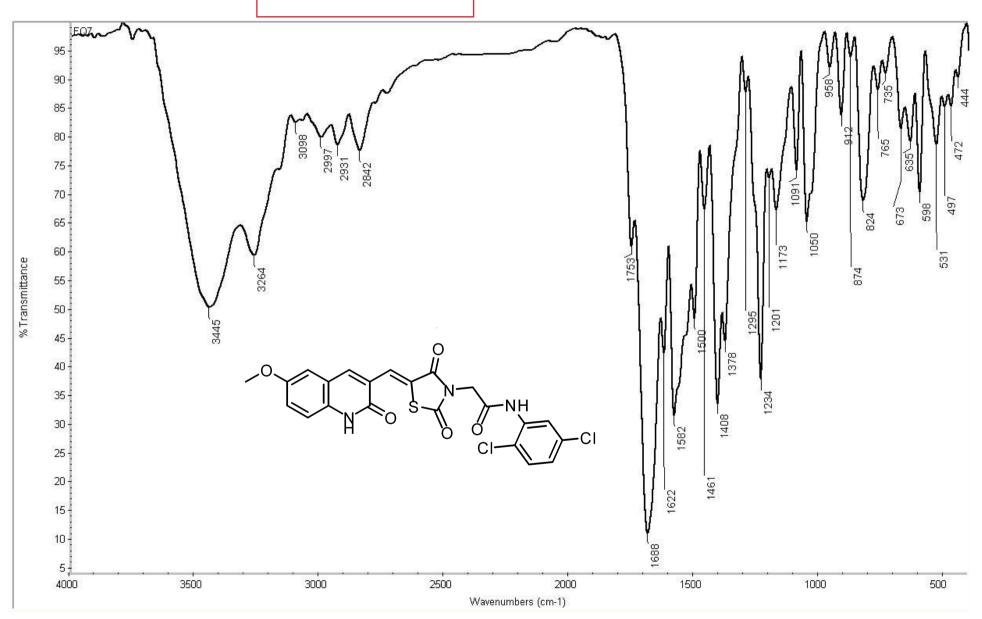
Melting points were measured with a Stuart melting point apparatus and were uncorrected. Infrared (IR) spectra were recorded as KBr disks using an FT-IR Spectrum BX apparatus (Perkin Elmer, CT, USA). NMR spectra were recorded on a Bruker NMR spectrometer (Bruker, Reinstetten, Germany). H spectra were run at 500 MHz and 13 C spectra were run at 125 MHz in deuterated dimethyl sulfoxide (DMSO- d_6). Chemical shifts are expressed in values (ppm) using the solvent peak as an internal standard. All coupling constant (J) values are given in Hz. The abbreviations used are as follows: s, singlet; d, doublet; m, multiplet. Analytical thin layer chromatography (TLC) on silica gel plates containing a UV indicator was employed routinely to follow the course of reactions and to check the purity of the products. All reagents and solvents were purified and dried by standard techniques. The microspheres were prepared with poly (D, L-lactide co-glycolide) PLGA (50:50, mol. wt 30,000–60,000), which was purchased from Sigma-Aldrich (St. Louis, USA). The emulsifier, low molecular weight polyvinyl alcohol (PVA) was obtained from Alfa Aesar (Karlsruhe, Germany). Dichloromethane (DCM) was purchased from Avonchem (United Kingdom). Dimethyl sulfoxide (DMSO) was obtained from Loba Chemie

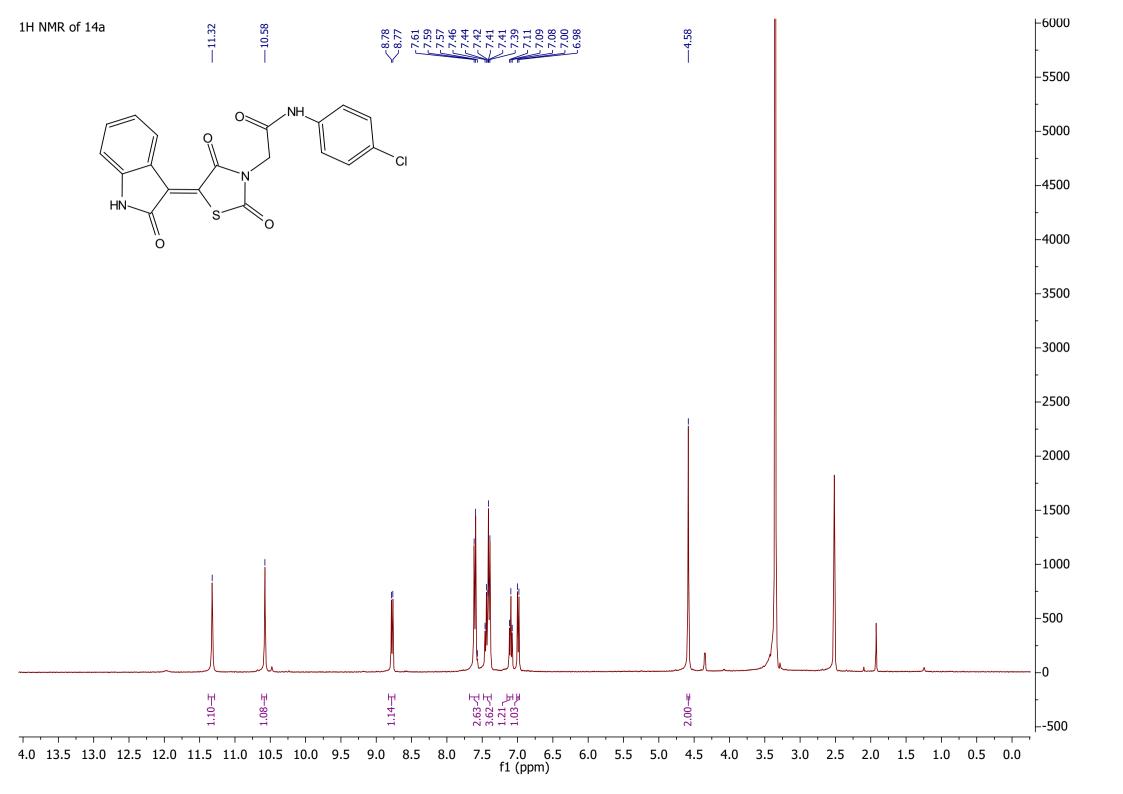

(Mumbai, India). All ingredients used were of analytical grade. All cell lines have been purchased from the American Type Culture Collection (ATCC).

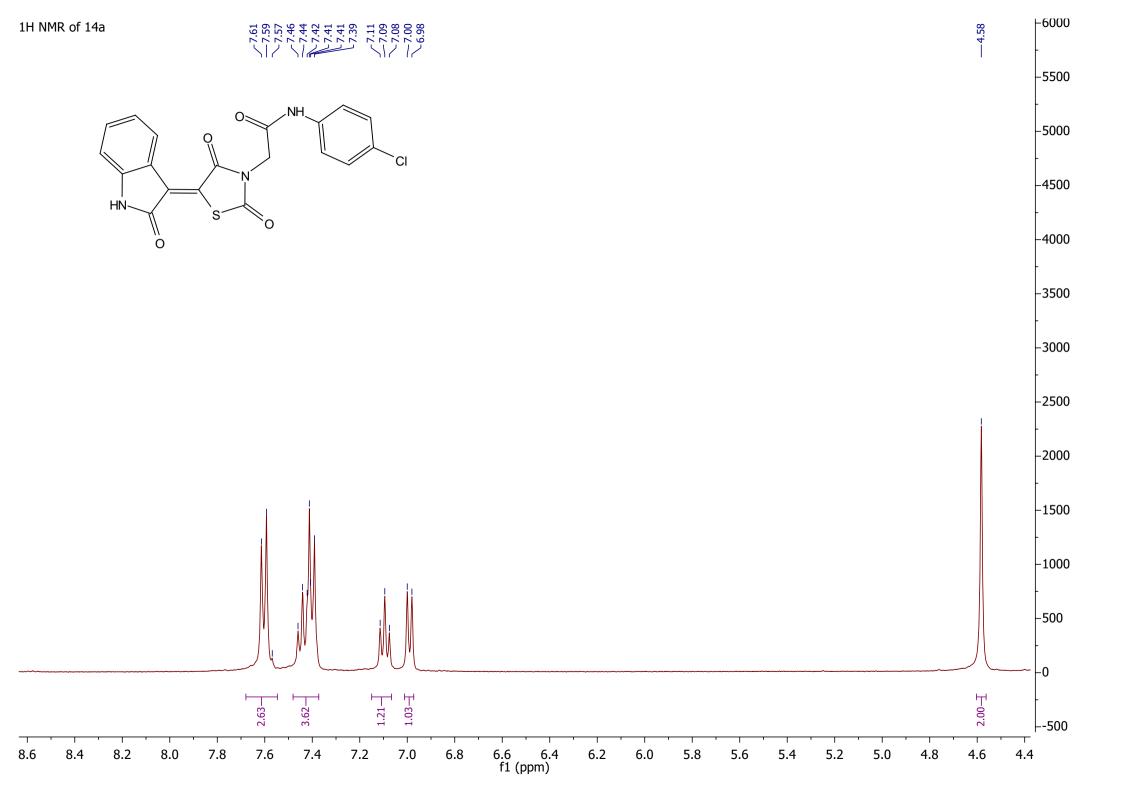
S.4. Spectral data

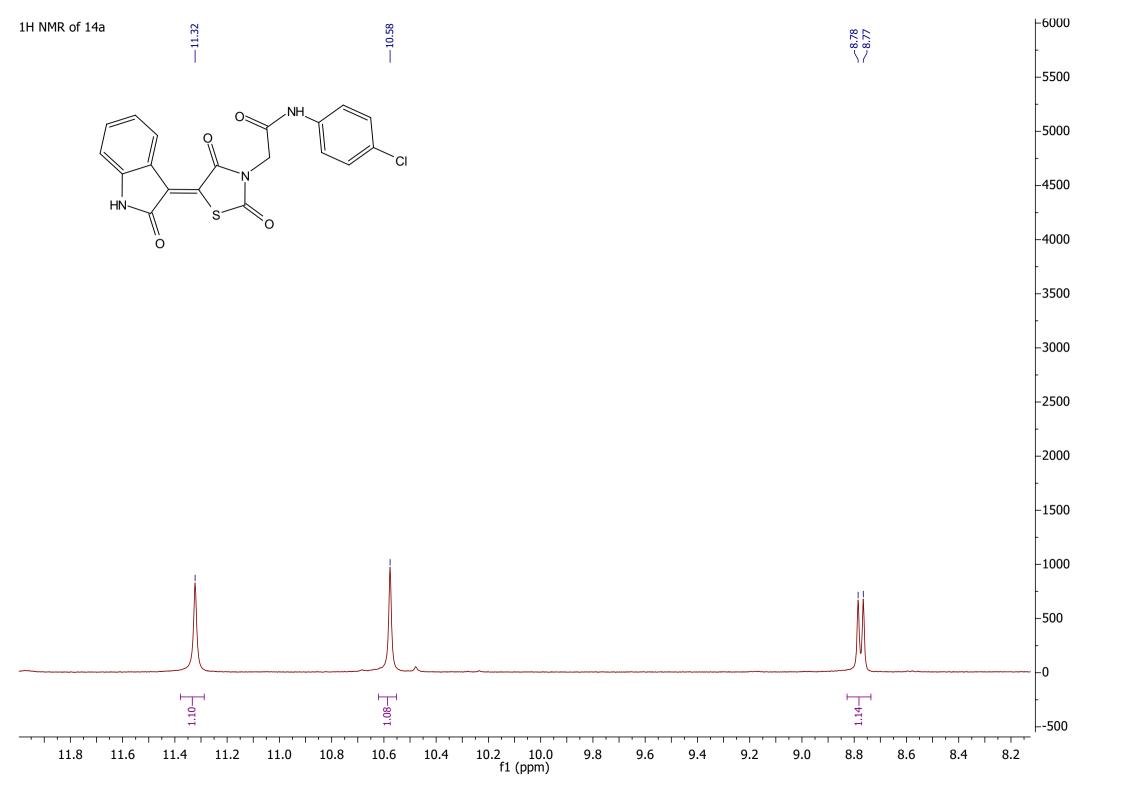

IR of compound 14a

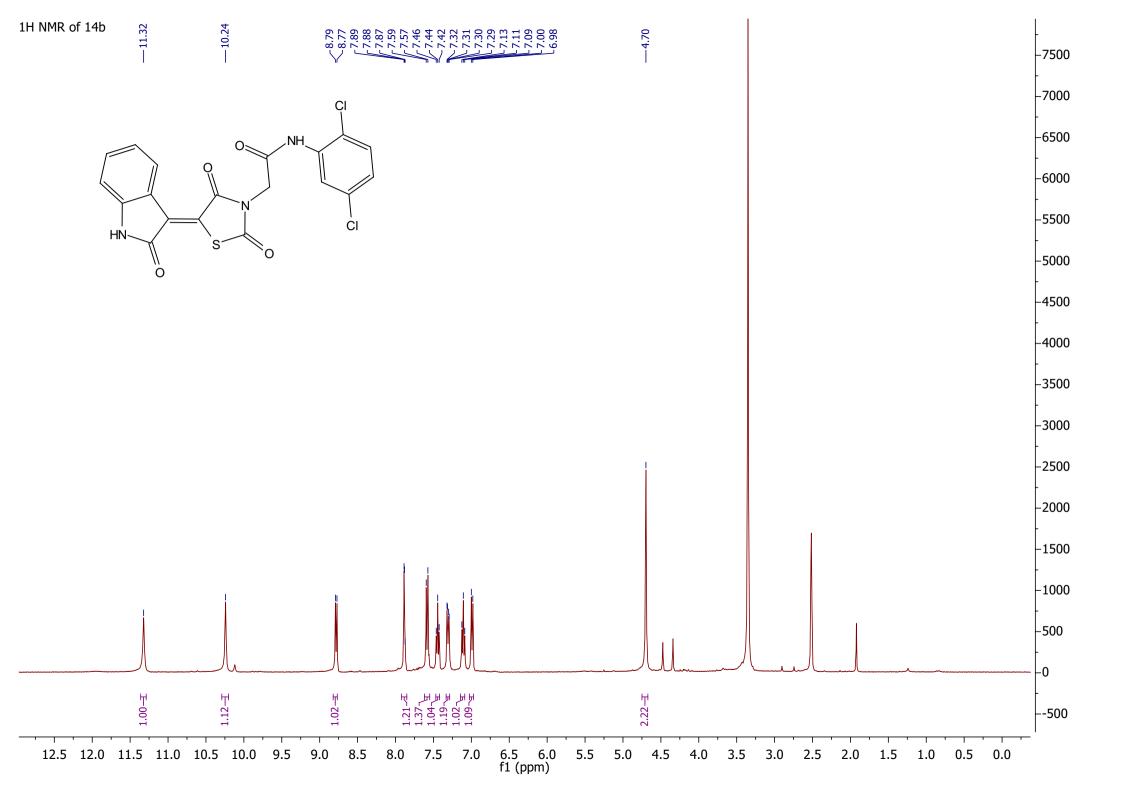

IR of compound 14b

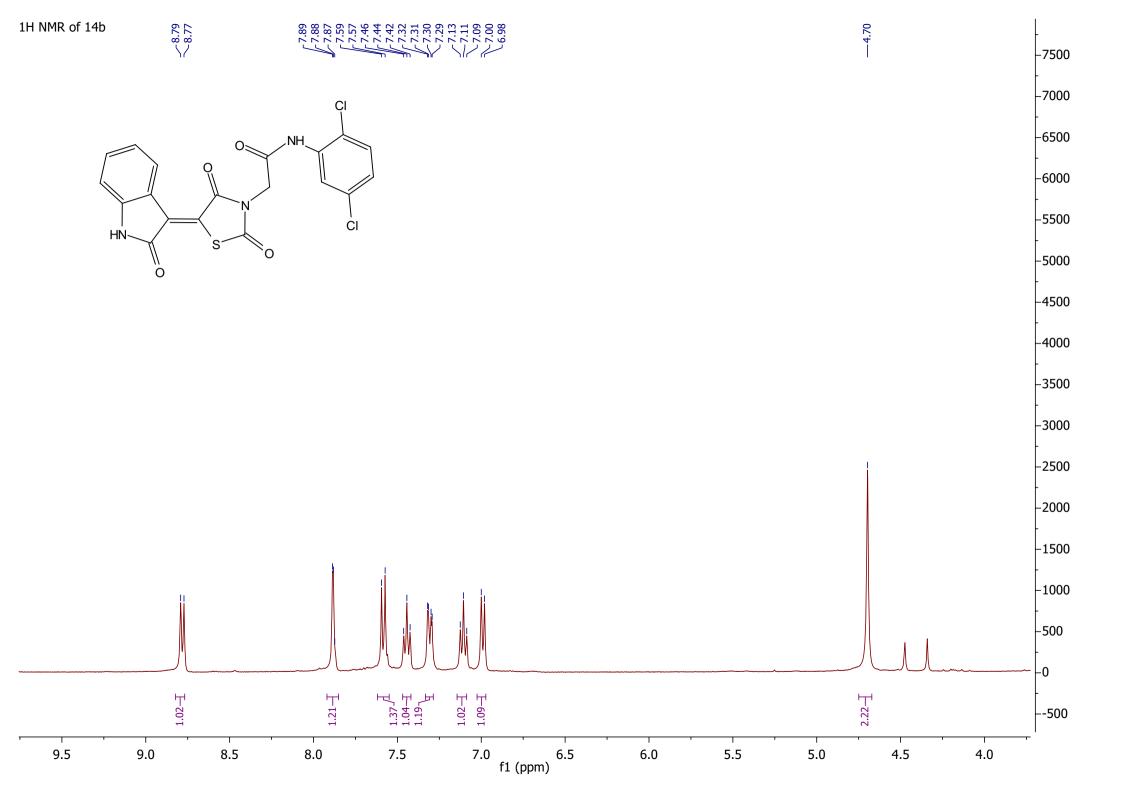

IR of compound 14c

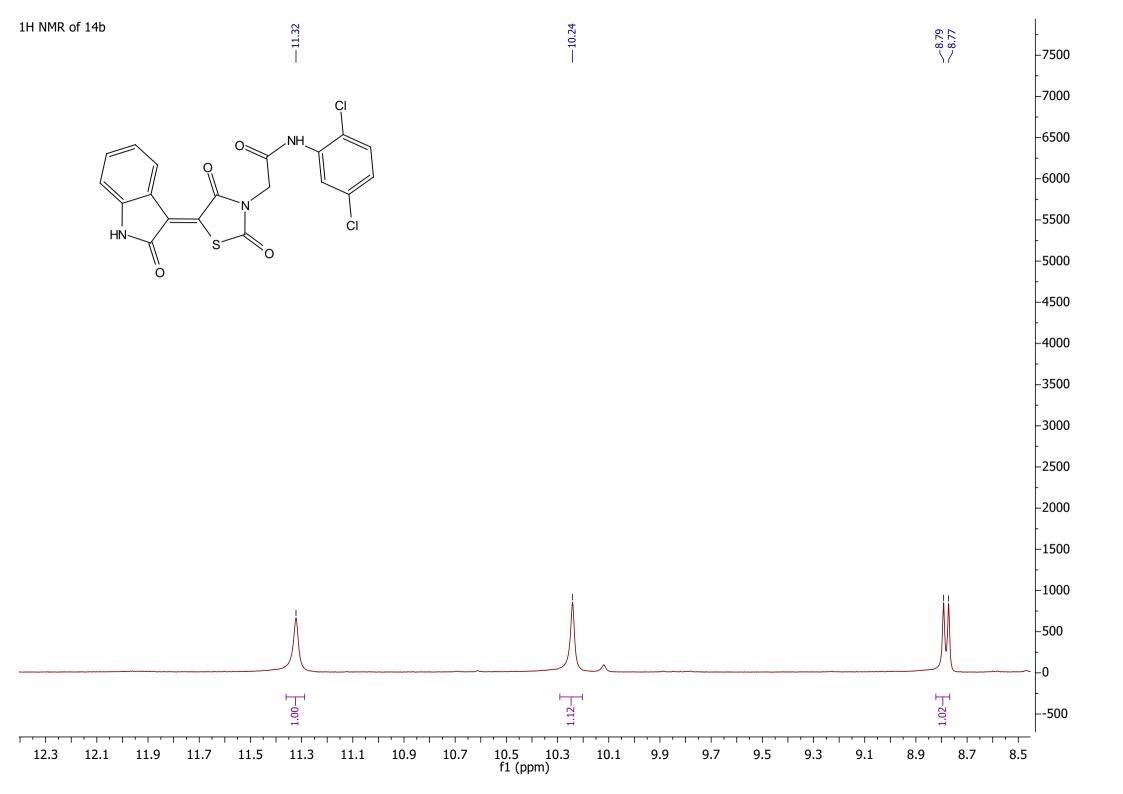


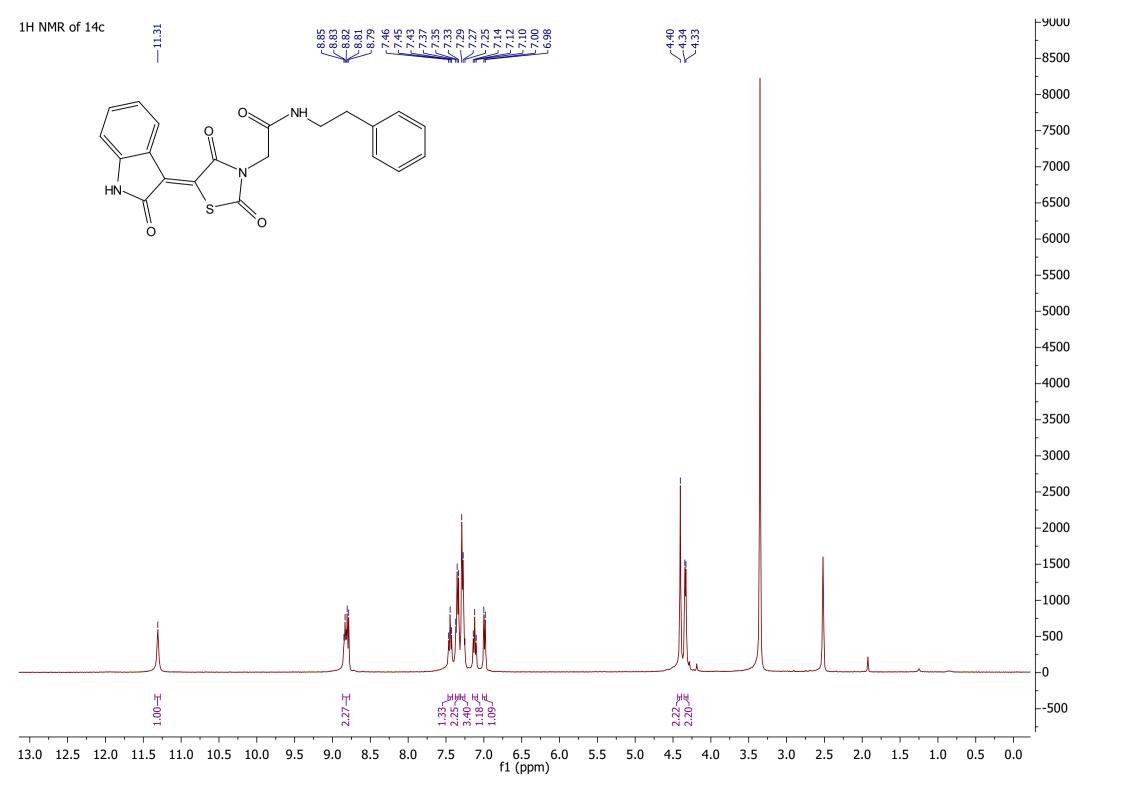

IR of compound 10a

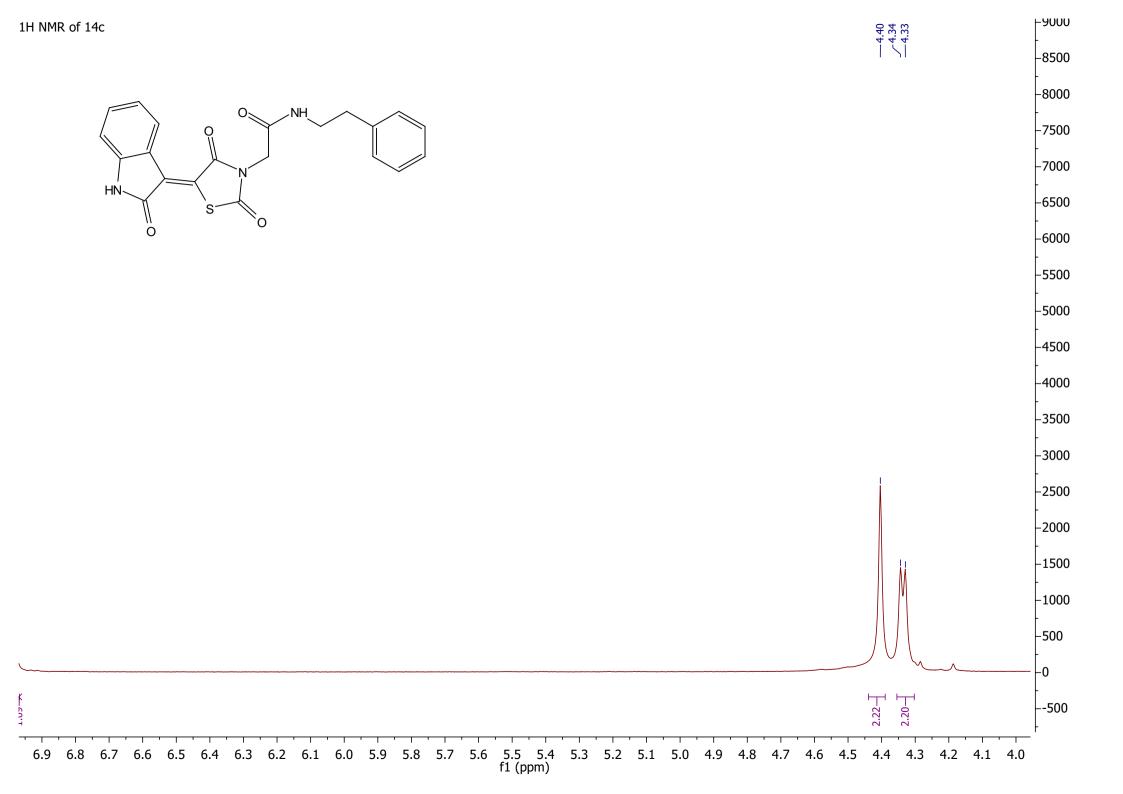


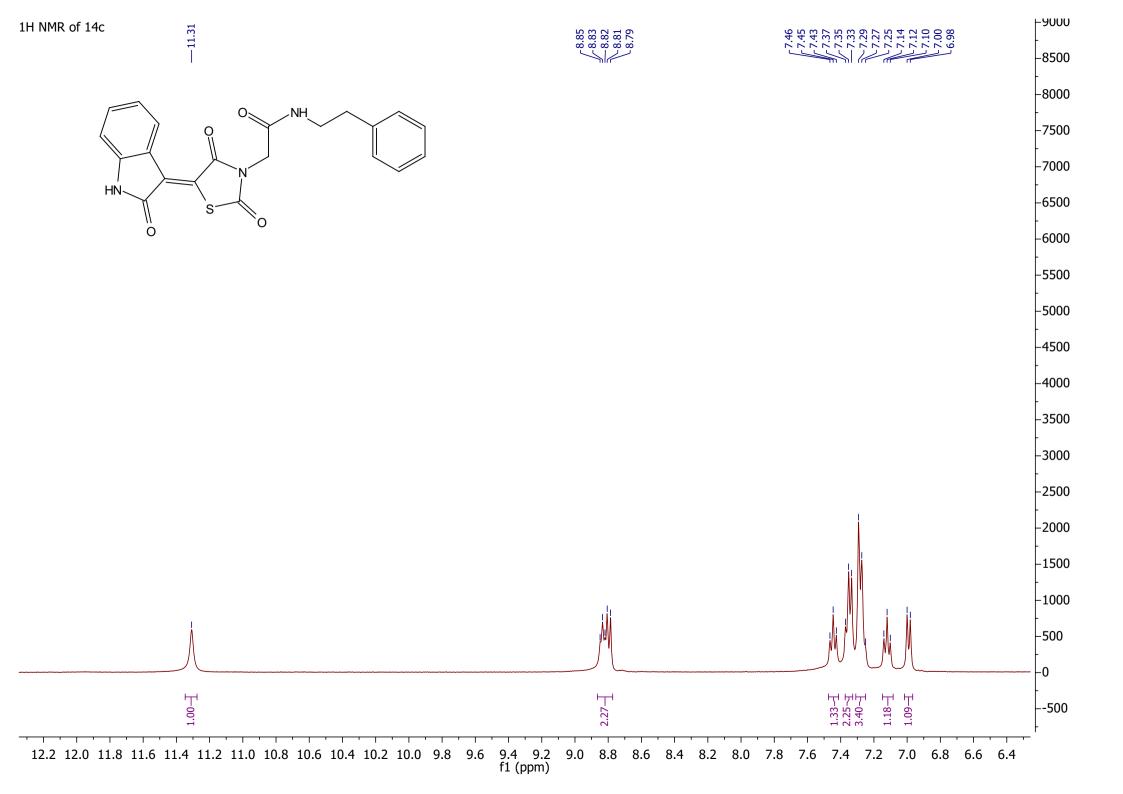

IR of compound 10b

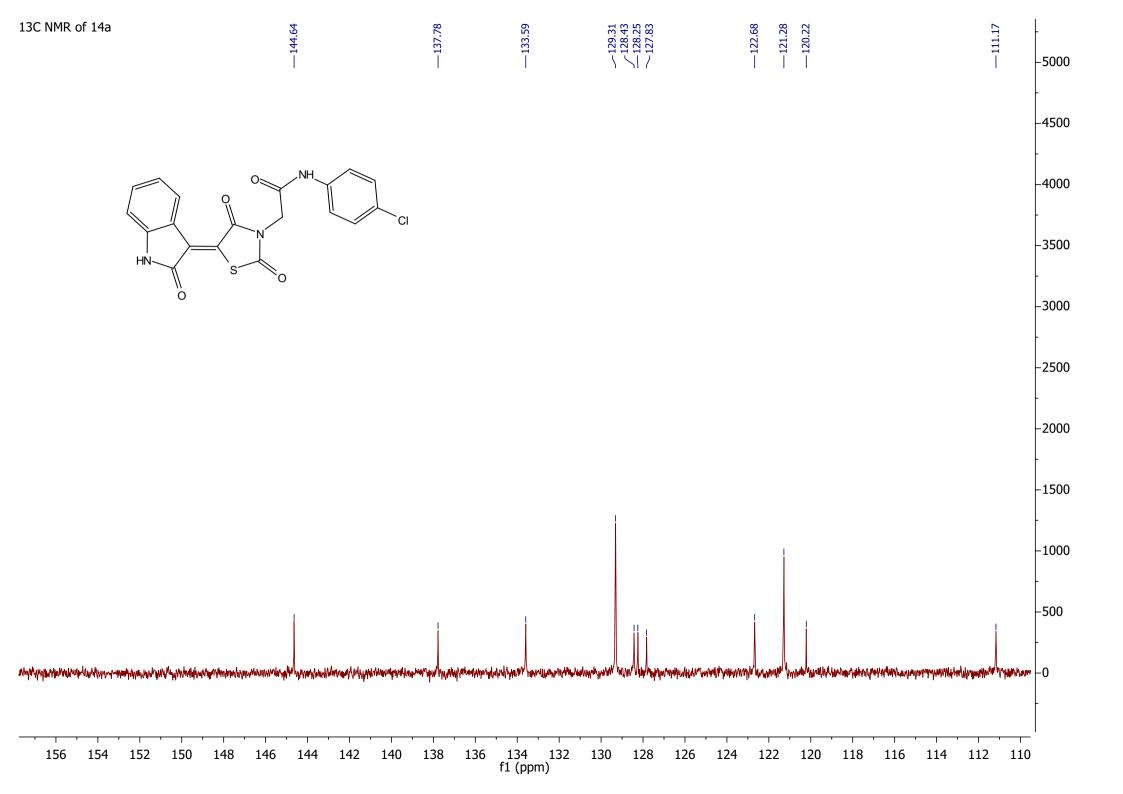


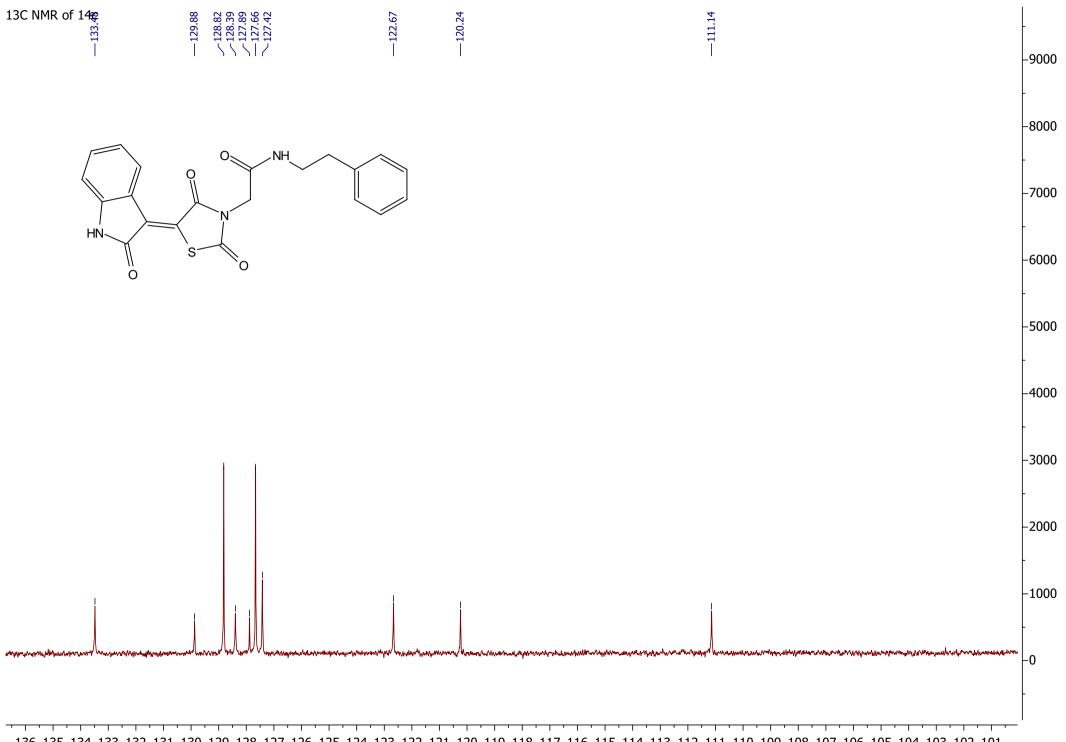


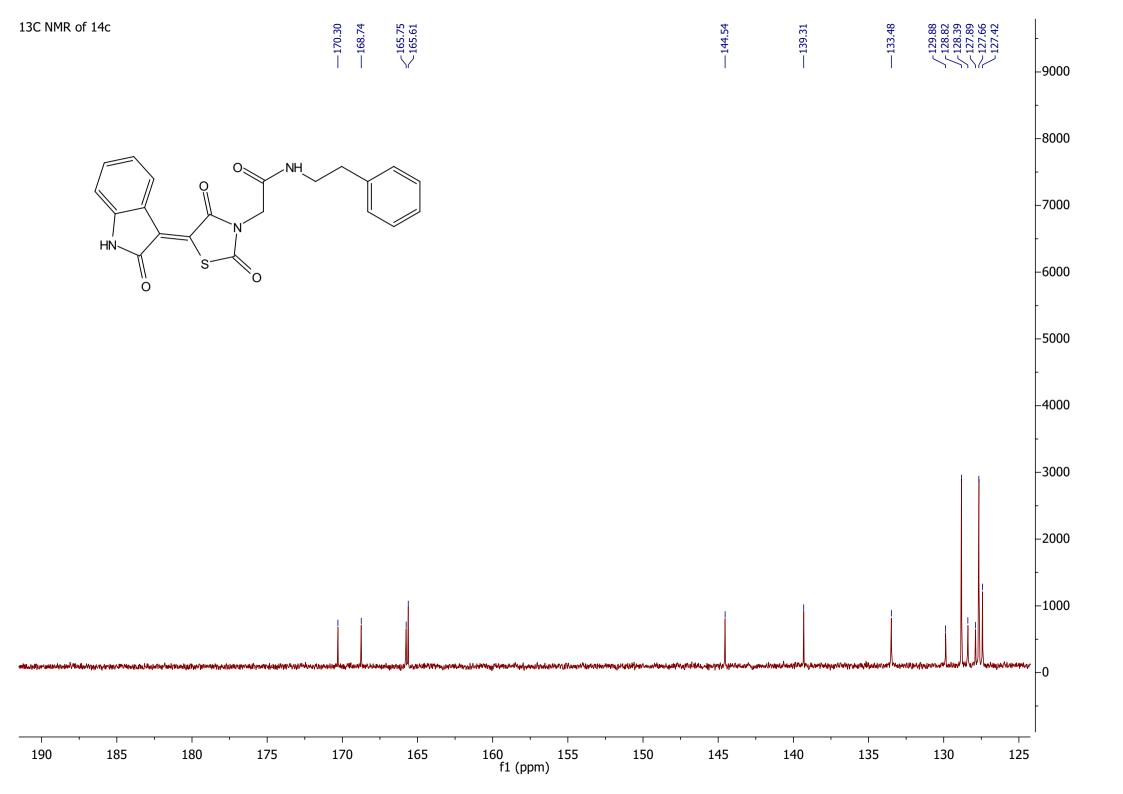


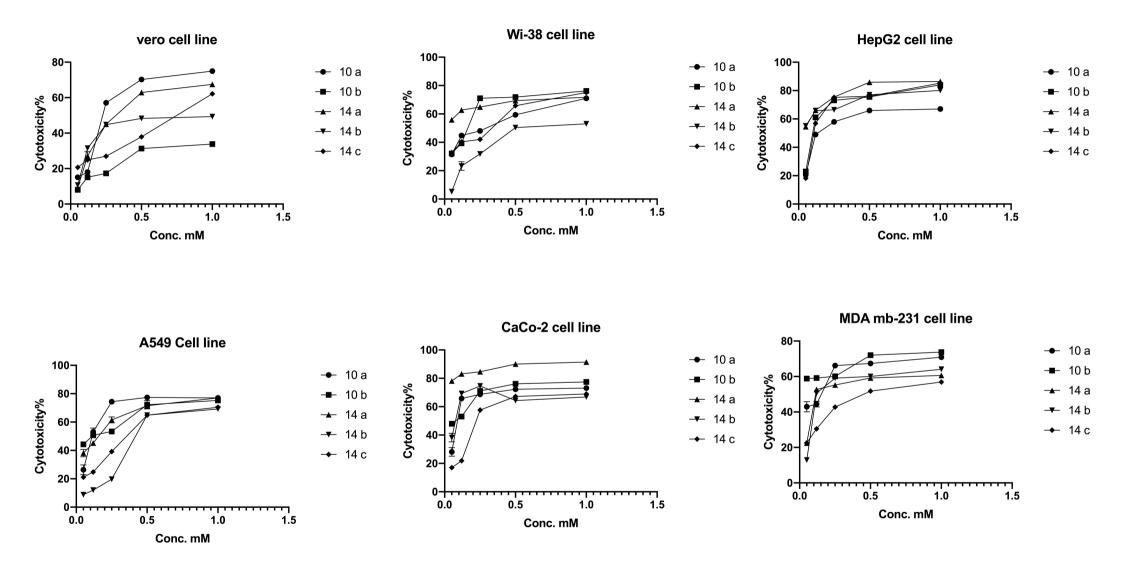






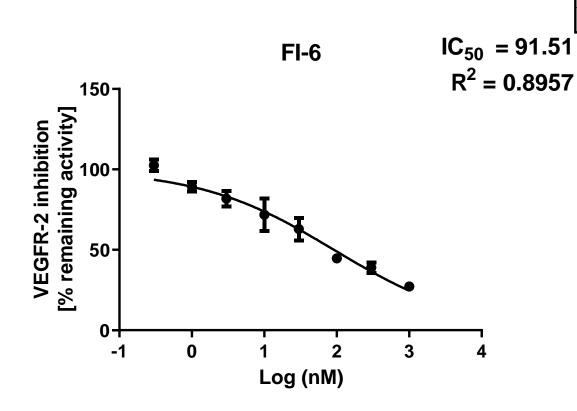




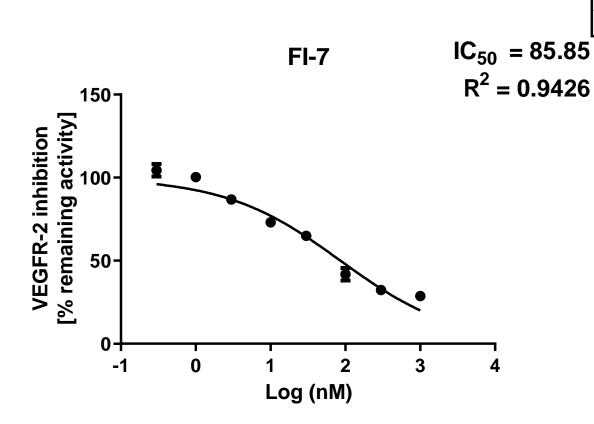


136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 f1 (ppm)

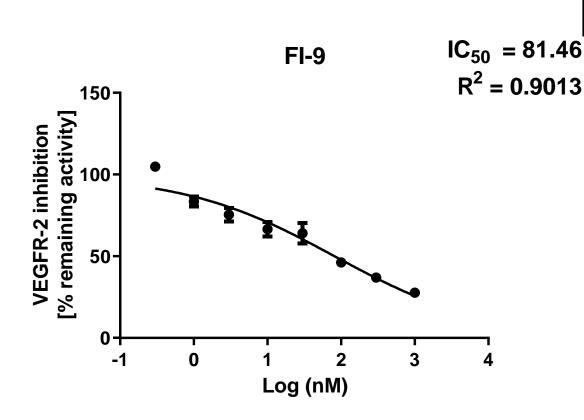
S.5. Raw data for biological testing


RAW DATA OF CYTOTOXICITY

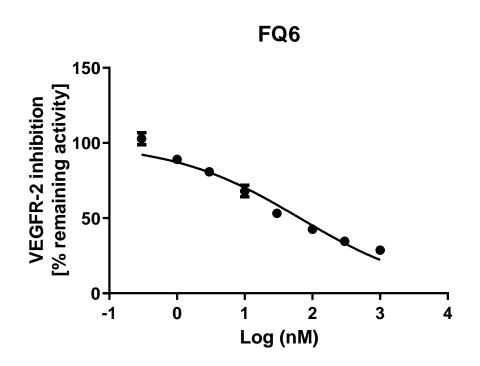
RAW DATA OF VEGFR-2 ASSAY


VEGFR-2 assay of compound 14a

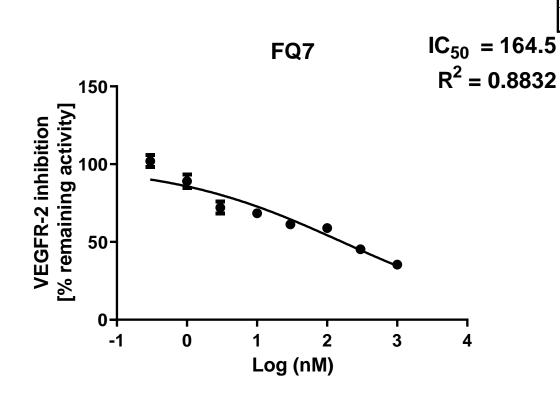
Best-fit values	
LogIC50	1.961
HillSlope	-0.4675
IC50	91.51


VEGFR-2 assay of compound 14b

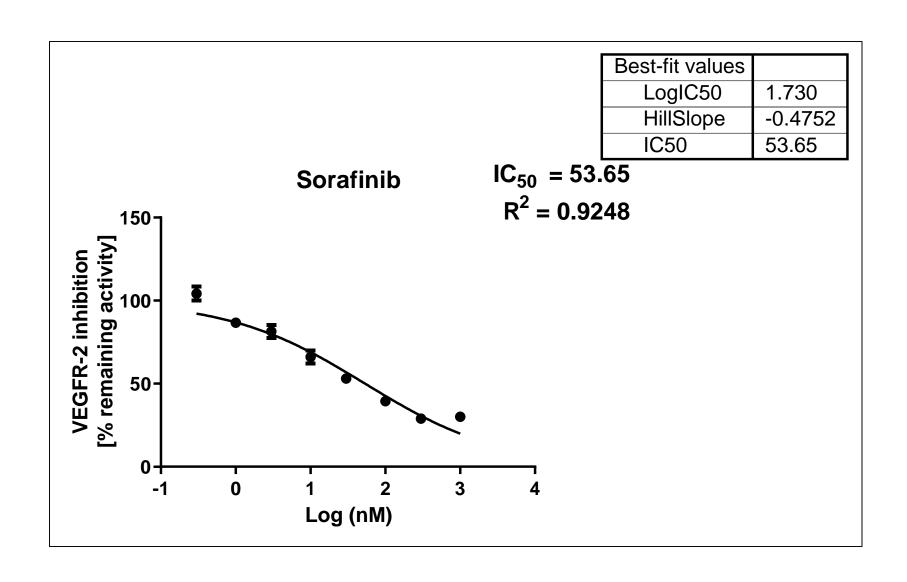
Best-fit values	
LogIC50	1.934
HillSlope	-0.5620
IC50	85.85


VEGFR-2 assay of compound 14c

Best-fit values	
LogIC50	1.911
HillSlope	-0.4220
IC50	81.46


VEGFR-2 assay of compound 10a

Best-fit values	
LogIC50	1.814
HillSlope	-0.4587
IC50	65.16

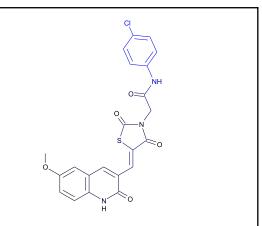


VEGFR-2 assay of compound 10b

Best-fit values	
LogIC50	2.216
HillSlope	-0.3514
IC50	164.5

VEGFR-2 assay of sorafenib

Structural Similar Compounds


⊤ਹਾ ⊀AT_Ames_Mutagenicity

Non-Mutagen

Non-Mutagen

0.614

EMIC

 $C_{22}H_{16}CIN_3O_5S$

Molecular Weight: 469.89753

ALogP: 2.815 Rotatable Bonds: 5

Acceptors: 6 Donors: 2

Name	Delavirdine	55256-55-8	Ochratoxin A
Structure	NH NH NH	HO HO OH OH	On the state of th

Mutagen

Mutagen

Kazius et. al., J. Med.

Chem. (2005) 48, 312-320

0.608

Model Applicability

Actual Endpoint

Distance

Reference

Predicted Endpoint

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Contrera, J.F., Matthews,

Pharmacology 2005, 313-

E.J., Kruhlak, N.L., and

Benz, R.D., Regulatory

Non-Mutagen

Non-Mutagen

Toxicology and

0.605

Model Prediction

Prediction: Non-Mutagen

Probability: 0.333
Enrichment: 0.596
Bayesian Score: -11.1
Mahalanobis Distance: 12.2

Mahalanobis Distance p-value: 0.000264

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Feature Co	ntribution					
	Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Mutagen in training set		
SCFP_12	-577289847	[*][c]1:[cH]:[cH]:[c] (OC):[cH]:[c]:1C=[*]	0.399	9 out of 10		

SCFP_12	-1971137145	[*]C(=C[c](:[*]):[*])	0.167	225 out of 333
SCFP_12	-496409612	i	0.0771	2616 out of 4239
		tures for negative of		
Fingerprint	Bit/Smiles	Feature Structure	Score	Mutagen in training set
SCFP_12	-178170739	[*]N[c]1:[cH]:[cH]:[cH]:1	-1.57	1 out of 15
SCFP_12	-316886873	CI ONH NHO [*] C=C\1/S[*] C C1=[-0.998	0 out of 3
SCFP_12	-1630519606	[*]=C1[*][*]C(=[*])S1	-0.998	0 out of 3

 $C_{22}H_{15}CI_2N_3O_5S$

Molecular Weight: 504.3426

ALogP: 3.479 Rotatable Bonds: 5

Acceptors: 6
Donors: 2

Model Prediction

Prediction: Non-Mutagen

Mahalanobis Distance: 12.3

Probability: 0.46 Enrichment: 0.824 Bayesian Score: -8.4

Mahalanobis Distance p-value: 0.000231

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a part of the state.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds

	•		
Name	55256-55-8	80266-02-0	83621-06-1
Structure	AND Enantiomer HO OH OH OH OH OH OH OH OH O	N THE STATE OF THE	CI C
Actual Endpoint	Mutagen	Mutagen	Non-Mutagen
Predicted Endpoint	Mutagen	Mutagen	Non-Mutagen
Distance	0.633	0.636	0.637
Reference	Kazius et. al., J. Med. Chem. (2005) 48, 312-320	Kazius et. al., J. Med. Chem. (2005) 48, 312-320	Kazius et. al., J. Med. Chem. (2005) 48, 312-320

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Mutagen in training set
SCFP_12	1562412908	CI CI	0.442	5 out of 5

SCFP_12	-345817764	CI CI ON N S N O (*)C(=[*])N[G]*H[GH]: [G]([*]):[*]:[GH]:[G]:1CI	0.442	5 out of 5
SCFP_12	-577289847	CI CI ON NHO [*][c]1:[cH]:[cH]:[c] (OC):[cH]:[c]:1C=[*]	0.399	9 out of 10
		ures for negative	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Mutagen in training set
SCFP_12	-1630519606	CI CI O NH O NH O [*]=C1[*][*]C(=[*])S1	-0.998	0 out of 3
SCFP_12	-316886873	CI CI	-0.998	0 out of 3
SCFP_12	1907954607	CI CI N N N NHO [*]N[c]1:[cH]:[c](CI) :[cH]:[cH]:[c]:1[*]	-0.762	0 out of 2

O HN CI

C₁₉H₁₂CIN₃O₄S

Molecular Weight: 413.83428

ALogP: 2.363 Rotatable Bonds: 3

Acceptors: 5
Donors: 2

Model Prediction

Prediction: Non-Mutagen

Probability: 0.35 Enrichment: 0.626 Bayesian Score: -10.7 Mahalanobis Distance: 11.5

Mahalanobis Distance p-value: 0.0055

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar	Compounds
---------------------------	-----------

Name	97919-22-7	98644-23-6	Chlorendic acid
Structure	NH 2	HO S O Na	OHCI CI CI OH
Actual Endpoint	Non-Mutagen	Mutagen	Non-Mutagen
Predicted Endpoint	Non-Mutagen	Mutagen	Non-Mutagen
Distance	0.581	0.600	0.602
Reference	Kazius et. al., J. Med. Chem. (2005) 48, 312-320	Kazius et. al., J. Med. Chem. (2005) 48, 312-320	Environ. Mol. Mut. 16(Suppl 18):1-14;1990

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Mutagen in training set	
SCFP_12	-1379591900	[*][c]1:[*]:[cH]:[cH] :[cH]:[cH]:1	0.108	1480 out of 2326	

SCFP_12	-834984590	0 NH C C C C C C C C C C C C C C C C C C	0.1	2 out of 3
SCFP_12	-496409612	*] ONH ONH ONH ONH ONH ONH ONH ONH ONH ON	0.0771	2616 out of 4239
	Top Fea	tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Mutagen in training set
SCFP_12	-178170739	o→NH o→NH o→NH o→NH ci [*]N[c]1:[cH]:[cH]:[c](CI):[cH]:[cH]:1	-1.57	1 out of 15
SCFP_12	-1630519606	H	-0.998	0 out of 3
SCFP_12	-316886873	O NH CI	-0.998	0 out of 3

Environ. Mol. Mut.

16(Suppl 18):1-14;1990

C₁₉H₁₁Cl₂N₃O₄S

Molecular Weight: 448.27933

ALogP: 3.028 Rotatable Bonds: 3

Acceptors: 5
Donors: 2

Model Prediction

Prediction: Non-Mutagen

Probability: 0.475
Enrichment: 0.851
Bayesian Score: -8.07
Mahalanobis Distance: 11.6

Mahalanobis Distance p-value: 0.0049

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	98644-23-6	TETRABROMOPHTHALIC ACID	Chlorendic acid		
Structure	HO O O Na	Br Br OH	OHCI CI CI OH OH		
Actual Endpoint	Mutagen	Non-Mutagen	Non-Mutagen		
Predicted Endpoint	Mutagen	Non-Mutagen	Non-Mutagen		
Distance	0.614	0.617	0.620		

Model Applicability

Reference

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

EMIC

1. All properties and OPS components are within expected ranges.

Kazius et. al., J. Med.

Chem. (2005) 48, 312-320

Feature Co	Feature Contribution					
	Top fe	atures for positive o	ontribution			
Fingerprint	Bit/Smiles	Feature Structure	Score	Mutagen in training set		
SCFP_12	-345817764	[*]C(=[*])N[c]1 ^c [cH]: [c]([*]):[*]:[cH]:[c	0.442	5 out of 5		

SCFP_12	1562412908	[*]N[c]1:[cH]:[c]:1Cl	0.442	5 out of 5
SCFP_12	-1490122748	[*]C(=[*])N[c]1 ^c [cH]: [c]([*]):[cH]:[c]:1Cl	0.241	1 out of 1
		tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Mutagen in training set
SCFP_12	-1630519606	ONH ONH ON ON ON ON ON ON ON ON ON ON ON ON ON	-0.998	0 out of 3
SCFP_12	-316886873	0 NH 0 CI	-0.998	0 out of 3
SCFP_12	1907954607	S O NH O O O I (i) N[e]1:[eH]:[e](CI) :[eH]:[eH]:[e]:1[*]	-0.762	0 out of 2

o HN O HN

 $C_{21}H_{17}N_3O_4S$

Molecular Weight: 407.44237

ALogP: 2.027 Rotatable Bonds: 5

Acceptors: 5
Donors: 2

Model Prediction

Prediction: Non-Mutagen

Probability: 0.251
Enrichment: 0.449
Bayesian Score: -12.9
Mahalanobis Distance: 12.9

Mahalanobis Distance p-value: 8.1e-006

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	89784-39-4	PENICILLIN G POTASSIUM	4825-86-9
Structure	HO CI	OH OH	AND Enemiconer OH OH OH
Actual Endpoint	Mutagen	Non-Mutagen	Non-Mutagen
Predicted Endpoint	Mutagen	Non-Mutagen	Non-Mutagen
Distance	0.587	0.591	0.592
Reference	Kazius et. al., J. Med. Chem. (2005) 48, 312-320	EMIC	Kazius et. al., J. Med. Chem. (2005) 48, 312-320

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Feature Contribution					
	Top fea	atures for positive o	ontribution		
Fingerprint	Bit/Smiles	Feature Structure	Score	Mutagen in training set	
SCFP_12	-1379591900	[*][c]1:[*]:[cH]:[cH]: :[cH]:[cH]:1	0.108	1480 out of 2326	

SCFP_12	-834984590	[*]=C1N[c]2:[cH]:[cH] :[cH]:[cH]:[c]:2C1=[0.1	2 out of 3
SCFP_12	-496409612	[*][c](:[*]):[cH]:[cH]:[cH]:[*]	0.0771	2616 out of 4239
		tures for negative of		
Fingerprint	Bit/Smiles	Feature Structure	Score	Mutagen in training set
SCFP_12	-1849236245	[*]NCC[c](:[cH]:[*]): [cH]:[*]	-1.61	0 out of 7
SCFP_12	647859032	0=NH S 0 N 0 N 0 N 1 N 1 N 1 N 1 N 1 N 1 N 1 N 1 N 1 N 1	-1.19	0 out of 4
SCFP_12	-1630519606	[*]=C1[*][*]C(=[*])S1	-0.998	0 out of 3

HN O HN O

C₂₁H₁₆CIF₃N₄O₃

Molecular Weight: 464.82494

ALogP: 4.175
Rotatable Bonds: 6

Acceptors: 4 Donors: 3

Structural Sillinar Compounds						
Name	GLYBURIDE	38914-96-4	93957-54-1			
Structure		O .N. O	ANI			

Structure	HN TO HN	NH HCI HCI H ₂ O	AND Enationer OH OH
Actual Endpoint	Non-Mutagen	Mutagen	Non-Mutagen
Predicted Endpoint	Non-Mutagen	Mutagen	Non-Mutagen
Distance	0.590	0.592	0.600
Reference	PDR 1994	Kazius et. al., J. Med. Chem. (2005) 48, 312-320	US Environmental Protection Agency at http://www.epa.gov/NCCT/ dsstox/sdf_isscan_externa l.html

Model Prediction

Prediction: Non-Mutagen

Probability: 0.0531
Enrichment: 0.0951
Bayesian Score: -19.7
Mahalanobis Distance: 13.1

Mahalanobis Distance p-value: 2.73e-006

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Model Applicability

Structural Similar Compounds

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Mutagen in training set	
SCFP_12	-347281112	[*]N[c]:[cH]:[*]:[c] ([*]):[c](:[cH]:1)C([*])([*])[*]	0.337	18 out of 22	

SCFP_12	1208843554	[*]N[6] f*[cH]:[cH]:[c](O[c](:[*]):[*]):[c H]:[cH]:1	0.337	6 out of 7
SCFP_12	-1943080297	[*]N[라](cH]:[cH]:[c](O[c]2:[cH]:[cH]:[*]:[c]([*]):[cH]:2):[cH]:[cH]:1	0.304	5 out of 6
	Top Feat	ures for negative of	contribution	1
Fingerprint	Bit/Smiles	Feature Structure	Score	Mutagen in training set
SCFP_12	816802409	F F C! [']NC(=0)N[c]1:[cH]:[cH]:[c]([']):[cH]:[c H]:1	-1.82	0 out of 9
SCFP_12	-1903175541	[*][c](:[cH]:[*])C(F)(F)F	-1.51	3 out of 30
SCFP_12	-300280774	[*]:[c](:[*])C(F)(F)F	-1.51	3 out of 30

HZ O HZ O

 $C_{22}H_{27}FN_4O_2$

Molecular Weight: 398.47378

ALogP: 2.997 Rotatable Bonds: 7

Acceptors: 3
Donors: 3

Model Prediction

Prediction: Non-Mutagen

Probability: 0.623
Enrichment: 1.11
Bayesian Score: -4.39
Mahalanobis Distance: 14.8

Mahalanobis Distance p-value: 8.05e-012

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

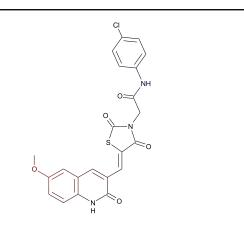
Name	38914-96-4	93957-54-1	IA 4 N-oxide	
Structure	NH HCI HCI H ₂ O	AND Exantoner AND Exantoner OH OH OH	HO NOOH	
Actual Endpoint	Mutagen	Non-Mutagen	Mutagen	
Predicted Endpoint	Mutagen	Non-Mutagen	Mutagen	
Distance	0.597	0.602	0.610	
Reference	Kazius et. al., J. Med. Chem. (2005) 48, 312-320	US Environmental Protection Agency at http://www.epa.gov/NCCT/ dsstox/sdf_isscan_externa l.html	Contrera, J.F., Matthews, E.J., Kruhlak, N.L., and Benz, R.D., Regulatory Toxicology and Pharmacology 2005, 313 323.	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Feature Contribution						
Top features for positive contribution						
Fingerprint	Bit/Smiles	Feature Structure	Score	Mutagen in training set		
SCFP_12	1024473425	[,]N([,])CCNC(=[,])[,	0.442	13 out of 14		


SCFP_12	1232358329	[']N(['])CCNC(=0)(c]1 :[c]((']);['];[ic	0.424	11 out of 12
SCFP_12	820030350	[']CN(C['])CCNC(=0)[c	0.424	11 out of 12
	Top Feat	ures for negative of	contribution	1
Fingerprint	Bit/Smiles	Feature Structure	Score	Mutagen in training set
SCFP_12	-495096007	[*]NCCN(CC)CC	-0.762	0 out of 2
SCFP_12	1798334293	[']C(=C1C(=['])[']['] :[e]1:['][']	-0.525	5 out of 16
SCFP_12	32698025	[*]:[e](:[*])C(=0)NCC N(CC)CC	-0.452	0 out of 1

Non-Toxic

Non-Toxic

Oyo Yakuri 22(6):777-786;

0.648

C₂₂H₁₆CIN₃O₅S

Molecular Weight: 469.89753

ALogP: 2.815
Rotatable Bonds: 5

Acceptors: 6
Donors: 2

Model Prediction

Prediction: Toxic
Probability: 0.619
Enrichment: 1.18
Bayesian Score: 1.83
Mahalanobis Distance: 12.2

Mahalanobis Distance p-value: 1.57e-005

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	Ochratoxin a	Amsacrine	Acemetacin
Structure	OH OH OH	N NH NH NH NH NH	O O O H

Toxic

Toxic

0.621

Fundam Appl Toxicol 7(2):214-20; 1986

Model Applicability

Actual Endpoint

Distance

Reference

Predicted Endpoint

Structural Similar Compounds

Toxic

Toxic

0.608

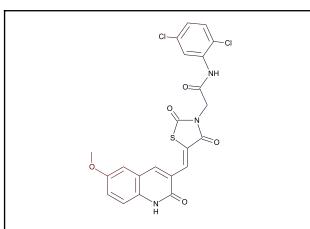
Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Toxicol Appl Pharmacol

37(2):331-8; 1976

Feature Co	Feature Contribution							
Top features for positive contribution								
Fingerprint	Bit/Smiles	Feature Structure	Score	Toxic in training set				
SCFP_6	1237755852	[*][c]1:[*];[cH];[cH] :[c](OC):[cH]:1	0.453	8 out of 9				


SCFP_6	-1971137145	[*]C(=C[c](:[*]):[*])	0.431	7 out of 8
SCFP_6	591469355	[*]:[cH]:[c](OC):[cH] ::[*]	0.411	10 out of 12
		tures for negative of		1
Fingerprint	Bit/Smiles	Feature Structure	Score	Toxic in training set
SCFP_6	399659969	CI ONH OFN S ONHO [*]CN1C(=[*])[*][*]C1 =[*]	-0.526	3 out of 11
SCFP_6	1420330831	[*]=C1[*]=C[c]2:[cH]: [*]:[cH]:[cH]:[c]:2N	-0.422	0 out of 1
SCFP_6	2097618059	[']CC(=0)N[c](:[cH]:[']	-0.422	0 out of 1

Non-Toxic

Non-Toxic

Oyo Yakuri 22(6):777-786;

0.648

 $C_{22}H_{15}CI_2N_3O_5S$

Molecular Weight: 504.3426

ALogP: 3.479 Rotatable Bonds: 5

Acceptors: 6
Donors: 2

Model Prediction

Prediction: Toxic
Probability: 0.662
Enrichment: 1.26
Bayesian Score: 2.95
Mahalanobis Distance: 12.2

Mahalanobis Distance p-value: 1.58e-005

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	Amsacrine	Ochratoxin a	Acemetacin
Structure	N. THE NAME OF THE PARTY OF THE	OH HOW HO	N O OH

Toxic

Toxic

0.633

Toxicol Appl Pharmacol 37(2):331-8; 1976

Model Applicability

Actual Endpoint

Distance

Reference

Predicted Endpoint

Structural Similar Compounds

Toxic

Toxic

0.626

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Fundam Appl Toxicol

7(2):214-20; 1986

Feature Contribution Top features for positive contribution						
SCFP_6	1237755852	CI CI CI CI (*)[c]1:[*]:[cH]:[cH] :[c](OC):[cH]:1	0.453	8 out of 9		

SCFP_6	-1971137145	CI CI ONH SNHO [*]C(=C[c](:[*]):[*]) [*]	0.431	7 out of 8
SCFP_6	591469355	CI CI CI NH NH O S NH (19) [c] [cH]:[c](OC):[cH] :[1]	0.411	10 out of 12
	Top Fea	tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Toxic in training set
SCFP_6	399659969	CI CI ON H	-0.526	3 out of 11
SCFP_6	2097618059	[*]CC(=O)N[c](;[c+l];[*])	-0.422	0 out of 1
SCFP_6	1420330831	CI C	-0.422	0 out of 1

23(4):504-8; 1973

C₁₉H₁₂CIN₃O₄S

Molecular Weight: 413.83428

ALogP: 2.363 Rotatable Bonds: 3

Acceptors: 5
Donors: 2

Model Prediction

Prediction: Non-Toxic

Probability: 0.501
Enrichment: 0.953
Bayesian Score: -1.26
Mahalanobis Distance: 8.02

Mahalanobis Distance p-value: 0.595

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly linaccurate.

Name	D&C Yellow 8	Sulfonylurea Gliclazide	Tiaramide .HCI (Free base form)	
Structure	OH OH	NH ONH ON NH	CI NO	
Actual Endpoint	Non-Toxic	Toxic	Toxic	
Predicted Endpoint	Non-Toxic	Toxic	Toxic	
Distance	0.612	0.620	0.623	
Reference	Food Chem Toxicol	Yakuri to Chiryo 9:3551-	Arzneimittelforschung	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

3571; 1981

1. All properties and OPS components are within expected ranges.

24:819-823; 1986

Feature Contribution Top features for positive contribution						
SCFP_6	199205675	[*]N1[*][*]SC1=O	0.271	1 out of 1		

SCFP_6	2102703671	NH O NH O O O O O O O O O	0.271	1 out of 1
SCFP_6	-587539325	H	0.271	1 out of 1
		tures for negative of	ontribution	n
Fingerprint	Bit/Smiles	Feature Structure	Score	Toxic in training set
SCFP_6	399659969	(,]cn1c(=[,])(,][,]c1	-0.526	3 out of 11
SCFP_6	1420330831	S O NH C C I S O N O NH C C I S O NH	-0.422	0 out of 1
SCFP_6	2097618059	"ICC(=0)N[c](:[cH]:["1):[cH]:["]	-0.422	0 out of 1

O HN CI

 $C_{19}H_{11}CI_{2}N_{3}O_{4}S$

Molecular Weight: 448.27933

ALogP: 3.028 Rotatable Bonds: 3

Acceptors: 5
Donors: 2

Model Prediction

Prediction: Non-Toxic

Probability: 0.51
Enrichment: 0.969
Bayesian Score: -1.03
Mahalanobis Distance: 8.01

Mahalanobis Distance p-value: 0.602

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

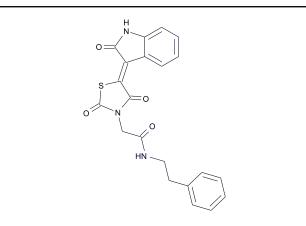
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural S	Similar Compounds	r Compounds		
Name	D&C Yellow 8	Ochratoxin a		
Structure				

Name	D&C Yellow 8	Ochratoxin a	Amsacrine
Structure	OH OH	OH MANH HO NOT THE WAY CO	NA N
Actual Endpoint	Non-Toxic	Toxic	Toxic
Predicted Endpoint	Non-Toxic	Toxic	Toxic
Distance	0.628	0.645	0.649
Reference	Food Chem Toxicol 24:819-823; 1986	Toxicol Appl Pharmacol 37(2):331-8; 1976	Fundam Appl Toxicol 7(2):214-20; 1986


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

	Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Toxic in training set	
SCFP_6	2102703671	[*]C1=[*][c](:[*]):[c](NC1=O):[cH]:[*]	0.271	1 out of 1	

SCFP_6	-534413823	[*][c]1:[cH]:[c]:1Cl	0.271	1 out of 1
SCFP_6	199205675	0=NH N 0 N 0 N C C C C C C C C C C C C C C C C C C C	0.271	1 out of 1
		tures for negative of		
Fingerprint	Bit/Smiles	Feature Structure	Score	Toxic in training set
SCFP_6	399659969	(")CN1C(=[")("C1 =["]	-0.526	3 out of 11
SCFP_6	2097618059	[*]CC(=0)N[c](:[cH]:[-0.422	0 out of 1
SCFP_6	1420330831	O NH O CI H CI [*]=C1[*]=C[o]2:[cH]: [*]:[cH]:[cH]:[c]:2N	-0.422	0 out of 1

 $C_{21}H_{17}N_3O_4S$

Molecular Weight: 407.44237

ALogP: 2.027 Rotatable Bonds: 5

Acceptors: 5
Donors: 2

Model Prediction

Prediction: Non-Toxic
Probability: 0.493

Enrichment: 0.937
Bayesian Score: -1.49
Mahalanobis Distance: 11.3

Mahalanobis Distance p-value: 0.000337

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

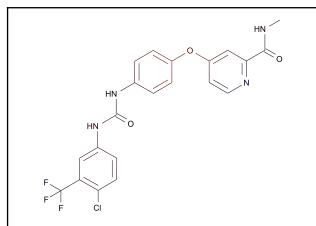
Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	Ochratoxin a	Tiaramide .HCI (Free base form)	Sulfonylurea Gliclazide
Structure	OH MANUTURE OF THE PARTY OF THE	CI TO NO	NH ONH ONH
Actual Endpoint	Toxic	Toxic	Toxic
Predicted Endpoint	Toxic	Toxic	Toxic
Distance	0.610	0.624	0.635
Reference	Toxicol Appl Pharmacol 37(2):331-8; 1976	Arzneimittelforschung 23(4):504-8; 1973	Yakuri to Chiryo 9:3551- 3571; 1981

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.


Feature Contribution					
	Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Toxic in training set	
SCFP_6	2102703671	[*]C1=[*][c](:[*]):[c](NC1=O):[cH]:[*]	0.271	1 out of 1	

SCFP_6	199205675	NH N	0.271	1 out of 1
SCFP_6	-587539325	[*]N1[*][*]SC1=O	0.271	1 out of 1
	Top Fea	tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Toxic in training set
SCFP_6	2005026407	[*]CCNC(=O)C[*]	-0.718	0 out of 2
SCFP_6	399659969	(*)CN1C(=[*])(*)[*]C1 =[*]	-0.526	3 out of 11
SCFP_6	1420330831	[*]=C1[*]=C[c]2:[cH]: [*]:[cH]:[cH]:[c]:2N	-0.422	0 out of 1

0.644

Toxicol Appl Pharmacol

37(2):331-8; 1976

C₂₁H₁₆CIF₃N₄O₃

Molecular Weight: 464.82494

ALogP: 4.175 Rotatable Bonds: 6

Acceptors: 4
Donors: 3

Model Prediction

Prediction: Toxic
Probability: 0.592
Enrichment: 1.13
Bayesian Score: 1.15
Mahalanobis Distance: 12.6

Mahalanobis Distance p-value: 2.07e-006

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

r Compounds		
Chenodiol	Amsacrine	Ochratoxin a
OH OH	No.	OH OH HO WY CI
Toxic	Toxic	Toxic
Toxic	Toxic	Toxic
	Chenodiol OH OH OH OH Toxic	Chenodiol Amsacrine Toxic Toxic

Model Applicability

Distance

Reference

Christian Cimilar Campainda

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

0.637

Fundam Appl Toxicol 7(2):214-20; 1986

1. All properties and OPS components are within expected ranges.

Arch Int Pharm 246:149-

0.631

158: 1980

Feature Contribution					
	Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Toxic in training set	
SCFP_6	1559190850	[*]Č([*])([*])([]1:[c H]:[*]:[cH]:[cH]:[c] :1Cl	0.441	3 out of 3	

SCFP_6	-488587948	[*]:[e](q*))O[c]1:[c H]:[cH]:[*]:[cH]:[cH	0.381	2 out of 2
SCFP_6	-975241316	[7][c]1:[cH]:[c] (O[c](:[cH]:[*]):[cH]:[*]):[cH]:1	0.381	2 out of 2
	Top Feat	ures for negative of	contribution	1
Fingerprint	Bit/Smiles	Feature Structure	Score	Toxic in training set
SCFP_6	-1794974220	[*]C([*])([*])F	-0.55	2 out of 8
SCFP_6	-937094999	[*][c]1:[*]:[c]([*]): n:[cH]:[cH]:1	-0.358	3 out of 9
SCFP_6	-496201075	[*]:[cH]:n:[*]	-0.289	8 out of 21

Molecular Weight: 398.47378

ALogP: 2.997 Rotatable Bonds: 7

Acceptors: 3
Donors: 3

C₂₂H₂₇FN₄O₂

Model Prediction

Prediction: Toxic
Probability: 0.635
Enrichment: 1.21
Bayesian Score: 2.26
Mahalanobis Distance: 13.3

Mahalanobis Distance p-value: 1.35e-007

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

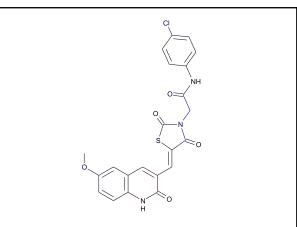
Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	Domperidone	Clebopride Malate	Dobutamine .HCI (Free base form)
Structure	HN N N N N N N N N N N N N N N N N N N	NH 2 CI	HO HN HN HN OH
Actual Endpoint	Toxic	Non-Toxic	Toxic
Predicted Endpoint	Toxic	Non-Toxic	Toxic
Distance	0.619	0.627	0.678
Reference	Yakuri to Chiryo 8:4125- 4136; 1980	Kiso to Rinsho 16:5649- 5660; 1982	Yakuri to Chiryo 7:1707- 1730; 1979


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Feature Contribution Top features for positive contribution				
SCFP_6	-1971137145	[*]C(=C[c](:[*]):[*]) [*]	0.431	7 out of 8

SCFP_6	1725890097	[*]CN(C[*])CC	0.381	2 out of 2
SCFP_6	-182283812	[*]CN(C[*])CCN[*]	0.381	2 out of 2
	Top Featu	res for negative o	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Toxic in training set
SCFP_6	2109374332	[*][c]1:[*]:[nH]: [c]:1C	-0.446	3 out of 10
SCFP_6	1420330831	[*]=C1[*]=C[c]2:[cH]: [*]:[cH]:[cH]:[c]:2N	-0.422	0 out of 1
SCFP_6	136686699	[*]:[c](:[*])C	-0.316	7 out of 19

 $C_{22}H_{16}CIN_3O_5S$

Molecular Weight: 469.89753

ALogP: 2.815 Rotatable Bonds: 5

Acceptors: 6
Donors: 2

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.206 Enrichment: 0.642 Bayesian Score: -5.47 Mahalanobis Distance: 14

Mahalanobis Distance p-value: 1.65e-005

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	Bicalutamide	Moricizine	Glipizide
Structure	HO AND THE F	N N N N N N N N N N N N N N N N N N N	
Actual Endpoint	Non-Carcinogen	Carcinogen	Non-Carcinogen
Predicted Endpoint	Non-Carcinogen	Carcinogen	Non-Carcinogen
Distance	0.579	0.638	0.679
Reference US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997		US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability

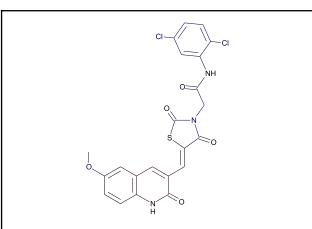
Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 2131425032: [*]\C=C(\C=[*])/C(=[*])[*]
- 3. Unknown ECFP_2 feature: 1182722866: [*]C(=CC(=[*])[*])[*]
- 4. Unknown ECFP_2 feature: 1000552169: [*]\C=C\1/S[*][*]C1=[*]
- 5. Unknown ECFP_2 feature: 190445529: [*]N1[*][*]SC1=O

Top features for positive contribution Fingerprint Bit/Smiles Feature Structure Score Carcinogen in training set ECFP_6 738938915 0.617 2 out of 2

ECFP_6	464808839	[*]C(=C[c](:[*]):[*])	0.524	8 out of 14
ECFP_6	-1925046727	CI ONH SINO (*)C=[*]	0.391	11 out of 23
		tures for negative of		
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
ECFP_6	-661097313	[*]CN1C(=[*])[*][*]C1 =[*]	-1.55	0 out of 12
ECFP_6	1731843802	CI NHO [*]CC(=O)N[*]	-0.657	0 out of 3
ECFP_6	912478223	CI ON H ON H ON NHO [*]S[*]	-0.638	1 out of 9

US FDA (Centre for Drug


Res.) Sept. 1997

Eval.& Res./Off. Testing &

US FDA (Centre for Drug

Eval.& Res./Off. Testing &

Res.) Sept. 1997

 $C_{22}H_{15}CI_2N_3O_5S$

Molecular Weight: 504.3426

ALogP: 3.479 Rotatable Bonds: 5

Acceptors: 6
Donors: 2

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.205 Enrichment: 0.64 Bayesian Score: -6.8

Mahalanobis Distance: 13.6

Mahalanobis Distance p-value: 7.54e-005

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	Bicalutamide	Fluticasone	Glimepride
Structure	HO HO AND THE F	HO to the state of	NH NH
Actual Endpoint	Non-Carcinogen	Non-Carcinogen	Carcinogen
Predicted Endpoint	Non-Carcinogen	Non-Carcinogen	Carcinogen
Distance	0.634	0.657	0.671

Model Applicability

Reference

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

US FDA (Centre for Drug

Res.) Sept. 1997

Eval.& Res./Off. Testing &

- 2. Unknown ECFP_2 feature: 2131425032: [*]\C=C(\C=[*])/C(=[*])[*]
- 3. Unknown ECFP_2 feature: 1182722866: [*]C(=CC(=[*])[*])[*]
- 4. Unknown ECFP_2 feature: 1000552169: [*]\C=C\1/S[*][*]C1=[*]
- 5. Unknown ECFP_2 feature: 190445529: [*]N1[*][*]SC1=O

Feature Contribution Top features for positive contribution				
ECFP_6	464808839	CI CI ON NHO SNO [*]C(=C[c](:[*]):[*])	0.524	8 out of 14

ECFP_6	-1925046727	CI CI NH	0.391	11 out of 23
ECFP_6	-1699286547	CI CI CI NH ON NH ON NH ON (*)C(=[*])N[c](:[*]):	0.297	12 out of 28
	Top Feat	tures for negative	contribution	n
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
ECFP_6	-661097313	CI CI ON NH OF N S NO ([*]CN1C(=[*])[*]C1 =[*]	-1.55	0 out of 12
ECFP_6	1335691903	CI CO ON THE SENT OF THE SENT OF THE OF T	-0.669	3 out of 22
ECFP_6	1731843802	CI CI ON H SNO SNO (*]CC(=O)N[*]	-0.657	0 out of 3

O HN CI

 $C_{19}H_{12}CIN_3O_4S$

Molecular Weight: 413.83428

ALogP: 2.363 Rotatable Bonds: 3

Acceptors: 5
Donors: 2

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.205
Enrichment: 0.639
Bayesian Score: -6.61
Mahalanobis Distance: 12.7

Mahalanobis Distance p-value: 0.00132

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar	Compounds
--------------------	------------------

Name	Indapamide	Metolazone	Acetohexamide
Structure	HN H ₂ N O	H ₂ N N N N N N N N N N N N N N N N N N N	HN HN O
Actual Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen
Predicted Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen
Distance	0.578	0.580	0.647
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: -631778390: [*]C(=C1S[*][*]C1=[*])[*]
- 3. Unknown ECFP_2 feature: 190445529: [*]N1[*][*]SC1=O

Feature Contribution

	iiii ibatioii				
Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set	
ECFP_6	738938915	* C(=[*])N[c]1:[cH]: cH]:[*]:[cH]:[cH]:1	0.617	2 out of 2	

ECFP_6	-1699286547	S NO O NO N	0.297	12 out of 28
ECFP_6	1298725959		0.279	4 out of 9
	Top Feat	ures for negative of	contribution	n
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
ECFP_6	-661097313	"]CN1C(=["])["]["]C1	-1.55	0 out of 12
ECFP_6	1731843802	0= H CI	-0.657	0 out of 3
ECFP_6	912478223	H	-0.638	1 out of 9

O HN CI

C₁₉H₁₁Cl₂N₃O₄S

Molecular Weight: 448.27933

ALogP: 3.028
Rotatable Bonds: 3

Acceptors: 5
Donors: 2

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.207
Enrichment: 0.646
Bayesian Score: -7.61
Mahalanobis Distance: 11.3

Mahalanobis Distance p-value: 0.0557

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	Indapamide	Metolazone	Bicalutamide
Structure	HN PARTY OF THE PA	H ₂ N ² Structure NH	HO H
Actual Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen
Predicted Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen
Distance	0.609	0.619	0.652
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: -631778390: [*]C(=C1S[*][*]C1=[*])[*]
- 3. Unknown ECFP_2 feature: 190445529: [*]N1[*][*]SC1=O

Feature Contribution

i catale oo					
Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set	
ECFP_6	-1699286547	NH O NH O O O O O O O O O	0.297	12 out of 28	

ECFP_6	1298725959	S O CI NH O CI NH O CI NH O CI (*]NC(=0)C(=[*])[*]	0.279	4 out of 9
ECFP_6	2106656448	O=NH O CI H CI CI [*]C(=O)[*]	0.254	31 out of 77
	Top Fea	tures for negative of	contribution	1
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
ECFP_6	-661097313	ONH SNO NNO NNO CI HCI [*]CN1C(=[*])[*][*]C1 =[*]	-1.55	0 out of 12
ECFP_6	1335691903	[*][c](:[*]):[c](CI): [cH]:[*]	-0.669	3 out of 22
ECFP_6	1731843802	0=NH S 0 N 0 N C 1 C 1 C 1 C 2 N 1 C 1 N 2 N 2 N 3 N 3 N 3 N 3 N 3 N 3 N 3 N 3 N 3 N 3	-0.657	0 out of 3

Eval.& Res./Off. Testing &

Res.) Sept. 1997

Eval.& Res./Off. Testing &

Res.) Sept. 1997

O HN O HN

 $C_{21}H_{17}N_3O_4S$

Molecular Weight: 407.44237

ALogP: 2.027 Rotatable Bonds: 5

Acceptors: 5
Donors: 2

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.207 Enrichment: 0.646 Bayesian Score: -5.01 Mahalanobis Distance: 12

Mahalanobis Distance p-value: 0.0122

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

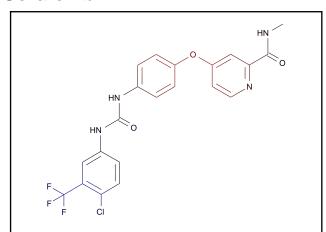
Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	Bicalutamide	Acetohexamide	Penicillin		
Structure	HN AND THE F	HN	OH NH		
Actual Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen		
Predicted Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen		
Distance	0.587	0.589	0.604		
Reference	US FDA (Centre for Drug	US FDA (Centre for Drug	US FDA (Centre for Drug		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.


Eval.& Res./Off. Testing &

- 2. Unknown ECFP_2 feature: -631778390: [*]C(=C1S[*][*]C1=[*])[*]
- 3. Unknown ECFP_2 feature: 190445529: [*]N1[*][*]SC1=O

Res.) Sept. 1997

Feature Contribution						
Top features for positive contribution						
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set		
ECFP_6	-1699286547	[*]C(=[*])N[c](:[*]): [*]	0.297	12 out of 28		

ECFP_6	-1791034651	S NO NH	0.296	7 out of 16
ECFP_6	1298725959	[*]CCN[*]	0.279	4 out of 9
	Top Fea	tures for negative of	contribution	1
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
ECFP_6	-661097313	[']CN1C(=['])['][']C1 =[']	-1.55	0 out of 12
ECFP_6	1731843802	O=NH ON O NH H [*]CC(=O)N[*]	-0.657	0 out of 3
ECFP_6	912478223	ONH ON NH ON	-0.638	1 out of 9

C₂₁H₁₆CIF₃N₄O₃

Molecular Weight: 464.82494

ALogP: 4.175 Rotatable Bonds: 6

Acceptors: 4
Donors: 3

Model Prediction

Prediction: Carcinogen

Probability: 0.257 Enrichment: 0.801 Bayesian Score: -0.321 Mahalanobis Distance: 14.9

Mahalanobis Distance p-value: 4.21e-007

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Sim	ilar Compounds		
Name	Glimepride	Glimepride Glyburide	
Structure	NH NH NH	HN TO HIN	HO HO
Actual Endpoint	Carcinogen	Non-Carcinogen	Non-Carcinogen
Predicted Endpoint	Carcinogen	Non-Carcinogen	Non-Carcinogen
Distance	0.605	0.615	0.625
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing &	US FDA (Centre for Drug Eval.& Res./Off. Testing &	US FDA (Centre for Drug Eval.& Res./Off. Testing &

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Res.) Sept. 1997

Res.) Sept. 1997

Res.) Sept. 1997

1. OPS PC20 out of range. Value: -3.3309. Training min, max, SD, explained variance: -3.1862, 4.4571, 1.28, 0.0167.

Feature Co	ntribution			
	Top fe	atures for positive o	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
ECFP_6	738938915		0.617	2 out of 2

ECFP_6	1338334141		0.442	2 out of 3
ECFP_6	-834094296	[*]:[eH]f[c](O[c](:[c H]:[*]):[cH]:[*]):[c H]:[*]	0.424	1 out of 1
	Top Featur	es for negative c	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
ECFP_6	1335691903	[*][c](:[*]):[c](CI): [cH]:[*]	-0.669	3 out of 22
ECFP_6	1336678434	[*][c](:[cH]:[*])C([*])([*])[*]	-0.657	0 out of 3
ECFP_6	-1952889961	[*]:[c](:[*])C(F)(F)F	-0.657	0 out of 3

Sunitinib

TOPKAT_Mouse_Female_FDA_None_vs_Carcinogen

O N

C₂₂H₂₇FN₄O₂

Molecular Weight: 398.47378

ALogP: 2.997 Rotatable Bonds: 7

Acceptors: 3
Donors: 3

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.218
Enrichment: 0.679
Bayesian Score: -3.25
Mahalanobis Distance: 13.8

Mahalanobis Distance p-value: 3.24e-005

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

	ilar Compounds	Internation	Tetractura
Name	Fluvastatin	Metoclopramide	Flecainide
Structure	HO HO	H ₂ N ₁₁ , NH	O NH NH NH
Actual Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen
Predicted Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen
Distance	0.610	0.643	0.666
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: -1658273810: [*]C(=[*])[c]1:[c]([*]):[*]:[*]:[c]:1[*]
- 3. Unknown ECFP_2 feature: 980271847: [*][c]1:[*]:[*]:[nH]:[c]:1C=[*]
- 4. Unknown ECFP_2 feature: 1182722866: [*]C(=CC(=[*])[*])[*]

Feature Contribution

Top features for positive contribution						
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set		
ECFP_6	1791989338	[*][c]1:[*]:[nH]: [c]:1C	0.424	1 out of 1		

ECFP_6	-1925046727	[*]C=[*]	0.391	11 out of 23
ECFP_6	-1699286547	[*]C(=[*])N[c](:[*]):	0.297	12 out of 28
	Top Feat	tures for negative of	contribution	1
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
ECFP_6	1795893449	[*]CCNC(=0)[c](:[*]): [*]	-0.657	0 out of 3
ECFP_6	-628327667	[*]CCN(CC)CC	-0.657	0 out of 3
ECFP_6	-659402940	[*]CN(C[*])CC	-0.657	0 out of 3

HN O N

C₂₁H₁₆CIF₃N₄O₃

Molecular Weight: 464.82494

ALogP: 4.175 Rotatable Bonds: 6

Acceptors: 4
Donors: 3

Model Prediction

Prediction: Single-Carcinogen

Probability: 0.283
Enrichment: 0.691
Bayesian Score: -3.89
Mahalanobis Distance: 11.1

Mahalanobis Distance p-value: 0.00221

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

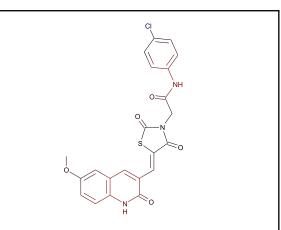
Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Sim	ilar Compounds		
Name	Glimepride	Glimepride Labetalol	
Structure	NH NH NH	HO 47 NH 2	N H S O
Actual Endpoint	Single-Carcinogen	Single-Carcinogen	Single-Carcinogen
Predicted Endpoint	Single-Carcinogen	Single-Carcinogen	Single-Carcinogen
Distance	0.599	0.808	0.820
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 1336678434: [*][c](:[*]):[c](C([*])([*])[*]):c:[*]
- 3. Unknown ECFP_2 feature: -1952889961: [*]:[c](:[*])C(F)(F)F

ntribution			
Top fea	atures for positive o	ontribution	
Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set
-834094296	[*]:[cH]?[c](O[c](:[c H]:[*]):[cH]:[*]):[c H]:[*]	0.351	1 out of 1
	Top fea	Top features for positive of Bit/Smiles Feature Structure -834094296 [*]:[eH]:[c]:[o](O[c](:[c]H]:[*]):[c]	Top features for positive contribution Bit/Smiles Feature Structure Score -834094296 0.351

ECFP_4	1407472008	[*]:[e](q*))O[c]1:[c H]:[cH]:[*]:[cH]:[cH	0.351	1 out of 1
ECFP_4	143734695	[*][6]14**]:[cH]:[cH] :[c](O[c](:[*]):[*]) :[cH]:1	0.351	1 out of 1
	Top Fea	tures for negative c	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set
ECFP_4	888054369	[*]N[c]1:[cH]:[*]:[c] ([*]):[cH]:[cH]:1	-0.8	0 out of 3
ECFP_4	1335691903	[*][c](:[*]):[c](CI): [cH]:[*]	-0.8	0 out of 3
ECFP_4	1338334141	F CI [*]C(=[*])NC	-0.597	0 out of 2

C₂₂H₁₆CIN₃O₅S

Molecular Weight: 469.89753

ALogP: 2.815 Rotatable Bonds: 5

Acceptors: 6
Donors: 2

Model Prediction

Prediction: Carcinogen

Probability: 0.399 Enrichment: 1.36 Bayesian Score: 3

Mahalanobis Distance: 13.8

Mahalanobis Distance p-value: 1.72e-005

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	Bicalutamide	Moricizine	Glipizide
Structure	HO AT THE REPORT OF THE PERSON	N N N N N N N N N N N N N N N N N N N	
Actual Endpoint	Carcinogen	Non-Carcinogen	Non-Carcinogen
Predicted Endpoint	Carcinogen	Non-Carcinogen	Non-Carcinogen
Distance	0.536	0.632	0.681
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Co	ntribution				
	Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set	
FCFP_6	-1757681964	[*][c]1:[cH]:[c];(OC):[cH]:[c]:1C=[*]	0.676	2 out of 2	

FCFP_6	-451043714	CI NHO [*]CC(=0)N[c]1:[cH]:[c cH]:[c]([*]):[cH]:[c H]:1	0.676	2 out of 2
FCFP_6	1175665944	[*]C1=[*][c](:[*]):[c](NC1=O):[cH]:[*]	0.655	7 out of 12
	Top Feat	tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
FCFP_6	-1553874037	CI ON NHO SHO ("]CN1C(=["])["]["]C1 =["]	-0.45	5 out of 32
FCFP_6	551850122	[*][c]1:[*]:[cH]:[c](CI):[cH]:[cH]:1	-0.433	8 out of 49
FCFP_6	71476542	[*]:[c](:[*])CI	-0.406	10 out of 59

 $C_{22}H_{15}CI_2N_3O_5S$

Molecular Weight: 504.3426

ALogP: 3.479 Rotatable Bonds: 5

Acceptors: 6
Donors: 2

Model Prediction

Prediction: Carcinogen

Probability: 0.332 Enrichment: 1.13 Bayesian Score: 0.921 Mahalanobis Distance: 13.8

Mahalanobis Distance p-value: 1.31e-005

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	Bicalutamide	Fluticasone	Moricizine
Structure	HO HO HN AME TO THE F	HO to the total control of the	N N N N N N N N N N N N N N N N N N N
Actual Endpoint	Carcinogen	Non-Carcinogen	Non-Carcinogen
Predicted Endpoint	Carcinogen	Carcinogen	Non-Carcinogen
Distance	0.595	0.653	0.663
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Co	ntribution				
	Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set	
FCFP_6	-1757681964	CI CI ON NH O [*][c]1:[cH]:[cH]:[c] (OC):[cH]:[c]:1C=[*]	0.676	2 out of 2	

FCFP_6	1175665944	[*]C1=[*][c](![*]):[c](NC1=O):[cH]:[*]	0.655	7 out of 12
FCFP_6	451847724	CI CI	0.479	21 out of 48
		tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
FCFP_6	1783756416	CI CI ON NHO NHO [*]N[c]1:[cH]:[7]:[cH]:[cH]:[c]:1CI	-0.719	0 out of 4
FCFP_6	-1553874037	CI CI ON NH ON ["]CN1C(=("))["]["]C1 =["]	-0.45	5 out of 32
FCFP_6	551850122	CI CCI CI S N O N S N O S N O	-0.433	8 out of 49

Eval.& Res./Off. Testing &

Res.) Sept. 1997

Eval.& Res./Off. Testing &

Res.) Sept. 1997

HN CI

 $C_{19}H_{12}CIN_3O_4S$

Molecular Weight: 413.83428

ALogP: 2.363 Rotatable Bonds: 3

Acceptors: 5
Donors: 2

Model Prediction

Prediction: Carcinogen

Probability: 0.364
Enrichment: 1.24
Bayesian Score: 1.95
Mahalanobis Distance: 10.6

Mahalanobis Distance p-value: 0.162

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	Indapamide	Metolazone	Bicalutamide
Structure	HN 2 N O CI	H ₂ N NH	HO H
Actual Endpoint	Non-Carcinogen	Non-Carcinogen	Carcinogen
Predicted Endpoint	Non-Carcinogen	Non-Carcinogen	Carcinogen
Distance	0.554	0.555	0.594
Reference	US FDA (Centre for Drug	US FDA (Centre for Drug	US FDA (Centre for Drug

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Eval.& Res./Off. Testing &

Res.) Sept. 1997

Feature Co	ntribution				
	Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set	
FCFP_6	-451043714	ONH CI	0.676	2 out of 2	

FCFP_6	1175665944	NH O NH O O O O O O O O O	0.655	7 out of 12
FCFP_6	-1838187238	[*]C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:[cH]:1	0.565	4 out of 7
	Top Feat	ures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
FCFP_6	-1553874037	"]CN1C(=[*])[*][*]C1	-0.45	5 out of 32
FCFP_6	551850122	[*][c]1:[*]:[cH]:[c](CI):[cH]:[cH]:1	-0.433	8 out of 49
FCFP_6	71476542	H	-0.406	10 out of 59

HN CI

C₁₉H₁₁Cl₂N₃O₄S

Molecular Weight: 448.27933

ALogP: 3.028 Rotatable Bonds: 3

Acceptors: 5
Donors: 2

Model Prediction

Prediction: Carcinogen

Probability: 0.299 Enrichment: 1.02

Bayesian Score: -0.241 Mahalanobis Distance: 10.8

Mahalanobis Distance p-value: 0.112

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Sim	ilar Compounds Metolazone	Bicalutamide	Indapamide
Structure	H ₂ N S THE NH	HO HN ALL	HN H ₂ N O
Actual Endpoint	Non-Carcinogen	Carcinogen	Non-Carcinogen
Predicted Endpoint	Non-Carcinogen	Carcinogen	Non-Carcinogen
Distance	0.597	0.599	0.599
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Co	ntribution				
	Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set	
FCFP_6	1175665944	[*]C1=[*][c](:[*]):[c](NC1=O):[cH]:[*]	0.655	7 out of 12	

FCFP_6	-1947166985	O NH CI O NH CI CI [']N(['))CC(=0)N[c](: [']:[']	0.46	1 out of 1
FCFP_6	2036120522	O=NH O CI H CI [*]CN1C(=0)SC(=[*])C1 =[*]	0.46	1 out of 1
	Top Feat	tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
FCFP_6	1783756416	0 NH C C C C N C C C N C C C N C C C N C C C C N C	-0.719	0 out of 4
FCFP_6	-1553874037	[,]CN1C(=[,])[,][,]C1 =[,]	-0.45	5 out of 32
FCFP_6	551850122	[*][c]1:[*]:[cH]:[cH]:1	-0.433	8 out of 49

Eval.& Res./Off. Testing &

Res.) Sept. 1997

Eval.& Res./Off. Testing &

Res.) Sept. 1997

O HN O HN

 $C_{21}H_{17}N_3O_4S$

Molecular Weight: 407.44237

ALogP: 2.027 Rotatable Bonds: 5

Acceptors: 5
Donors: 2

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.258
Enrichment: 0.878
Bayesian Score: -1.91
Mahalanobis Distance: 11.3

Mahalanobis Distance p-value: 0.0428

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	Bicalutamide	Acetohexamide	Penicillin
Structure	HO ST. HN NA THE ST. T	HN HN O	O NH OH OH
Actual Endpoint	Carcinogen	Non-Carcinogen	Non-Carcinogen
Predicted Endpoint	Carcinogen	Non-Carcinogen	Non-Carcinogen
Distance	0.554	0.571	0.594
Reference	US FDA (Centre for Drug	US FDA (Centre for Drug	US FDA (Centre for Drug

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Eval.& Res./Off. Testing &

Res.) Sept. 1997

Feature Contribution						
Top features for positive contribution						
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set		
FCFP_6	1175665944	[*]C1=[*][c](:[*]):[c](NC1=O):[cH]:[*]	0.655	7 out of 12		

FCFP_6	2036120522	0 NH O O NH H O O O NH H O O O O O O O O	0.46	1 out of 1
FCFP_6	566058135	=[*] O=NH S NO NH [*]NC(=0)C(=[*])[*]	0.447	17 out of 40
	Top Fea	tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
FCFP_6	1981711554	[*]CC[c]1:[cH]:[cH]:[cH]:[cH]:1	-1.42	0 out of 12
FCFP_6	-497728148	[*]CC[c]1:[cH]:[cH]:[*]:[cH]:1	-0.96	2 out of 26
FCFP_6	-1553874037	[*]CN1C(=[*])[*][*]C1 =[*]	-0.45	5 out of 32

HN O N

C₂₁H₁₆CIF₃N₄O₃

Molecular Weight: 464.82494

ALogP: 4.175 Rotatable Bonds: 6

Acceptors: 4
Donors: 3

Model Prediction

Prediction: Carcinogen

Probability: 0.444
Enrichment: 1.51
Bayesian Score: 4.21
Mahalanobis Distance: 20.3

Mahalanobis Distance p-value: 1.28e-019

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	Glyburide	Glimepride	Fluvastatin		
Structure	HN IO HN IO	NH NH	HO HO		
Actual Endpoint	Non-Carcinogen	Carcinogen	Non-Carcinogen		
Predicted Endpoint	Non-Carcinogen	Carcinogen	Non-Carcinogen		
Distance	0.594	0.599	0.603		
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Contribution						
Top features for positive contribution						
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set		
FCFP_6	71953198	[*]C([*])([*])F	0.612	12 out of 23		

FCFP_6	-1838187238	[*][cH]:[cH]:[cH]:	0.565	4 out of 7
FCFP_6	140656626	[*]\(\int_{[cH]:1}^{\int_{[cH]:n:}}\) [c](:[cH]:1)C(=[*])[*]	0.46	1 out of 1
	Top Feat	ures for negative of	contribution	1
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
FCFP_6	2104062943	[*]Ĉ([*])([*])[c]1:[c H]:[*]:[cH]:[cH]:[c] :1Cl	-1.01	1 out of 17
FCFP_6	551850122	[*][c]1:[*]:[cH]:[c](CI):[cH]:[cH]:1	-0.433	8 out of 49
FCFP_6	71476542	[*]:[c](:[*])Cl	-0.406	10 out of 59

Sunitinib

TOPKAT_Mouse_Male_FDA_None_vs_Carcinogen

O N

C₂₂H₂₇FN₄O₂ Molecular Weight: 398.47378

ALogP: 2.997 Rotatable Bonds: 7

Acceptors: 3
Donors: 3

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.247
Enrichment: 0.839
Bayesian Score: -2.43
Mahalanobis Distance: 14.2

Mahalanobis Distance p-value: 2.87e-006

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	Metoclopramide	Fluvastatin	Torsemide		
Structure	H ₂ N _{th}	HO HO	HN NH NH		
Actual Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen		
Predicted Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen		
Distance	0.590	0.603	0.650		
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Co	ntribution					
Top features for positive contribution						
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set		
FCFP_6	1175665944	[*]C1=[*][c](:[*]):[c](NC1=O):[cH]:[*]	0.655	7 out of 12		

FCFP_6	566058135	[*]NC(=O)C(=[*])[*]	0.447	17 out of 40
FCFP_6	1294255210	[*]C(=[*])N[c](:[*]): [*]	0.441	12 out of 28
	Top Feat	tures for negative of	contribution	1
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
FCFP_6	172450560	[*]CCNC(=0)[c](:[*]): [*]	-0.839	0 out of 5
FCFP_6	1851332093	[*]CN(C[*])CC	-0.582	0 out of 3
FCFP_6	-587569116	[*]CCN([*])[*]	-0.551	7 out of 49

C₂₂H₁₆CIN₃O₅S

Molecular Weight: 469.89753

ALogP: 2.815
Rotatable Bonds: 5

Acceptors: 6
Donors: 2

Model Prediction

Prediction: Single-Carcinogen

Probability: 0.124
Enrichment: 0.41
Bayesian Score: -16.6
Mahalanobis Distance: 12.4

Mahalanobis Distance p-value: 0.000276

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	Bicalutamide	Glimepride	Flunisolide
Structure	HO ST. HN NA THE ST. T	NH SH	HO MAN AND AND AND AND AND AND AND AND AND A
Actual Endpoint	Single-Carcinogen	Single-Carcinogen	Single-Carcinogen
Predicted Endpoint	Single-Carcinogen	Single-Carcinogen	Single-Carcinogen
Distance	0.588	0.743	0.763
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing Res.) Sept. 1997

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. OPS PC5 out of range. Value: 5.3116. Training min, max, SD, explained variance: -3.5268, 3.8048, 1.733, 0.0560.

Feature Contribution Top features for positive contribution						
FCFP_12	451847724	CI NHO SNO NHO [*]C(=CC(=[*])[*])[*]	0.3	10 out of 21		

FCFP_12	436886043	[*]IC=C(IC=[*])/C(=[*])	0.27	7 out of 15
FCFP_12	565998553	CI ONH SNO (*)N1(*)[*]C(=[*)C1= O	0.194	6 out of 14
	Top Fea	tures for negative of	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set
FCFP_12	1294255210	[*]C(=[*])N[c](:[*]):	-1.63	0 out of 12
FCFP_12	1175665944	[*]C1=[*][c](:[*]):[c](NC1=O):[cH]:[*]	-1.22	0 out of 7
FCFP_12	590925877	[*]N[c](:[cH]) ^N);[c H]:[*]	-0.998	1 out of 13

 $C_{22}H_{15}CI_2N_3O_5S$

Molecular Weight: 504.3426

ALogP: 3.479 Rotatable Bonds: 5

Acceptors: 6
Donors: 2

Model Prediction

Prediction: Single-Carcinogen

Probability: 0.142 Enrichment: 0.473 Bayesian Score: -14.3 Mahalanobis Distance: 12.6

Mahalanobis Distance p-value: 0.000217

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	Bicalutamide	Glimepride	Flunisolide		
Structure	HO AND THE F	NH NH	HO AL PROPERTY OF THE PROPERTY		
Actual Endpoint	Single-Carcinogen	Single-Carcinogen	Single-Carcinogen		
Predicted Endpoint	Single-Carcinogen	Single-Carcinogen	Single-Carcinogen		
Distance	0.638	0.728	0.812		
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. OPS PC5 out of range. Value: 5.3016. Training min, max, SD, explained variance: -3.5268, 3.8048, 1.733, 0.0560.

Feature Contribution Top features for positive contribution				
FCFP_12	451847724	CI CI ONH ONH ONN ONN ONN ONN ONN ONN ONN ONN	0.3	10 out of 21

FCFP_12	436886043	CI CI ONH	0.27	7 out of 15
FCFP_12	565998553	CI CI ONH SINO [*]N1[*][*]C(=[*])C1= O	0.194	6 out of 14
	Top Fea	tures for negative	contribution	1
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set
FCFP_12	1294255210	[*]C(=[*])N[c](:[*]):	-1.63	0 out of 12
FCFP_12	1175665944	[*]C1=[*][c](:[*]):[c](NC1=O):[cH]:[*]	-1.22	0 out of 7
FCFP_12	590925877	[*]N[c](:[cH]:[*]):[c H]:[*]	-0.998	1 out of 13

C₁₉H₁₂CIN₃O₄S

Molecular Weight: 413.83428

ALogP: 2.363 Rotatable Bonds: 3

Acceptors: 5 Donors: 2

Model Prediction

Prediction: Single-Carcinogen

Probability: 0.103 Enrichment: 0.342 Bayesian Score: -19.4 Mahalanobis Distance: 12.7

Mahalanobis Distance p-value: 0.000168

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediction. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	Bicalutamide	Flunisolide	Sulfamethazine
Structure	HO ATT HO ATT F	HO ALL THE STATE OF THE STATE O	HN THE SHAPE OF TH
Actual Endpoint	Single-Carcinogen	Single-Carcinogen	Single-Carcinogen
Predicted Endpoint	Single-Carcinogen	Single-Carcinogen	Single-Carcinogen
Distance	0.646	0.707	0.735
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing Res.) Sept. 1997

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

All properties and OPS components are within expected ranges.

Feature Contribution Top features for positive contribution					
FCFP_12	565998553	0 NH O O NH O O O O O O O O O O O O O O O	0.194	6 out of 14	
Ton Factives for magazine contribution					

Top Features for negative contribution

Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set
FCFP_12	1294255210	[*]C(=[*])N[c](:[*]): [*]	-1.63	0 out of 12
FCFP_12	1175665944	[*]C1=[*][c](:[*]):[c](NC1=O):[cH]:[*]	-1.22	0 out of 7
FCFP_12	590925877	[*]N[c](:[cH]:[*]):[c H]:[*]	-0.998	1 out of 13

O HN CI

 $C_{19}H_{11}CI_2N_3O_4S$

Molecular Weight: 448.27933

ALogP: 3.028 Rotatable Bonds: 3

Acceptors: 5
Donors: 2

Model Prediction

Prediction: Single-Carcinogen

Probability: 0.119
Enrichment: 0.395
Bayesian Score: -17.2
Mahalanobis Distance: 13.2

Mahalanobis Distance p-value: 7.44e-005

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

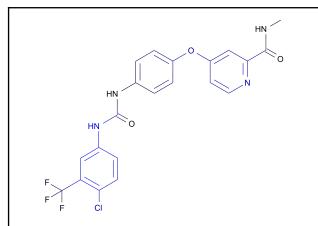
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds Name Bicalutamide Flunisolide Phenolphthalein					
Name	Bicalutamide	Flunisolide	Phenolphthalein		
Structure	HO 31 F F	HO PART TO THE PAR	НО		
Actual Endpoint	Single-Carcinogen	Single-Carcinogen	Multiple-Carcinogen		
Predicted Endpoint	Single-Carcinogen	Single-Carcinogen	Multiple-Carcinogen		
Distance	0.645	0.730	0.753		
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997		

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Feature Co	Feature Contribution				
	Top fe	atures for positive o	ontribution		
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set	
FCFP_12	565998553	0 NH CI NH CI NH CI *]N1[*][*]C(=[*])C1= O	0.194	6 out of 14	

Top Features for negative contribution

Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set
FCFP_12	1294255210	* C(=[*])N[c]:[*]): * C =[*])N[c]:[*]	-1.63	0 out of 12
FCFP_12	1175665944	[*]C1=[*][c](:[*]):[c](NC1=O):[cH]:[*]	-1.22	0 out of 7
FCFP_12	590925877	[*]N[c](:[cH]:[*]):[c H]:[*]	-0.998	1 out of 13

C₂₁H₁₆CIF₃N₄O₃

Molecular Weight: 464.82494

ALogP: 4.175 Rotatable Bonds: 6

Acceptors: 4
Donors: 3

Model Prediction

Prediction: Single-Carcinogen

Probability: 0.139
Enrichment: 0.461
Bayesian Score: -14.7
Mahalanobis Distance: 21.3

Mahalanobis Distance p-value: 4.93e-011

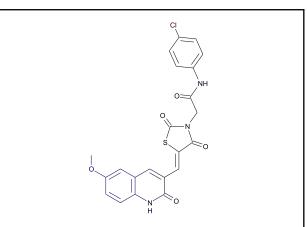
Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.


Name	Glimepride	Bicalutamide	Lansoprazole
Structure	NH NH NH	HO H	N H N N H N N N N N N N N N N N N N N N
Actual Endpoint	Single-Carcinogen	Single-Carcinogen	Single-Carcinogen
Predicted Endpoint	Single-Carcinogen	Single-Carcinogen	Single-Carcinogen
Distance	0.626	0.700	0.866
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Contribution				
	Top fea	atures for positive o	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set
FCFP_12	1499521844	F F CI [*]NC(=0)N[*]	0.39	5 out of 9

FCFP_12	-904785030	[*]:[c](:n:[*])C (=O)NC	0.174	1 out of 2
FCFP_12	-1549103449	FF CI [*]NC(=O)[c](:[*]):[*	0.168	3 out of 7
	Top Fea	tures for negative of	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Multiple- Carcinogen in training set
FCFP_12	1294255210	N	-1.63	0 out of 12
FCFP_12	590925877	[*]N[c](:[cH]:[*]):[c H]:[*]	-0.998	1 out of 13
FCFP_12	-1462709112	F _F C _I [*]C(=[*])[c]1:[cH]:[*]:[cH]:[cH]:n:1	-0.994	0 out of 5

C₂₂H₁₆CIN₃O₅S

Molecular Weight: 469.89753

ALogP: 2.815 Rotatable Bonds: 5

Acceptors: 6 Donors: 2

Model Prediction

Prediction: Mild Probability: 0.735 Enrichment: 1.07 Bayesian Score: -2.83 Mahalanobis Distance: 11.9

Mahalanobis Distance p-value: 0.000106

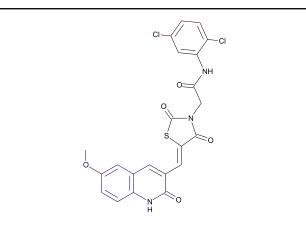
Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.


Structural Similar Compounds					
Name	5-NORBORNENE-2;3- DICARBOXYLIC ACID; 1;4;5;6;7;7- HEXACHLORO-	ANTHRAQUINONE; 1- AMINO-4-HYDROXY-2- PHENOXY-	4;4'-DIAMINO-1;1'- DIANTHRIMIDE		
Structure	OHCI CI CI OH	HO the NH 2	NH 2 HN rth		
Actual Endpoint	Moderate_Severe	Mild	Mild		
Predicted Endpoint	Moderate_Severe	Mild	Mild		
Distance	0.742	0.745	0.751		
Reference	28ZPAK-;92;72	28ZPAK 239;72	28ZPAK-;125;72		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Contribution				
	Top fea	tures for positive o	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set
FCFP_10	-1508180856	[*][c]1:[cH]:[cH]:1	0.329	16 out of 17

FCFP_10	-745491832	CI[c]1:[cH]:[cH]:1	0.304	29 out of 32
FCFP_10	346218766	[*][c]1:[*]:[cH]:[cH]:1	0.197	30 out of 37
		tures for negative of		
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set
FCFP_10	-1977641857	[*]:[cH]:[c](OC):[cH]	-0.78	4 out of 15
FCFP_10	723745966	[*]O[c]1:[cH]:[cH]:[c]2NC(=[*])[*]=C[c]:2:[cH]:1	-0.507	0 out of 1
FCFP_10	-1757681964	[*][c]1:[cH]:[cH]:[c] (OC):[cH]:[c]:1C=[*]	-0.507	0 out of 1

C₂₂H₁₅Cl₂N₃O₅S

Molecular Weight: 504.3426

ALogP: 3.479 Rotatable Bonds: 5

Acceptors: 6 Donors: 2

Model Prediction

Prediction: Mild Probability: 0.74 Enrichment: 1.07 Bayesian Score: -2.74 Mahalanobis Distance: 12.1

Mahalanobis Distance p-value: 4.02e-005

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediction. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	4;4'-DIAMINO-1;1'- DIANTHRIMIDE	5-NORBORNENE-2;3- DICARBOXYLIC ACID; 1;4;5;6;7;7- HEXACHLORO-	ANTHRAQUINONE; 1- AMINO-4-HYDROXY-2- PHENOXY-	
Structure	NH 2 HN Ath	OHCI CI CI OH	HO MINH 2	
Actual Endpoint	Mild	Moderate_Severe	Mild	
Predicted Endpoint	Mild	Moderate_Severe	Mild	
Distance	0.747	0.790	0.793	
Reference	28ZPAK-;125;72	28ZPAK-;92;72	28ZPAK 239;72	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Contribution				
	Top fea	atures for positive o	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set
FCFP_10	-745491832	CI(c)1:[cH]:[*]: [cH]:[cH]:1	0.304	29 out of 32

FCFP_10	346218766	[*][c]1:[*]:[cH] :[c](OC):[cH]:1	0.197	30 out of 37
FCFP_10	562194858	[*][c]1:[cH]:[c]:1CI	0.186	1 out of 1
		ures for negative		
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set
FCFP_10	-1977641857	CI CI ONH ONH ONH ONH ONH ONH ONH [*]:[cH]:[c](OC):[cH] :[*]	-0.78	4 out of 15
FCFP_10	-1757681964	CI CI ON NH ON (*][c]1:[cH]:[cH]:[c] (OC):[cH]:[c]:1C=[*]	-0.507	0 out of 1
FCFP_10	723745966	CI CI ON N N ON (*)O[c]1:[CH]]:[CH]:[C]2NC(=[*])[*]=C[c]:2 :[cH]:1	-0.507	0 out of 1

O HN O CI

C₁₉H₁₂CIN₃O₄S

Molecular Weight: 413.83428

ALogP: 2.363 Rotatable Bonds: 3

Acceptors: 5
Donors: 2

Model Prediction

Prediction: Mild Probability: 0.787 Enrichment: 1.14 Bayesian Score: -1.47 Mahalanobis Distance: 11.2

Mahalanobis Distance p-value: 0.00241

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	1-AMINO-4- BENZOYLAMINO- ANTHRAQUINONE	5-NORBORNENE-2;3- DICARBOXYLIC ACID; 1;4;5;6;7;7- HEXACHLORO-	ANTHRAQUINONE; 1- AMINO-4-HYDROXY-2- PHENOXY-	
Structure	HN PAN TO THE PART OF THE PART	OH CI CI OH	HO state of the NH 2	
Actual Endpoint	Mild	Moderate_Severe	Mild	
Predicted Endpoint	Mild	Moderate_Severe	Mild	
Distance	0.624	0.630	0.645	
Reference	28ZPAK-;124;72	28ZPAK-;92;72	28ZPAK 239;72	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Contribution				
	Top fea	tures for positive o	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set
FCFP_10	-1508180856	O NH O NH O O O O O O O O O O O O O O O	0.329	16 out of 17

FCFP_10	-745491832	CI[c]1:[cH]:[cH]:[*]: [cH]:[cH]:1	0.304	29 out of 32
FCFP_10	-175681259	[*]N[c]1:[cH]:[cH]:[c](CI):[cH]:[cH]:1	0.186	1 out of 1
		ures for negative		
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set
FCFP_10	1011367537	o NH Col N O N Col [*]=C1[*]=C[c]2:[cH]: [*]:[cH]:[cH]:[c]:2N	-0.329	4 out of 9
FCFP_10	-773983804	o NH Color (*)N[c]1:[cH]:[*]:[c] ([*]):[cH]:[cH]:1	-0.294	50 out of 102
FCFP_10	-1698724694	NH Col Col	-0.284	53 out of 107

O HN CI

C₁₉H₁₁Cl₂N₃O₄S

Molecular Weight: 448.27933

ALogP: 3.028 Rotatable Bonds: 3

Acceptors: 5
Donors: 2

Model Prediction

Prediction: Mild Probability: 0.793 Enrichment: 1.15 Bayesian Score: -1.28 Mahalanobis Distance: 11.3

Mahalanobis Distance p-value: 0.00136

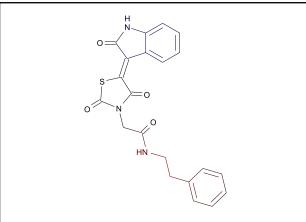
Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.


Structural Similar Compounds				
Name	5-NORBORNENE-2;3- DICARBOXYLIC ACID; 1;4;5;6;7;7- HEXACHLORO-	1-AMINO-4- BENZOYLAMINO- ANTHRAQUINONE	ANTHRAQUINONE; 1- AMINO-4-HYDROXY-2- PHENOXY-	
Structure	OHCI CI CI OH	HN _{AN}		
Actual Endpoint	Moderate_Severe	Mild	Mild	
Predicted Endpoint	Moderate_Severe	Mild	Mild	
Distance	0.652	0.658	0.669	
Reference	28ZPAK-;92;72	28ZPAK-;124;72	28ZPAK 239;72	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Contribution				
	Top fea	atures for positive o	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set
FCFP_10	-745491832	CI[c]1:[cH]:[cH]:[*]: [cH]:[cH]:1	0.304	29 out of 32

FCFP_10	562194858	[*][c]1:[cH]:[c]:1CI	0.186	1 out of 1
FCFP_10	3	O NH CI NH C	0.165	383 out of 491
_		tures for negative		
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set
FCFP_10	1011367537	O ■ NH S O N O CI H CI [*]=C1[*]=C[c]2:[cH]: [*]:[cH]:[cH]:[c]:2N 1	-0.329	4 out of 9
FCFP_10	-773983804	[*]N[c]1:[cH]:[c] ([*]):[cH]:[cH]:1	-0.294	50 out of 102
FCFP_10	-1698724694	* =C1[*][*][cH]:[cH]:[c1]::2	-0.284	53 out of 107

 $C_{21}H_{17}N_3O_4S$

Molecular Weight: 407.44237

ALogP: 2.027 Rotatable Bonds: 5

Acceptors: 5
Donors: 2

Model Prediction

Prediction: Moderate_Severe

Probability: 0.831
Enrichment: 1.21
Bayesian Score: 0.573
Mahalanobis Distance: 11

Mahalanobis Distance p-value: 0.00418

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

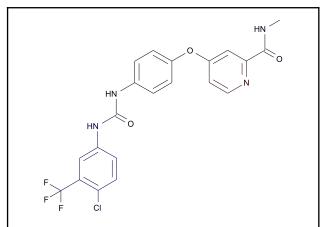
Structural Similar Compounds				
Name	1-AMINO-4- BENZOYLAMINO- ANTHRAQUINONE	5-NORBORNENE-2;3- DICARBOXYLIC ACID; 1;4;5;6;7;7- HEXACHLORO-	ANTHRAQUINONE; 1- AMINO-4-HYDROXY-2- PHENOXY-	
Structure	HN MA	OHCI CI CI OH	HO the state of th	
Actual Endpoint	Mild	Moderate_Severe	Mild	
Predicted Endpoint	Mild	Moderate_Severe	Mild	
Distance	0.637	0.648	0.668	

Model Applicability

Reference

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

28ZPAK-:92:72


28ZPAK 239:72

1. All properties and OPS components are within expected ranges.

28ZPAK-:124:72

Feature Contribution				
	Top fea	atures for positive o	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set
FCFP_10	-497728148	O**NH**********************************	0.356	24 out of 25

FCFP_10	-547731249	o=NH	0.294	3 out of 3
		s -o		
		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
		(*12/0-)2/422(*1		
FCFP_10	-1272709286	[*]CCNC(=O)C[*]	0.285	234 out of 266
1 C1 F _10	-1272709200		0.203	234 Out 01 200
		s to		
		N N		
		500.000.000		
		[*]CCN[*]		
Fin a constint	Top Fea	tures for negative of Feature Structure		
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set
FCFP_10	1011367537	s NH	-0.329	4 out of 9
		[*]=C1[*]=C[c]2:[cH]: [*]:[cH]:[cH]:[c]:2N		
FCFP_10	-773983804	NHA	-0.294	50 out of 102
		[*]N[c]1:[cH]:[*]:[c] ([*]):[cH]:[cH]:1		
TOTR 10	-1698724694	([]).[011].[011].1	-0.284	53 out of 107
FCFP_10	-1698724694	o NH s NO o N	-0.284	53 out of 107
		[*]=C1[*][*][c]2:[cH] :[cH]:[cH]:[cH]:[c]1 :2		

C₂₁H₁₆CIF₃N₄O₃

Molecular Weight: 464.82494

ALogP: 4.175
Rotatable Bonds: 6

Acceptors: 4
Donors: 3

Model Prediction

Prediction: Mild Probability: 0.776

Enrichment: 1.13
Bayesian Score: -1.8

Mahalanobis Distance: 8.95

Mahalanobis Distance p-value: 0.537

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	me 4;4'-DIAMINO-1;1'- 5-NORBORNENE-2;3-DICARBOXYLIC ACID; 1;4;5;6;7;7-HEXACHLORO-		METHANE;TRIS(4- AMINOPHENYL)-	
Structure	NH 2 HN Ath	OHCI CI CI OH	NH ₂ NH ₂ NH ₂	
Actual Endpoint	Mild	Moderate_Severe	Moderate_Severe	
Predicted Endpoint	Mild	Moderate_Severe	Moderate_Severe	
Distance	0.799	0.816	0.827	
Reference	28ZPAK-;125;72	28ZPAK-;92;72	28ZPAK-;73;72	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Co	Feature Contribution				
	Top fea	tures for positive o	ontribution		
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set	
FCFP_10	-1695756380	[*][c]1:[*]:[c]([*]): n:[cH]:[cH]:1	0.285	10 out of 11	

FCFP_10	-124655670	[*]:[cH]:[cH]:n:[*]	0.259	14 out of 16
FCFP_10	-885550502	[*]CNC(=[*])[*]	0.239	54 out of 64
	Top Fea	tures for negative of	ontribution	n
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set
FCFP_10	2104062943	[*]Ē([*])([*])[c]1:[c H]:[*]:[cH]:[cH]:[c] :1CI	-0.745	7 out of 24
FCFP_10	-174293376	[*]N[6] £[cH]:[cH]:[c](Cl):[c](:[cH]:1)C([*])([*])[*]	-0.507	0 out of 1
FCFP_10	-1549103449	[*]NC(=O)[c](:[*]):[*	-0.504	2 out of 6

Sunitinib

TOPKAT_Ocular_Irritancy_Mild_vs_Moderate_Severe

0

 $C_{22}H_{27}FN_4O_2$

Molecular Weight: 398.47378

ALogP: 2.997 Rotatable Bonds: 7

Acceptors: 3
Donors: 3

Model Prediction

Prediction: Moderate_Severe

Probability: 0.893
Enrichment: 1.3
Bayesian Score: 3.24
Mahalanobis Distance: 11.1

Mahalanobis Distance p-value: 0.00304

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	METHANE;TRIS(4- AMINOPHENYL)-	ANTHRAQUINONE; 1-((2- HYDROXYETHYL)AMINO) -4-(METHYLAMINO)-	1-AMINO-4- BENZOYLAMINO- ANTHRAQUINONE		
Structure	NH ₂ NH ₂ NH ₂	OH HN N N H	HN _M ₁ NH ₂		
Actual Endpoint	Moderate_Severe	Mild	Mild		
Predicted Endpoint	Moderate_Severe	Mild	Mild		
Distance	0.713	0.770	0.786		
Reference	28ZPAK-;73;72	28ZPAK 245;72	28ZPAK-;124;72		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP_2 feature: 203707511: [*][c]1:[*]:[nH]:[c]:1C=[*]

Top features for positive contribution Fingerprint Bit/Smiles Feature Structure Score Moderate_Severe in training set FCFP_10 1851332093 0.376 12 out of 12

FCFP_10	-371808660	[*]CN(C[*])CCN[*]	0.338	18 out of 19
FCFP_10	-587569116	[*]CCN([*])[*]	0.335	66 out of 71
	Top Feat	ures for negative	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Moderate_Severe in training set
FCFP_10	-1549103449	[*]NC(=O)[c](:[*]):[*	-0.504	2 out of 6
FCFP_10	1011367537	[*]=C1[*]=C[c]2:[cH]: [*]:[cH]:[cH]:[c]:2N	-0.329	4 out of 9
FCFP_10	-773983804	[*]N[c]1:[cH]:[*]:[c] ([*]):[cH]:[cH]:1	-0.294	50 out of 102

O N O HN

 $C_{21}H_{17}N_3O_4S$

Molecular Weight: 407.44237

ALogP: 2.027 Rotatable Bonds: 5

Acceptors: 5
Donors: 2

Model Prediction

Prediction: Moderate
Probability: 0.557
Enrichment: 0.898

Bayesian Score: -3.1

Mahalanobis Distance: 10.1

Mahalanobis Distance p-value: 0.0339

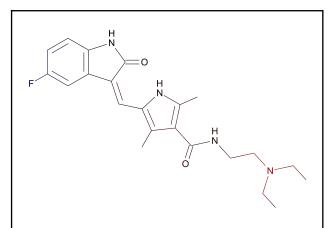
Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.


Structural Similar Compounds					
Name	5-NORBORNENE-2;3- DICARBOXYLIC ACID; 1;4;5;6;7;7- HEXACHLORO-	2- NAPHTHALENESULFONI C ACID;5-AMINO-6- ETHOXY-	PHENOL; 4;4'- SULFONYLDI-		
Structure	OHCI CI CI OH	HO S NH ₂	HO O S O O O O O O O O O O O O O O O O O		
Actual Endpoint	Severe	Moderate	Moderate		
Predicted Endpoint	Severe	Moderate	Moderate		
Distance	0.643	0.754	0.794		
Reference	28ZPAK-;92;72	28ZPAK-;191;72	BIOFX* 601-05501;74		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Contribution							
	Top features for positive contribution						
Fingerprint	Bit/Smiles	Feature Structure	Score	Severe in training set			
SCFP_12	-1640858361	[*]CC[c]1:[cH]:[cH]:[cH]:[cH]:[cH]:1	0.376	4 out of 4			

SCFP_12	-1272709286	S NH O NH H	0.231	24 out of 31
SCFP_12	2102703671	[*]CC[c](:[*]):[*]	0.218	1 out of 1
	Top Feat	ures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Severe in training set
SCFP_12	2005026407	[*]CCNC(=0)C[*]	-0.796	0 out of 2
SCFP_12	1655488245	[*]1[*][c]2:[cH]:[cH] :[cH]:[cH]:[c]:2:N1	-0.796	0 out of 2
SCFP_12	-587569116	ONH ON NH ON	-0.619	11 out of 35

 $C_{22}H_{27}FN_4O_2$

Molecular Weight: 398.47378

ALogP: 2.997 Rotatable Bonds: 7

Acceptors: 3
Donors: 3

Model Prediction

Prediction: Severe
Probability: 0.714
Enrichment: 1.15
Bayesian Score: 0.743
Mahalanobis Distance: 11.7

Mahalanobis Distance p-value: 7.58e-005

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	METHANE;TRIS(4- AMINOPHENYL)-	5-NORBORNENE-2;3- DICARBOXYLIC ACID; 1;4;5;6;7;7- HEXACHLORO-	FLUORENE-9;9- (BIS)PROPYLAMINE	
Structure	NH ₂ NH ₂ NH ₂	OHCI CI CI OH	H ₂ N NH ₂	
Actual Endpoint	Moderate	Severe	Severe	
Predicted Endpoint	Moderate	Severe	Severe	
Distance	0.726	0.793	0.804	
Reference	28ZPAK-;73;72	28ZPAK-;92;72	IHFCAY 6;1;67	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Contribution						
	Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Severe in training set		
SCFP_12	1725890097	[*]CN(C[*])CC	0.449	12 out of 12		

SCFP_12	2088704928	[*]CCN([*])[*]	0.342	110 out of 128
SCFP_12	5	[*]N([*])[*]	0.337	129 out of 151
	Top Feat	ures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Severe in training set
SCFP_12	-587569116	[*]CCN[*]	-0.619	11 out of 35
SCFP_12	-1381307546	[*][c]1:[*]:[cH]:[c](F):[cH]:[cH]:1	-0.345	1 out of 3
SCFP_12	-1794884847	[*]:[c](:[*])F	-0.345	1 out of 3

C₂₂H₁₆CIN₃O₅S

Molecular Weight: 469.89753

ALogP: 2.815 Rotatable Bonds: 5

Acceptors: 6
Donors: 2

Model Prediction

Prediction: Irritant
Probability: 1

Enrichment: 1.18 Bayesian Score: 2.29

Mahalanobis Distance: 11.7

Mahalanobis Distance p-value: 0.000301

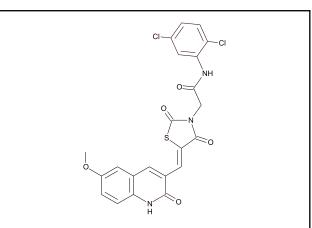
Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.


Structural Similar Compounds					
Name	5-NORBORNENE-2;3- DICARBOXYLIC ACID; 1;4;5;6;7;7- HEXACHLORO-	ANTHRAQUINONE; 1- AMINO-4-HYDROXY-2- PHENOXY-	4;4'-DIAMINO-1;1'- DIANTHRIMIDE		
Structure	OHCI CI CI OH	HO MANUAL	NH 2 HN MH 2		
Actual Endpoint	Irritant	Irritant	Irritant		
Predicted Endpoint	Irritant	Irritant	Irritant		
Distance	0.731	0.732	0.746		
Reference	28ZPAK-;92;72	28ZPAK 239;72	28ZPAK-;125;72		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Contribution							
	Top features for positive contribution						
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set			
FCFP_12	-1508180856	[*][c]1:[cH]:[cH]:[cH]:1	0.2	17 out of 17			

FCFP_12	1175665944	[*]C1=[*][6](;**]):[c](NC1=O):[cH]:[*]	0.198	14 out of 14
FCFP_12	-745491832	CI[c]1:[cH]:[tH]:[*]: [cH]:[cH]:1	0.177	32 out of 33
		tures for negative of		
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	-1060187936	[*]N[c]1:[cH]:[cH]:[c][(OC):[cH]:[c]:1[*]	-0.344	2 out of 4
FCFP_12	-1757681964	[*][c]1:[cH]:[c] (OC):[cH]:[c]:1C=[*]	-0.268	1 out of 2
FCFP_12	451371068	[*]C(=C[c](:[1]):[*])	-0.167	6 out of 9

C₂₂H₁₅Cl₂N₃O₅S

Molecular Weight: 504.3426

ALogP: 3.479 Rotatable Bonds: 5

Acceptors: 6
Donors: 2

Model Prediction

Prediction: Irritant
Probability: 1

Enrichment: 1.18 Bayesian Score: 1.99

Mahalanobis Distance: 11.9

Mahalanobis Distance p-value: 0.000107

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly linaccurate.

Structural Similar Compounds				
Name	4;4'-DIAMINO-1;1'- DIANTHRIMIDE	5-NORBORNENE-2;3- DICARBOXYLIC ACID; 1;4;5;6;7;7- HEXACHLORO-	BENZANILIDE;2';2"'- DITHIOBIS-	
Structure	NH 2 HN rtn	OHCI CI CI OH		
Actual Endpoint	Irritant	Irritant	Non-Irritant	
Predicted Endpoint	Irritant	Irritant	Non-Irritant	
Distance	0.744	0.774	0.775	
Reference	28ZPAK-;125;72	28ZPAK-;92;72	28ZPAK-;173;72	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Contribution				
	Top fea	atures for positive o	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	1175665944	[*]C1=[*][c] ^N [*]):[c](NC1=O):[cH]:[*]	0.198	14 out of 14

FCFP_12	-770645118	[*]N[c]1:[cH]:[c]:(CI)	0.184	7 out of 7
FCFP_12	-745491832	CI(c)1:[cH]:[cH]:1	0.177	32 out of 33
		tures for negative of		
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	-1060187936	CI CI ONH	-0.344	2 out of 4
FCFP_12	-1757681964	CI CI ON H ON H ON S ON (T) (CI ON (T) (CI	-0.268	1 out of 2
FCFP_12	451371068	CI CI ONH ONH SNHO [*]C(=C[c](:[*]):[*])	-0.167	6 out of 9

HN O HN CI

C₁₉H₁₂CIN₃O₄S

Molecular Weight: 413.83428

ALogP: 2.363 Rotatable Bonds: 3

Acceptors: 5
Donors: 2

Model Prediction

Prediction: Irritant

Probability: 1 Enrichment: 1.18 Bayesian Score: 2.71

Mahalanobis Distance: 8.42

Mahalanobis Distance p-value: 0.8

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	1-AMINO-4- BENZOYLAMINO- ANTHRAQUINONE	5-NORBORNENE-2;3- DICARBOXYLIC ACID; 1;4;5;6;7;7- HEXACHLORO-	ANTHRAQUINONE; 1- AMINO-4-HYDROXY-2- PHENOXY-	
Structure	HN nt NH 2	OHCI CI CI OH	HO to NH 2	
Actual Endpoint	Irritant	Irritant	Irritant	
Predicted Endpoint	Irritant	Irritant	Irritant	
Distance	0.621	0.628	0.635	
Reference	28ZPAK-;124;72	28ZPAK-;92;72	28ZPAK 239;72	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Contribution				
	Top fea	tures for positive o	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	-1508180856	O=NH S O O O O O O O O O O O O O O O O O O O	0.2	17 out of 17

FCFP_12	1175665944	[*]C1=[*][c](:[*]):[c](NC1=O):[cH]:[*]	0.198	14 out of 14
FCFP_12	-745491832	Cl[c]1:[cH]:[cH]:[*]: [cH]:[cH]:1	0.177	32 out of 33
	Top Feat	ures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	-1698724694	ONH ON O ON O ON O ON O O I*]=C1[*][*][o]2:[oH] :[cH]:[cH]:[cH]: :2	-0.0964	107 out of 146
FCFP_12	565998553	S NH C C C C C C C C C C C C C C C C C C	-0.0662	198 out of 262
FCFP_12	-1678275541	"]C(=C1C(=["])["]["] :[c]1:["])["]	-0.0561	3 out of 4

H N O CI

 $C_{19}H_{11}CI_{2}N_{3}O_{4}S$

Molecular Weight: 448.27933

ALogP: 3.028 Rotatable Bonds: 3

Acceptors: 5
Donors: 2

Model Prediction

Prediction: Irritant
Probability: 1

Enrichment: 1.18 Bayesian Score: 2.4

Mahalanobis Distance: 8.64

Mahalanobis Distance p-value: 0.699

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	5-NORBORNENE-2;3- DICARBOXYLIC ACID; 1;4;5;6;7;7- HEXACHLORO-	1-AMINO-4- BENZOYLAMINO- ANTHRAQUINONE	ANTHRAQUINONE; 1- AMINO-4-HYDROXY-2- PHENOXY-	
Structure	OHCI CI CI OH	HN MH 2	HO the hold of the	
Actual Endpoint	Irritant	Irritant	Irritant	
Predicted Endpoint	Irritant	Irritant	Irritant	
Distance	0.646	0.652	0.660	
Reference	28ZPAK-;92;72	28ZPAK-;124;72	28ZPAK 239;72	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Co	Feature Contribution					
	Top fea	atures for positive o	ontribution			
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set		
FCFP_12	1175665944	[*]C1=[*][c](:[*]):[c]](NC1=O):[cH]:[*]	0.198	14 out of 14		

FCFP_12	-770645118	[*]N[c]1:[cH]:[c](CI) :[cH]:[*]:[c]:[*]	0.184	7 out of 7
FCFP_12	-745491832	CI[c]1:[cH]:[cH]:[*]: [cH]:[cH]:1	0.177	32 out of 33
	Top Fea	tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	-1698724694	[*]=C1[*][*][cH]:[cH]:[c1 :[cH]:[cH]:[cH]:[c1	-0.0964	107 out of 146
FCFP_12	565998553	0 NH O CI N O CI	-0.0662	198 out of 262
FCFP_12	-1678275541	ONH ONH ONH ONH ONH OCI HCI (")C(=C1C(=["])("](") :(c)1:[")("]	-0.0561	3 out of 4

O HN O HN

 $C_{21}H_{17}N_3O_4S$

Molecular Weight: 407.44237

ALogP: 2.027 Rotatable Bonds: 5

Acceptors: 5
Donors: 2

Model Prediction

Prediction: Irritant
Probability: 1

Enrichment: 1.18
Bayesian Score: 2.12

Mahalanobis Distance: 8.94

Mahalanobis Distance p-value: 0.546

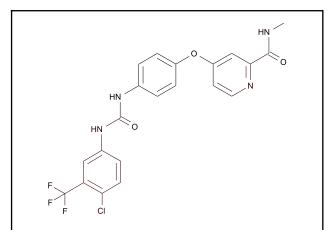
Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.


Structural Similar Compounds				
Name	1-AMINO-4- BENZOYLAMINO- ANTHRAQUINONE	5-NORBORNENE-2;3- DICARBOXYLIC ACID; 1;4;5;6;7;7- HEXACHLORO-	ANTHRAQUINONE; 1- AMINO-4-HYDROXY-2- PHENOXY-	
Structure	HN eth NH 2	OHCI CI CI OH	HO the Policy of	
Actual Endpoint	Irritant	Irritant	Irritant	
Predicted Endpoint	Irritant	Irritant	Irritant	
Distance	0.629	0.641	0.653	
Reference	28ZPAK-;124;72	28ZPAK-;92;72	28ZPAK 239;72	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Contribution				
	Top fea	atures for positive o	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	1175665944	[*]C1=[*][c](:[*]):[c](NC1=O):[cH]:[*]	0.198	14 out of 14

FCFP_12	-885550502	O NH	0.18	64 out of 66
FCFP_12	436915834	[']\C=C\1/S['][']C1=[']	0.167	4 out of 4
	Top Fea	tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	1981711554	[*]CC[c]1:[cH]:[cH]:[cH]:[cH]:[cH]:1	-0.103	5 out of 7
FCFP_12	-1698724694	[*]=C1[*][*][c]2:[cH] :[cH]:[cH]:[c]1 :2	-0.0964	107 out of 146
FCFP_12	565998553	* N1[*][*]C(=[*])C1=	-0.0662	198 out of 262

 $C_{21}H_{16}CIF_3N_4O_3$

Molecular Weight: 464.82494

ALogP: 4.175 Rotatable Bonds: 6

Acceptors: 4
Donors: 3

Model Prediction

Prediction: Irritant

Probability: 1 Enrichment: 1.18 Bayesian Score: 3.04

Mahalanobis Distance: 6.28

Mahalanobis Distance p-value: 1

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	BENZANILIDE;2';2'''- DITHIOBIS-	4;4'-DIAMINO-1;1'- DIANTHRIMIDE	5-NORBORNENE-2;3-DICARBOXYLIC ACID; 1;4;5;6;7;7-HEXACHLORO-	
Structure	H H N H H	NH 2 NH 2 NH NH 2		
Actual Endpoint	Non-Irritant	Irritant	Irritant	
Predicted Endpoint	Non-Irritant	Irritant	Irritant	
Distance	0.743	0.791	0.801	
Reference	28ZPAK-;173;72	28ZPAK-;125;72	28ZPAK-;92;72	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Contribution				
Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	1747237384	[*][c](:[*]):n:[cH]:[*]	0.208	44 out of 44

FCFP_12	-124655670	[*]:[cH]:[cH]:n:[*]	0.2	16 out of 16
FCFP_12	-1539132615	F _F C _I [*]C(=[*])[c](:[cH]:[*]):n:[*]	0.197	13 out of 13
		ures for negative of		
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	-747629521	[*]N[6] f*[cH]:[cH]:[c](O[c](:[*]):[*]):[c H]:[cH]:1	-0.268	1 out of 2
FCFP_12	702861189	[*]N [] GcH]:[cH]:[c](O[c]2:[cH]:[cH]:[*]:[c]([*]):[cH]:2):[cH]:[cH]:1	-0.268	1 out of 2
FCFP_12	-1597477966	[*]:[dH]flo](O[c](:[c H]:[*]):[cH]:[*]):[c H]:[*]	0	9 out of 11

Irritant

0.773

28ZPAK-;143;72

HZ HZ O

 $C_{22}H_{27}FN_4O_2$

Molecular Weight: 398.47378

ALogP: 2.997 Rotatable Bonds: 7

Acceptors: 3
Donors: 3

Model Prediction

Prediction: Irritant

Probability: 1 Enrichment: 1.18 Bayesian Score: 4.17

Mahalanobis Distance: 8.04

Mahalanobis Distance p-value: 0.916

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a

cutoff.
Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	METHANE;TRIS(4- AMINOPHENYL)-	ANTHRAQUINONE; 1-((2- HYDROXYETHYL)AMINO) -4-(METHYLAMINO)-	PHENOL;4-(3- CARBAZOLYLAMINO)-
Structure	NH ₂ NH ₂ NH ₂	OH HN 10 H	H NNH NH
Actual Endpoint	Irritant	Irritant	Irritant

Model Applicability

Predicted Endpoint

Distance

Reference

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Irritant

0.757

28ZPAK 245;72

1. All properties and OPS components are within expected ranges.

Irritant

0.704

28ZPAK-;73;72

2. Unknown FCFP_2 feature: 203707511: [*][c]1:[*]:[*]:[nH]:[c]:1C=[*]

Feature Contribution Top features for positive contribution				
				Fingerprint
FCFP_12	1175665944	[*]C1=[*][c](:[*]):[c](NC1=O):[cH]:[*]	0.198	14 out of 14

FCFP_12	1851332093	[*]CN(C[*])CC	0.195	12 out of 12
FCFP_12	-885550502	[*]CNC(=[*])[*]	0.18	64 out of 66
	Top Feat	tures for negative	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	451371068	[*]C(=C[c](:[*]):[*]) [*]	-0.167	6 out of 9
FCFP_12	-1678275541	[*]C(=C1C(=[*])[*][*] :[o]1:[*])[*]	-0.0561	3 out of 4
FCFP_12	0	[*]C=[*]	0	1184 out of 1397

Eval.& Res./Off. Testing &

Res.) Sept. 1997

Eval.& Res./Off. Testing &

Res.) Sept. 1997

DE TO THE TOTAL PROPERTY OF THE TOTAL PROPER

 $C_{22}H_{16}CIN_3O_5S$

Molecular Weight: 469.89753

ALogP: 2.815 Rotatable Bonds: 5

Acceptors: 6
Donors: 2

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.21 Enrichment: 0.652 Bayesian Score: -6.08 Mahalanobis Distance: 11.2

Mahalanobis Distance p-value: 0.0452

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	Bicalutamide	Carbenicillin	Polythiazide
Structure	HO AT THE REPORT OF THE PERSON	O NH O O H	H H NH 2
Actual Endpoint	Carcinogen	Non-Carcinogen	Non-Carcinogen
Predicted Endpoint	Carcinogen	Non-Carcinogen	Non-Carcinogen
Distance	0.599	0.641	0.644
Reference	US FDA (Centre for Drug	US FDA (Centre for Drug	US FDA (Centre for Drug

Model Applicability

Feature Contribution

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 2131425032: [*]\C=C(\C=[*])/C(=[*])[*]

Eval.& Res./Off. Testing &

Res.) Sept. 1997

- 3. Unknown ECFP_2 feature: 1182722866: [*]C(=CC(=[*])[*])[*]
- 4. Unknown ECFP_2 feature: 1000552169: [*]\C=C\1/S[*][*]C1=[*]
- 5. Unknown ECFP_2 feature: 190445529: [*]N1[*][*]SC1=O

Top features for positive contribution Fingerprint Bit/Smiles Feature Structure Score Carcinogen in training set ECFP_12 -177077903 0.529 6 out of 10

ECFP_12	-1236483485	[*]C(=[*])N[c](:[*]):	0.46	9 out of 17
ECFP_12	888054369	[*]N[c]1:[cH] [*] [^c]:[c] ([*]):[cH]:[cH]:1	0.454	5 out of 9
	Top Feat	tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
ECFP_12	1335833675	[*]N[c](:[cH]:[*]):[c]([*]):[*]	-1.25	0 out of 8
ECFP_12	99947387	C O H O NH O NH O NH O NH O O O O O O O O O O O O O O	-0.817	8 out of 62
ECFP_12	1854732111	[*][c]1:[*]:[cH]:[c](CI):[cH]:[cH]:1	-0.816	4 out of 33

Res.) Sept. 1997

 $C_{22}H_{15}CI_{2}N_{3}O_{5}S$

Molecular Weight: 504.3426

ALogP: 3.479 Rotatable Bonds: 5

Acceptors: 6
Donors: 2

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.206
Enrichment: 0.639
Bayesian Score: -6.52
Mahalanobis Distance: 11.4

Mahalanobis Distance p-value: 0.0271

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	Carbenicillin	Bicalutamide	Glimepride		
Structure	OH OH	HO H	NH NH		
Actual Endpoint	Non-Carcinogen	Carcinogen	Non-Carcinogen		
Predicted Endpoint	Non-Carcinogen	Carcinogen	Non-Carcinogen		
Distance	0.620	0.651	0.687		
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing &	US FDA (Centre for Drug Eval.& Res./Off. Testing &	US FDA (Centre for Drug Eval.& Res./Off. Testing &		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Res.) Sept. 1997

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 2131425032: [*]\C=C(\C=[*])/C(=[*])[*]
- 3. Unknown ECFP_2 feature: 1182722866: [*]C(=CC(=[*])[*])[*]
- 4. Unknown ECFP_2 feature: 1000552169: [*]\C=C\1/S[*][*]C1=[*]
- Unknown ECFP_2 feature: 190445529: [*]N1[*][*]SC1=O

Res.) Sept. 1997

Top features for positive contribution						
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set		
ECFP_12	-1236483485	CI CI ON NH S NO [*]C(=[*])N[c](:[*]): [*]	0.46	9 out of 17		

ECFP_12	-1925046727	CI CI ON H ON H ON NH ON O (*) C = [*]	0.407	16 out of 33
ECFP_12	1336666212	[*][c](:[*]):[c](C=[*	0.288	2 out of 4
	Top Feat	ures for negative of	contribution	1
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
ECFP_12	1335833675	CI CI ON H	-1.25	0 out of 8
ECFP_12	1335691903	[*][c](:[*]):[c](CI): [cH]:[*]	-1.11	2 out of 26
ECFP_12	99947387	CI CI ON H SNO [*]:[c](:[*])CI	-0.817	8 out of 62

C₁₉H₁₂CIN₃O₄S

Molecular Weight: 413.83428

ALogP: 2.363 Rotatable Bonds: 3

Acceptors: 5
Donors: 2

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.187
Enrichment: 0.581
Bayesian Score: -9.02
Mahalanobis Distance: 8.83

Mahalanobis Distance p-value: 0.872

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	Indapamide	Metolazone	Doxefazepam
Structure	H ₂ N _O O	H ₂ N Cl	OH OH
Actual Endpoint	Non-Carcinogen	Non-Carcinogen	Carcinogen
Predicted Endpoint	Non-Carcinogen	Non-Carcinogen	Carcinogen
Distance	0.594	0.601	0.651
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: -631778390: [*]C(=C1S[*][*]C1=[*])[*]
- 3. Unknown ECFP_2 feature: 190445529: [*]N1[*][*]SC1=O

i catale co	iid ibadioii					
Top features for positive contribution						
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set		
ECFP_12	-177077903	[*]N[c](:[cH]:[*]):[c H]:[*]	0.529	6 out of 10		

ECFP_12	-1236483485	O=NH ONH ONH ONH ONH ONH ONH ONH ONH ONH O	0.46	9 out of 17
ECFP_12	888054369	[*]N[c]1:[cH]:[*]:[c] ([*]):[cH]:[cH]:1	0.454	5 out of 9
	Top Feat	tures for negative of		
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
ECFP_12	1335833675	[*]N[c](:[cH]:[*]):[c]([*]):[*]	-1.25	0 out of 8
ECFP_12	99947387	O H O O O O O O O O O O O O O O O O O O	-0.817	8 out of 62
ECFP_12	1854732111	[*][c]1:[*]:[cH]:[cH]:1	-0.816	4 out of 33

C₁₉H₁₁Cl₂N₃O₄S

Molecular Weight: 448.27933

ALogP: 3.028 Rotatable Bonds: 3

Acceptors: 5 Donors: 2

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.183 Enrichment: 0.568 Bayesian Score: -9.76 Mahalanobis Distance: 8.95

Mahalanobis Distance p-value: 0.836

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	Indapamide	Metolazone	Bicalutamide
Structure	N H ₂ N	H ₂ N S 1 NH	O OH

Actual Endpoint	Non-Carcinogen	Non-Carcinogen	Carcinogen
Predicted Endpoint	Non-Carcinogen	Non-Carcinogen	Carcinogen
Distance	0.629	0.641	0.662
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability

Structural Similar Compounds

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- All properties and OPS components are within expected ranges. 1.
- Unknown ECFP_2 feature: -631778390: [*]C(=C1S[*][*]C1=[*])[*]
- Unknown ECFP 2 feature: 190445529: [*]N1[*][*]SC1=O

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set	
ECFP_12	-1236483485	* C(=[*])N[c](:[*]):	0.46	9 out of 17	

ECFP_12	2106656448	S C C C C C C C C C C C C C C C C C C C	0.141	30 out of 83
ECFP_12	1335108269	[*]C(=O)[*]	0.119	4 out of 11
	Top Feat	tures for negative of	contribution	n
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
ECFP_12	1335833675	[*]N[c](:[cH]:[*]):[c]([*]):[*]	-1.25	0 out of 8
ECFP_12	1335691903	[*][c](:[*]):[c](CI): [cH]:[*]	-1.11	2 out of 26
ECFP_12	99947387	NH CI S NO CI NH CI [*]:[c](:[*])CI	-0.817	8 out of 62

S N O HN

 $C_{21}H_{17}N_3O_4S$

Molecular Weight: 407.44237

ALogP: 2.027 Rotatable Bonds: 5

Acceptors: 5
Donors: 2

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.177
Enrichment: 0.551
Bayesian Score: -10.9
Mahalanobis Distance: 9.75

Mahalanobis Distance p-value: 0.486

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Actual Endpoint	Carcinogen	Non-Carcinogen	Non-Carcinogen
Predicted Endpoint	Carcinogen	Non-Carcinogen	Non-Carcinogen
Distance	0.598	0.601	0.629
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability

Structural Similar Compounds

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: -631778390: [*]C(=C1S[*][*]C1=[*])[*]
- 3. Unknown ECFP_2 feature: 190445529: [*]N1[*][*]SC1=O

i cataro co					
Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set	
ECFP_12	-1650219925	[*]C[c]1:[cH]:[cH]:[cH]:[cH]:[cH]:[cH]:[cH]:[cH]	0.208	6 out of 15	

ECFP_12	1095683433	[*]C[c]1:[cH]:[cH]:[cH]:1	0.154	6 out of 16
ECFP_12	2106656448	O=NH S O O NH H [*]C(=O)[*]	0.141	30 out of 83
	Top Fea	tures for negative of	contribution	1
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
ECFP_12	1335833675	[*]N[c](:[cH]:[*]):[c]([*]):[*]	-1.25	0 out of 8
ECFP_12	497523368	O=NH ONN ONN ONN H [*]CNC(=[*])[*]	-0.989	1 out of 14
ECFP_12	-104952638	[*]C(=[*])NCC[c]1:[cH]:[cH]:[*]:[cH]:[:1]	-0.811	0 out of 4

HN O F F F F

C₂₁H₁₆CIF₃N₄O₃

Molecular Weight: 464.82494

ALogP: 4.175 Rotatable Bonds: 6

Acceptors: 4
Donors: 3

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.236 Enrichment: 0.734 Bayesian Score: -3.76 Mahalanobis Distance: 12.2

Mahalanobis Distance p-value: 0.00229

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	ilar Compounds Glimepride	Glyburide	Fluvastatin	
Structure	NH NH	HN TO HN TO HN TO THE T	HO HO	
Actual Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen	
Predicted Endpoint	Non-Carcinogen	Non-Carcinogen	Non-Carcinogen	
Distance	0.620	0.635	0.635	
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing &	US FDA (Centre for Drug Eval.& Res./Off. Testing &	US FDA (Centre for Drug Eval.& Res./Off. Testing &	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Res.) Sept. 1997

Res.) Sept. 1997

1. All properties and OPS components are within expected ranges.

Res.) Sept. 1997

Feature Contribution						
	Top fea	atures for positive o	ontribution			
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set		
ECFP_12	-970385855	[*]N[c]:[cH]:[*]:[c] ([*]):[c](:[cH]:1)C([*])([*])[*]	0.613	2 out of 2		

ECFP_12	-177077903	[*]N[c](:[cH]:[*]):[c H]:[*]	0.529	6 out of 10
ECFP_12	-1236483485	O	0.46	9 out of 17
	Top Featur	es for negative c	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
ECFP_12	1335691903	[*][c](:[*]):[c](CI): [cH]:[*]	-1.11	2 out of 26
ECFP_12	99947387	[*]:[c](:[*])CI	-0.817	8 out of 62
ECFP_12	1413420509	[*]C(=[*])[c](:[cH]:[*]):n:[*]	-0.661	0 out of 3

Sunitinib

TOPKAT_Rat_Female_FDA_None_vs_Carcinogen

H N O H N O O N N O N O N O N O N O N O	H N O H N O N O N O N O N O N O N O N O
---	---

 $C_{22}H_{27}FN_4O_2$

Molecular Weight: 398.47378

ALogP: 2.997 Rotatable Bonds: 7

Acceptors: 3
Donors: 3

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.188
Enrichment: 0.584
Bayesian Score: -8.84
Mahalanobis Distance: 11.3

Mahalanobis Distance p-value: 0.0371

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

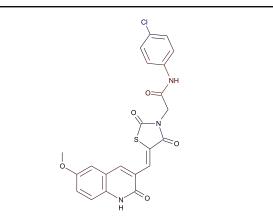
Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name Structural Simi	ilar Compounds Fluvastatin	Metoclopramide	Torsemide
Structure	HO HO	H ₂ N ₁₁ , NH	HN NH NH
Actual Endpoint	Non-Carcinogen	Non-Carcinogen	Carcinogen
Predicted Endpoint	Non-Carcinogen	Non-Carcinogen	Carcinogen
Distance	0.629	0.681	0.684
Reference US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997		US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 980271847: [*][c]1:[*]:[nH]:[c]:1C=[*]
- 3. Unknown ECFP_2 feature: 1791989338: [*][c]1:[*]:[nH]:[c]:1C
- 4. Unknown ECFP_2 feature: 1182722866: [*]C(=CC(=[*])[*])[*]

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set	
ECFP_12	558201926	[*][c]1:[*]:[c]([*]):[nH]:1	0.539	5 out of 8	

ECFP_12	-1658273810	[*]C(=[*])[c]1:[c]([*]):[*]:[*]:[*]:[*]:[*]	0.421	1 out of 1
ECFP_12	-152683720	[*]:[nH]:[*]	0.412	9 out of 18
	Top Featu	res for negative of	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
ECFP_12	1335833675	[*]N[c](:[cH]:[*]):[c]([*]):[*]	-1.25	0 out of 8
ECFP_12	497523368	[*]CNC(=[*])[*]	-0.989	1 out of 14
ECFP_12	2083628577	[*]N[c]1:[cH]:[cH]:[c]]([*]):[*]:[c]:1[*]	-0.811	0 out of 4

C₂₂H₁₆CIN₃O₅S

Molecular Weight: 469.89753

ALogP: 2.815
Rotatable Bonds: 5

Acceptors: 6
Donors: 2

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.341 Enrichment: 1.02

Bayesian Score: -0.539 Mahalanobis Distance: 12

Mahalanobis Distance p-value: 0.0309

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar	Compounds
--------------------	-----------

Name	Bicalutamide	Carbenicillin	Polythiazide
Structure	HO HN THE F	O NH	Classification of the state of
Actual Endpoint	Carcinogen	Non-Carcinogen	Non-Carcinogen
Predicted Endpoint	Carcinogen	Non-Carcinogen	Non-Carcinogen
Distance	0.572	0.627	0.632
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. OPS PC7 out of range. Value: 5.8284. Training min, max, SD, explained variance: -5.7463, 5.4773, 2.041, 0.0388.

Fingerprint	Bit/Smiles	atures for positive of Feature Structure	Score	Carcinogen in
				training set
SCFP_6	-347048986	C1 ON NHO NHO [*]C(=[*])N[G]1:[GH]: [cH]:[GH]:[CH]:1	0.615	5 out of 7

SCFP_6	814408713	CI NHO [*]CC(=0)N[c]1:[cH]:[cH]:[cH]:[cH]:[cH]:[cH]:[cH]:[cH]	0.603	2 out of 2
SCFP_6	2097618059	CI NHO [*]CC(=0)N[c](:[cH]:["]):[cH]:[*]	0.437	7 out of 13
		tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
SCFP_6	399659969	CI O N NHO [*]CN1C(=[*])[*][*]C1 =[*]	-0.578	1 out of 8
SCFP_6	2102703671	[*]C1=[*][c](:[*]):[c](NC1=O):[cH]:[*]	-0.496	0 out of 2
SCFP_6	1905487031	[*][c]1:[cH]:[cH]:1	-0.48	2 out of 12

Eval.& Res./Off. Testing &

Res.) Sept. 1997

Eval.& Res./Off. Testing &

Res.) Sept. 1997

 $C_{22}H_{15}CI_2N_3O_5S$

Molecular Weight: 504.3426

ALogP: 3.479 Rotatable Bonds: 5

Acceptors: 6
Donors: 2

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.297
Enrichment: 0.89
Bayesian Score: -2.23
Mahalanobis Distance: 12.1

Mahalanobis Distance p-value: 0.0246

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a

a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Sim	ilar Compounds		
Name	Carbenicillin	Bicalutamide	Moricizine
Structure	O NH O O OH	HO HN ALL	N N N N N N N N N N N N N N N N N N N
Actual Endpoint	Non-Carcinogen	Carcinogen	Carcinogen
Predicted Endpoint	Non-Carcinogen	Carcinogen	Carcinogen
Distance	0.607	0.625	0.672
Reference	US FDA (Centre for Drug	US FDA (Centre for Drug	US FDA (Centre for Drug

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. OPS PC7 out of range. Value: 5.8042. Training min, max, SD, explained variance: -5.7463, 5.4773, 2.041, 0.0388.

Eval.& Res./Off. Testing &

Res.) Sept. 1997

Feature Contribution					
	Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set	
SCFP_6	2097618059	CI CI O NH S N O NH O NH	0.437	7 out of 13	

SCFP_6	-1971137145	CI CI ONH ONH SNO [*]C(=C[c](:[*]):[*]) [*]	0.434	5 out of 9
SCFP_6	392579710	CI CI CI CI N S N O [*]O[c]14cH H[8]:[c] ([*]):[c](C=[*]):[cH]:1	0.425	2 out of 3
		tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
SCFP_6	399659969	CI CI NH NHO ("]CN1C(=["])["]["]C1 =["]	-0.578	1 out of 8
SCFP_6	2102703671	CI CI ONH ONH (*)C1=[*][c](*[*]):[c](NC1=O):[cH]:[*]	-0.496	0 out of 2
SCFP_6	-345817764	CI CI ON N ON	-0.496	0 out of 2

Carcinogen

Carcinogen

Res.) Sept. 1997

US FDA (Centre for Drug

Eval.& Res./Off. Testing &

0.605

O HN O CI

 $C_{19}H_{12}CIN_3O_4S$

Molecular Weight: 413.83428

ALogP: 2.363 Rotatable Bonds: 3

Acceptors: 5
Donors: 2

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.312 Enrichment: 0.935 Bayesian Score: -1.62 Mahalanobis Distance: 9.5

Mahalanobis Distance p-value: 0.845

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	Indapamide	Metolazone	Doxefazepam
Structure	HN 12 S	H ₂ N S th	N N

Non-Carcinogen

Non-Carcinogen

Res.) Sept. 1997

US FDA (Centre for Drug

Eval.& Res./Off. Testing &

0.571

Model Applicability

Actual Endpoint

Distance

Reference

Predicted Endpoint

Structural Similar Compounds

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

US FDA (Centre for Drug

Eval.& Res./Off. Testing &

Non-Carcinogen

Non-Carcinogen

Res.) Sept. 1997

0.564

Feature Contribution					
	Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set	
SCFP_6	-347048986	NH C C C C C C C	0.615	5 out of 7	

SCFP_6	814408713	0 NH CI S O NH CI [*]CC(=0)N[c]1:[cH]:[cH]:[c]([*]):[cH]:[c H]:1	0.603	2 out of 2
SCFP_6	2097618059	']CC(=O)N[e](:[eH]:[']):[eH]:[']	0.437	7 out of 13
	Top Fea	tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
SCFP_6	1798334293	[*]C(=C1C(=[*])[*][*] O = NH	-0.674	0 out of 3
SCFP_6	399659969	O NH CI	-0.578	1 out of 8
SCFP_6	2102703671	[*]C1=[*][c](:[*]):[c](NC1=O):[cH]:[*]	-0.496	0 out of 2

O N O CI

 $C_{19}H_{11}CI_{2}N_{3}O_{4}S$

Molecular Weight: 448.27933

ALogP: 3.028 Rotatable Bonds: 3

Acceptors: 5
Donors: 2

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.28 Enrichment: 0.838 Bayesian Score: -2.98 Mahalanobis Distance: 9.53

Mahalanobis Distance p-value: 0.835

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	Indapamide	Metolazone	Bicalutamide
Structure	HN H ₂ N S	O CI NH	HO HO JANA

Actual Endpoint	Non-Carcinogen	Non-Carcinogen	Carcinogen
Predicted Endpoint	Non-Carcinogen	Non-Carcinogen	Carcinogen
Distance	0.611	0.620	0.637
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability

Structural Similar Compounds

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

SCFP_6	1655488245	NH O NH O O O O O O O O O	0.252	4 out of 9
SCFP_6	-1375926917	[*]N[c]1:[cH]:[cH]:1	0.251	11 out of 26
	Top Feat	tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
SCFP_6	1798334293	O NH O CI N O CI H CI [']C(=C1C(=['])[']['] :[c]1:['](']	-0.674	0 out of 3
SCFP_6	399659969	ONH S O CI H CI ["]CN1C(=["])["]["]C1 =["]	-0.578	1 out of 8
SCFP_6	2102703671	[*]C1=[*][c](:[*]):[c](NC1=O):[cH]:[*]	-0.496	0 out of 2

Eval.& Res./Off. Testing &

Res.) Sept. 1997

Eval.& Res./Off. Testing &

Res.) Sept. 1997

S N O HN

 $|C_{21}H_{17}N_3O_4S|$

Molecular Weight: 407.44237

ALogP: 2.027 Rotatable Bonds: 5

Acceptors: 5
Donors: 2

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.186
Enrichment: 0.556
Bayesian Score: -8.37
Mahalanobis Distance: 13.3

Mahalanobis Distance p-value: 0.000591

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds Name Bicalutamide Acetohexamide Indapamide					
Structure	HN ALL	HN CONTRACTOR OF THE CONTRACTO	HN 12 NO		
Actual Endpoint	Carcinogen	Non-Carcinogen	Non-Carcinogen		
Predicted Endpoint	Carcinogen	Non-Carcinogen	Non-Carcinogen		
Distance	0.567	0.574	0.615		
Reference	US FDA (Centre for Drug	US FDA (Centre for Drug	US FDA (Centre for Drug		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Eval.& Res./Off. Testing &

Res.) Sept. 1997

1. OPS PC29 out of range. Value: -3.5892. Training min, max, SD, explained variance: -3.1746, 3.7825, 1.007, 0.0095.

Feature Contribution				
	Top fea	ntures for positive o	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
SCFP_6	1655488245	[*]1[*][c]2:[cH]:[cH] :[cH]:[cH]:[c]:2N1	0.252	4 out of 9

SCFP_6	-1375926917	[*]N[c]1:[cH]:[*]:[c] ([*]):[cH]:[cH]:1	0.251	11 out of 26
SCFP_6	1631845520	[*]C(=[*])N[c](:[*]):	0.216	9 out of 22
		res for negative of		
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
SCFP_6	-1211866396	[*]CC[c]1:[cH]:[cH]:[*]:[cH]:[cH]:1	-1.1	2 out of 25
SCFP_6	-1849236245	[*]NCC[c](:[cH]:[*]): [cH]:[*]	-0.825	0 out of 4
SCFP_6	-1640858361	[*]CC[c]1:[cH]:[cH]:[cH]:[cH]:[cH]:1	-0.817	1 out of 11

C₂₁H₁₆CIF₃N₄O₃

Molecular Weight: 464.82494

ALogP: 4.175 Rotatable Bonds: 6

Acceptors: 4
Donors: 3

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.293 Enrichment: 0.878 Bayesian Score: -2.4

Mahalanobis Distance: 17.6

Mahalanobis Distance p-value: 1.1e-012

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	Glyburide	Glimepride	Fluvastatin		
Structure	H	NH NH			

Actual Endpoint	Non-Carcinogen	Non-Carcinogen	Carcinogen
Predicted Endpoint	Non-Carcinogen	Non-Carcinogen	Carcinogen
Distance	0.593	0.600	0.615
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Contribution				
	Top fea	atures for positive o	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
SCFP_6	-347048986	[*]C(=[*])N[c]1:[cH]: [cH]:[*]:[cH]:[cH]:1	0.615	5 out of 7

SCFP_6	-754059116	[*]O[c]1:[cH]:[*]:n:[cH]:[cH]:1	0.415	1 out of 1
SCFP_6	-531283893	[*]O[c]f:[cH]:[c](NC(=[*])[*]):[cH]: [cH]:1	0.273	2 out of 4
	Top Fea	tures for negative of	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
SCFP_6	-827073191	N	-0.674	0 out of 3
SCFP_6	-975241316	[*][d]1;[bH]:[cH]:[c] (O[c](:[cH]:[*]):[cH]:[*]):[cH]:[cH]:1	-0.496	0 out of 2
SCFP_6	-488587948	[*]:[e](q*])O[c]1:[c H]:[cH]:[*]:[cH]:[cH	-0.496	0 out of 2

C₂₂H₂₇FN₄O₂ Molecular Weight: 398.47378

ALogP: 2.997 Rotatable Bonds: 7

Acceptors: 3
Donors: 3

Model Prediction

Prediction: Non-Carcinogen

Probability: 0.217
Enrichment: 0.648
Bayesian Score: -6.26
Mahalanobis Distance: 15.7

Mahalanobis Distance p-value: 2.18e-008

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	ilar Compounds	Metoclopramide	Flecainide
Structure	HO HO	H ₂ N _{th} NH	NH FF
Actual Endpoint	Carcinogen	Non-Carcinogen	Non-Carcinogen
Predicted Endpoint	Carcinogen	Non-Carcinogen	Non-Carcinogen
Distance	0.599	0.634	0.643
Reference	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997	US FDA (Centre for Drug Eval.& Res./Off. Testing & Res.) Sept. 1997

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. OPS PC28 out of range. Value: 3.8517. Training min, max, SD, explained variance: -3.142, 3.4791, 1.048, 0.0102.

Feature Contribution					
	Top fea	tures for positive o	ontribution		
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set	
SCFP_6	-1971137145	[*]C(=C[c](:[*]):[*]) [*]	0.434	5 out of 9	

SCFP_6	136686699	[*]:[c](:[*])C	0.287	17 out of 39
SCFP_6	-1375926917	[*]N[c]1:[cH]:[cH]:1	0.251	11 out of 26
	Top Fea	tures for negative	contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Carcinogen in training set
SCFP_6	1323614814	[,]CCNC(=0)[e](:[,]):	-0.825	0 out of 4
SCFP_6	1798334293	[*]C(=C1C(=[*])[*][*]	-0.674	0 out of 3
SCFP_6	-182283812	[*]CN(C[*])CCN[*]	-0.674	0 out of 3

C₂₂H₁₆CIN₃O₅S

Molecular Weight: 469.89753

ALogP: 2.815 Rotatable Bonds: 5

Acceptors: 6
Donors: 2

Model Prediction

Prediction: Non-Irritant

Probability: 0.0465 Enrichment: 0.0505 Bayesian Score: -6.3

Mahalanobis Distance: 13.4

Mahalanobis Distance p-value: 5.13e-009

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	2-Anthracenesulfonic acid, 1-amino-9,10-dihydro-9,10-dioxo-4-(2,4,6 -trimethylanilino)-, monosodium salt	Pregna-1,4-diene-3,20-dione, 21-(acetyloxy)-11-hydroxy-6-methyl-17- (1-oxopropoxy)-, (6-alpha,11-beta)-	Benzenesulfonic acid, 2,2'-(4,4'- biphenylylenedivinylene)d i-, disod ium salt	
Structure	H ₂ N ₁ n ₁ n ₂ n ₃ n ₄ n ₄ n ₅ n ₄ n ₅	O C C C C C C C C C C C C C C C C C C C		
Actual Endpoint	Irritant	Irritant	Irritant	
Predicted Endpoint	Non-Irritant	Irritant	Non-Irritant	
Distance	0.649	0.777	0.802	
Reference	85JCAE "Prehled Prumyslove Toxikologie; Organicke Latky," Marhold, J., Prague, Czechoslovakia, Avicenum, 1986 Volume(issue)/page/year: -,1327,1986	YACHDS Yakuri to Chiryo. Pharmacology and Therapeutics. (Raifu Saiensu Shup pan K.K., 2-5-13, Yaesu, Chuo-ku, Tokyo 104, Japan) V.1-1972- Volume(issue) /page/year: 19,3103,1991	MVCRB3 MVC-Report. (Stockholm, Sweden) No.1-2, 1972-73. Discontinued. Volu me(issue)/page/year: 2,193,1973	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Contribution					
Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set	
	•	•	-	•	

FCFP_12	-1986158408	CI NH NHO [*]N1[*][*]SC1=O	0.0821	13 out of 13
FCFP_12	436886043	[,]/C=C(,C=[,])(,C =[,, NH0)	0.0804	129 out of 130
FCFP_12	1383817444	[*]=CC1=C[o];[eH];[*]):[o]:[*])[*]C1=[*	0.0772	7 out of 7
	Top Feat	ures for negative	contribution	

Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	1175665944	[*]C1=[*][c](: *]):[c](NC1=O):[cH]:[*]	-1.02	2 out of 8
FCFP_12	-1838187238	CI ONH ONN ONN ONN ONN ONN ONN ONN ONN ONN	-0.692	5 out of 12

FCFP_12	-451043714	CI	-0.65	0 out of 1
		⊘ N		
		0 T N S > 0		
		ا ن ہہہا ّ		
		NĤO [*]CC(=O)N[c]1:[cH]:[cH]:[c]([*]):[cH]:[c		
		H]:1		

C₂₂H₁₅Cl₂N₃O₅S

Molecular Weight: 504.3426

ALogP: 3.479 Rotatable Bonds: 5

Acceptors: 6
Donors: 2

Model Prediction

Prediction: Non-Irritant

Probability: 0.148
Enrichment: 0.161
Bayesian Score: -5.62
Mahalanobis Distance: 13.5

Mahalanobis Distance p-value: 4.1e-009

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Simila	Structural Similar Compounds				
Name	2-Anthracenesulfonic acid, 1-amino-9,10- dihydro-9,10-dioxo-4- (2,4,6 -trimethylanilino)-, monosodium salt	Benzenesulfonic acid, 2,2'-(4,4'- biphenylylenedivinylene)d i-, disod ium salt	Pregna-1,4-diene-3,20- dione, 21-(acetyloxy)-11- hydroxy-6-methyl-17- (1- oxopropoxy)-, (6-alpha,11- beta)-		
Structure	H ₂ N ₄ N ₄ N ₄ N ₄ N ₄ N ₄ N ₅	OH OH	O C C C C C C C C C C C C C C C C C C C		
Actual Endpoint	Irritant	Irritant	Irritant		
Predicted Endpoint	Non-Irritant	Non-Irritant	Irritant		
Distance	0.718	0.728	0.820		
Reference	85JCAE "Prehled Prumyslove Toxikologie; Organicke Latky," Marhold, J., Prague, Czechoslovakia, Avicenum, 1986 Volume(issue)/page/year: -,1327,1986	MVCRB3 MVC-Report. (Stockholm, Sweden) No.1-2, 1972-73. Discontinued. Volu me(issue)/page/year: 2,193,1973	YACHDS Yakuri to Chiryo. Pharmacology and Therapeutics. (Raifu Saiensu Shup pan K.K., 2-5-13, Yaesu, Chuo-ku, Tokyo 104, Japan) V.1-1972- Volume(issue) /page/year: 19,3103,1991		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Contribution				
Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
		•		

FCFP_12	-1986158408	CI CI ON H ON NHO [*]N1[*][*]SC1=O	0.0821	13 out of 13
FCFP_12	436886043	CI CI ON NHO NHO SNO ON NHO NHO	0.0804	129 out of 130
FCFP_12	1383817444	CI CI ON T]=CC1=C[c](:[cH]:[")):[c](:[T])[T]C1=[" 	0.0772	7 out of 7

Top Features for negative contribution				
Bit/Smiles	Feature Structure	Score	Irritant in training set	
1175665944	[*]C1=[*][c][*]:[c][(NC1=O):[cH]:[*]	-1.02	2 out of 8	
-1757681964	CI CI CI NH S NH O (*][c]1:[cH]:[c] (OC):[cH]:[c]:1C=[*]	-0.627	1 out of 3	
	Bit/Smiles 1175665944	Bit/Smiles Feature Structure 1175665944 [*]C1=[*][c][:[*]):[c] [(NC1=O):[cH]:[*] -1757681964 [*][c]1:[cH]:[cH]:[c]	Bit/Smiles Feature Structure Score 1175665944 -1.02 [*]C1=[*][c](:[*]):[c][c][NC1=O):[cH]:[*] -1757681964 -0.627	

FCFP_12	1783756416	CI 🔷 CI	-0.509	4 out of 8
		O H O H S N O		
		o NHO [*]N[c]1:[cH]:[*]:[cH		
]:[cH]:[c]:1Cl		

C₁₉H₁₂CIN₃O₄S

Molecular Weight: 413.83428

ALogP: 2.363 Rotatable Bonds: 3

Acceptors: 5
Donors: 2

Model Prediction

Prediction: Non-Irritant

Probability: 0.0408
Enrichment: 0.0443
Bayesian Score: -6.37
Mahalanobis Distance: 11.4

Mahalanobis Distance p-value: 0.000388

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	2-Anthracenesulfonic acid, 1-amino-9,10- dihydro-9,10-dioxo-4- (2,4,6 -trimethylanilino)-, monosodium salt	Benzenesulfonic acid, 2- anilino-5-nitro-	5-Norbornene-2,3- dicarboxylic acid, 1,4,5,6,7,7-hexachloro-	
Structure	H ₂ N _{th}	OH NH NH	OH CI CI OH	
Actual Endpoint	Irritant	Irritant	Irritant	
Predicted Endpoint	Non-Irritant	Non-Irritant	Irritant	
Distance	0.683	0.763	0.773	
Reference	85JCAE "Prehled Prumyslove Toxikologie; Organicke Latky," Marhold, J., Prague, Czechoslovakia, Avicenum, 1986 Volume(issue)/page/year: -,1327,1986	85JCAE "Prehled Prumyslove Toxikologie; Organicke Latky," Marhold, J., Prague, Czechoslovakia, Avicenum, 1986 Volume(issue)/page/year: -,1061,1986	85JCAE "Prehled Prumyslove Toxikologie; Organicke Latky," Marhold, J., Prague, Czechoslovakia, Avicenum, 1986 Volume(issue)/page/year: -,581,1986	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

Feature Contribution					
Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set	
		•	-	•	

FCFP_12	-1986158408	H	0.0821	13 out of 13
FCFP_12	436915834	0 NH O O O O O O O O O	0.0756	6 out of 6
FCFP_12	-1143715940	H	0.0575	475 out of 490

Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	1175665944	[*]C1=[*][c](:[*]):[c](NC1=O):[cH]:[*]	-1.02	2 out of 8
FCFP_12	-1838187238	NH C C C C C C C	-0.692	5 out of 12

FCFP_12	-451043714		-0.65	0 out of 1
		H CI [*]CC(=0)N[c]1:[cH]:[cH]:[c]([*]):[cH]:[c H]:1		

H N O CI

C₁₉H₁₁Cl₂N₃O₄S

Molecular Weight: 448.27933

ALogP: 3.028 Rotatable Bonds: 3

Acceptors: 5
Donors: 2

Model Prediction

Prediction: Non-Irritant

Probability: 0.133
Enrichment: 0.145
Bayesian Score: -5.69
Mahalanobis Distance: 11.5

Mahalanobis Distance p-value: 0.000313

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Simila	Structural Similar Compounds					
Name	2-Anthracenesulfonic acid, 1-amino-9,10- dihydro-9,10-dioxo-4- (2,4,6 -trimethylanilino)-, monosodium salt	5-Norbornene-2,3- dicarboxylic acid, 1,4,5,6,7,7-hexachloro-	1-Amino-2-bromo-4- hydroxyanthraquinone			
Structure	H ₂ N _{ru}	OHCI CI CI OH	HO 12 NH 2			
Actual Endpoint	Irritant	Irritant	Non-Irritant			
Predicted Endpoint	Non-Irritant	Irritant	Non-Irritant			
Distance	0.695	0.791	0.824			
Reference	85JCAE "Prehled Prumyslove Toxikologie; Organicke Latky," Marhold, J., Prague, Czechoslovakia, Avicenum, 1986 Volume(issue)/page/year: -,1327,1986	85JCAE "Prehled Prumyslove Toxikologie; Organicke Latky," Marhold, J., Prague, Czechoslovakia, Avicenum, 1986 Volume(issue)/page/year: -,581,1986	28ZPAK -,83,72			

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

	Top fe	atures for positive of	ontribution	
ingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
			<u> </u>	I

FCFP_12	-1986158408	0 NH O CI NH O	0.0821	13 out of 13
FCFP_12	436915834	O-NH-O-CI N-O-CI N-C-CI [*](C=C\1/S[*][*]C1=[]	0.0756	6 out of 6
FCFP_12	562194858	[*][c]1:[cH]:[c]:1CI	0.0583	2 out of 2
	Top Feat	ures for negative	contribution	

Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	1175665944	[*]C1=[*][c]:[*]):[c [NC1=O):[cH]:[*]	-1.02	2 out of 8
FCFP_12	1783756416	[*]N[c]1:[cH]:[c]1Cl	-0.509	4 out of 8

FCFP_12	1294255210	O≓NH	-0.486	12 out of 22
		\$ 1		
		N CI		
		[*]C(=[*])N[c](:[*]): [*]		

 $C_{21}H_{17}N_3O_4S$

Molecular Weight: 407.44237

ALogP: 2.027 Rotatable Bonds: 5

Acceptors: 5 Donors: 2

Model Prediction

Prediction: Non-Irritant

Probability: 0.189 Enrichment: 0.205 Bayesian Score: -5.45 Mahalanobis Distance: 12

Mahalanobis Distance p-value: 2.07e-005

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Simila	ar Compounds		
Name	2-Anthracenesulfonic acid, 1-amino-9,10- dihydro-9,10-dioxo-4- (2,4,6 -trimethylanilino)-, monosodium salt	Benzenesulfonic acid, 2- anilino-5-nitro-	Benzenesulfonamide, 4- amino-N-(5,6-dimethoxy-4- pyrimidinyl)-
Structure	H ₂ N _{ru}	O H O N N N N N N N N N N N N N N N N N	H ₂ N N N N N N N N N N N N N N N N N N N
Actual Endpoint	Irritant	Irritant	Irritant
Predicted Endpoint	Non-Irritant	Non-Irritant	Non-Irritant
Distance	0.705	0.765	0.784
Reference	85JCAE "Prehled Prumyslove Toxikologie; Organicke Latky," Marhold, J., Prague, Czechoslovakia, Avicenum, 1986 Volume(issue)/page/year: -,1327,1986	85JCAE "Prehled Prumyslove Toxikologie; Organicke Latky," Marhold, J., Prague, Czechoslovakia, Avicenum, 1986 Volume(issue)/page/year: -,1061,1986	FCTXAV 14,307,76

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

All properties and OPS components are within expected ranges.

Feature Contribution					
Top features for positive contribution					
Bit/Smiles	Feature Structure	Score	Irritant in training set		
<u>'</u>	<u>'</u>	·!	· ·		
	Top fe	Top features for positive of	Top features for positive contribution		

FCFP_12	-1986158408	0 NH O NH O NH H	0.0821	13 out of 13
FCFP_12	436915834	0 NH 0 NH 0 NH 0 NH 1 NG 1 NG 1 NG 1 NG 1 NG 1 NG 1 NG 1 NG	0.0756	6 out of 6
FCFP_12	-1143715940	[*]=C1[*][*]C(=[*])S1	0.0575	475 out of 490

	<u> </u>	atures for negative		
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	1175665944	[*]C1=[*][c](:[*]):[c](NC1=O):[cH]:[*]	-1.02	2 out of 8
FCFP_12	-2002900105	[*]NCC[c](:[cH]:[*]): [cH]:[*]	-0.65	0 out of 1

FCFP_12	1294255210	o NH	-0.486	12 out of 22
		° N N O N N N N N N N N N N N N N N N N		
		[*]C(=[*])N[c](:[*]): [*]		

HN O HN O

C₂₁H₁₆CIF₃N₄O₃

Molecular Weight: 464.82494

ALogP: 4.175
Rotatable Bonds: 6
Acceptors: 4

Donors: 3

Model Prediction

Prediction: Non-Irritant

Probability: 0.264
Enrichment: 0.287
Bayesian Score: -5.23
Mahalanobis Distance: 8.27

Mahalanobis Distance p-value: 0.791

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff.

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	5-Norbornene-2,3- dicarboxylic acid, 1,4,5,6,7,7-hexachloro-	Benzenesulfonic acid, 2,2'-(4,4'- biphenylylenedivinylene)d i-, disod ium salt	Sulfide, bis(4-t-butyl-m- cresyl)-	
Structure	OHCI CI CI OH	OH OH	OH OH	
Actual Endpoint	Irritant	Irritant	Irritant	
Predicted Endpoint	Irritant	Non-Irritant	Irritant	
Distance	0.844	0.871	0.884	
Reference	85JCAE "Prehled Prumyslove Toxikologie; Organicke Latky," Marhold, J., Prague, Czechoslovakia, Avicenum, 1986 Volume(issue)/page/year: -,581,1986	MVCRB3 MVC-Report. (Stockholm, Sweden) No.1-2, 1972-73. Discontinued. Volu me(issue)/page/year: 2,193,1973	AMIHBC AMA Archives of Industrial Hygiene and Occupational Medicine. (Chicago, IL) V.2-10, 1950-54. For publisher information, see AEHLAU. Volume(issue)/pag e/year: 5,311,1952	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Feature Co	ntribution			
	Top fe	atures for positive of	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
	•	•		•

FCFP_12	-124655670	[*]:[cH]:[cH]:n:[*]	0.0821	13 out of 13
FCFP_12	-1539132615	N N N N N N N N N N N N N N N N N N N	0.0795	9 out of 9
FCFP_12	-1695756380	[*][c]1:[*]:[c]([*]): n:[cH]:[cH]:1	0.0772	7 out of 7
	Top Featur	es for negative c	ontribution	

		tures for negative		
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	-789307649	[*]O[c]f:[cH]:[cH]:[c][(NC(=[*])[*]):[cH]:	-1.54	0 out of 4
FCFP_12	-1838187238	[*]C(=[*])N[c]1:[cH]: [cH]:[cH]:[cH]:1	-0.692	5 out of 12

FCFP_12	1294255210	Ņ	-0.486	12 out of 22
		NO CNO		
		,		
		F CI		
		[*]C(=[*])N[c](:[*]): [*]		
		L J		

 $C_{22}H_{27}FN_4O_2$

Molecular Weight: 398.47378

ALogP: 2.997 Rotatable Bonds: 7

Acceptors: 3
Donors: 3

Model Prediction

Prediction: Non-Irritant

Probability: 0.856
Enrichment: 0.93
Bayesian Score: -3.16
Mahalanobis Distance: 10.1

Mahalanobis Distance p-value: 0.0541

Prediction: Positive if the Bayesian score is above the estimated best cutoff value from minimizing the false positive and false negative rate.

Probability: The esimated probability that the sample is in the positive category. This assumes that the Bayesian score follows a normal distribution and is different from the prediction using a cutoff

Enrichment: An estimate of enrichment, that is, the increased likelihood (versus random) of this sample being in the category. Bayesian Score: The standard Laplacian-modified Bayesian score.

Mahalanobis Distance: The Mahalanobis distance (MD) is the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	5-Norbornene-2,3- dicarboxylic acid, 1,4,5,6,7,7-hexachloro-	Sulfide, bis(4-t-butyl-m-cresyl)-	p-Acetophenetidide, 3'- (bis(2- hydroxyethyl)amino)-
Structure	OHCI CI CI OH	OH OH	HO OH
Actual Endpoint	Irritant	Irritant	Non-Irritant
Predicted Endpoint	Irritant	Irritant	Non-Irritant
Distance	0.818	0.860	0.863
Reference	85JCAE "Prehled Prumyslove Toxikologie; Organicke Latky," Marhold, J., Prague, Czechoslovakia, Avicenum, 1986 Volume(issue)/page/year: -,581,1986	AMIHBC AMA Archives of Industrial Hygiene and Occupational Medicine. (Chicago, IL) V.2-10, 1950-54. For publisher information, see AEHLAU. Volume(issue)/pag e/year: 5,311,1952	28ZPAK -,100,72

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP_2 feature: 203707511: [*][c]1:[*]:[*]:[nH]:[c]:1C=[*]

Feature Co	ntribution			
	Top fe	atures for positive of	ontribution	
Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
	•	•	•	

FCFP_12	1852108031	[*]CCN(CC)CC	0.0841	19 out of 19
FCFP_12	1851332093	[*]CN(C[*])CC	0.0795	9 out of 9
FCFP_12	-371808660	[*]CN(C[*])CCN[*]	0.0785	8 out of 8
	Top Feat	ures for negative of	contribution	

Fingerprint	Bit/Smiles	Feature Structure	Score	Irritant in training set
FCFP_12	1175665944	[*]C1=[*][c](:[*]):[c](NC1=O):[cH]:[*]	-1.02	2 out of 8
FCFP_12	1294255210	[*]C(=[*])N[c](:[*]): [*]	-0.486	12 out of 22

FCFP_12	-773983804	a Nii	-0.444	46 out of 79
		P NHO		
		NH N		
		[*]N[c]1:[cH]:[*]:[c]		
		([*]):[cH]:[cH]:1		

C₂₂H₁₆CIN₃O₅S Molecular Weight: 469.89753

ALogP: 2.815 Rotatable Bonds: 5

Acceptors: 6
Donors: 2

Model Prediction

Prediction: 25.8

Unit: mg/kg_body_weight/day Mahalanobis Distance: 14.4

Mahalanobis Distance p-value: 3.05e-011

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	Ochratoxin A	542	470		
Structure	OH HO CI	AND Enantlomer AND Enantlomer HN HO O	OH ON		
Actual Endpoint (-log C)	4.79932	4.79932	4.62839		
Predicted Endpoint (-log C)	3.6353	3.6353	3.93264		
Distance	0.650	0.650	0.710		
Reference	CPDB	CPDB	CPDB		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 2131425032: [*]\C=C(\C=[*])/C(=[*])[*]
- 3. Unknown ECFP_2 feature: 1182722866: [*]C(=CC(=[*])[*])[*]
- 4. Unknown ECFP_2 feature: 1000552169: [*]\C=C\1/S[*][*]C1=[*]
- 5. Unknown ECFP_2 feature: -661097313: [*]CN1C(=[*])[*][*]C1=[*]
- 6. Unknown ECFP_2 feature: -37698365: [*]N([*])CC(=[*])[*]

Top features for positive contribution					
Fingerprint	erprint Bit/Smiles Feature Structure Score				
ECFP_6	1559650422	CI NH O NH O [*]C[*]	0.203		

ECFP_6	-1925046727	CI NHO SNO SNO SNO SNO SNO SNO SNO SN	0.145
ECFP_6	-817402818	CI ONH ONH ONH ONH ONH ONH ONH ONH ONH ONH	0.129
-		for negative contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	2106656448	CI O NH O	-0.275
ECFP_6	1996767644	CI ON N S N O (*)[c](:[*]):[cH]:[cH]:[*]	-0.251
ECFP_6	642810091	CI ZH	-0.247

 $C_{22}H_{15}CI_2N_3O_5S$

Molecular Weight: 504.3426

ALogP: 3.479 Rotatable Bonds: 5

Acceptors: 6
Donors: 2

Model Prediction

Prediction: 20.3

Unit: mg/kg_body_weight/day Mahalanobis Distance: 14.4

Mahalanobis Distance p-value: 2.77e-011

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	Ochratoxin A	542	470
Structure	OH HO CI	AND Enantomer AND HOH HN HO HO HO HO HO HO HO HO	OH OO O
Actual Endpoint (-log C)	4.79932	4.79932	4.62839
Predicted Endpoint (-log C)	3.6353	3.6353	3.93264
Distance	0.665	0.665	0.748
Reference	CPDB	CPDB	CPDB

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 2131425032: [*]\C=C(\C=[*])/C(=[*])[*]
- 3. Unknown ECFP_2 feature: 1182722866: [*]C(=CC(=[*])[*])[*]
- 4. Unknown ECFP_2 feature: 1000552169: [*]\C=C\1/S[*][*]C1=[*]
- 5. Unknown ECFP_2 feature: -661097313: [*]CN1C(=[*])[*][*]C1=[*]
- 6. Unknown ECFP_2 feature: -37698365: [*]N([*])CC(=[*])[*]

Top features for positive contribution					
Fingerprint	Score				
ECFP_6	1559650422	CI CI ON H ON NH O [*]C[*]	0.203		

ECFP_6	-1925046727	CI CI ON H	0.145
ECFP_6	-817402818		0.129
		for negative contributio	
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	2106656448	CI CI OF H SNO NH OF H SNO	-0.275
ECFP_6	1996767644	CI CI CI ON N N S N O S N O O O S N O O S N O S N O S O O S O O S O O S O O S O O S O S	-0.251
ECFP_6	642810091	CI CI ON H ON NHO [*][c](:[*]):[*]	-0.247

C₁₉H₁₂CIN₃O₄S

Molecular Weight: 413.83428

ALogP: 2.363 Rotatable Bonds: 3

Acceptors: 5 Donors: 2

Model Prediction

Prediction: 54.6

Unit: mg/kg_body_weight/day Mahalanobis Distance: 12.8

Mahalanobis Distance p-value: 3.04e-007

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	Ochratoxin A	542	470
Structure	OH OH CI	AND Enantomer AND Enantomer HN HO HN HO HO HN HO HO HO HO	OH O
Actual Endpoint (-log C)	4.79932	4.79932	4.62839
Predicted Endpoint (-log C)	3.6353	3.6353	3.93264
Distance	0.666	0.666	0.708
Reference	CPDB	CPDB	CPDB

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: -631778390: [*]C(=C1S[*][*]C1=[*])[*]
- 3. Unknown ECFP_2 feature: -661097313: [*]CN1C(=[*])[*][*]C1=[*]
- 4. Unknown ECFP_2 feature: -37698365: [*]N([*])CC(=[*])[*]

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score		
ECFP_6	1559650422	H	0.203		

ECFP_6	-817402818		0.129
ECFP_6	-1897341097	H	0.0284
	Top Features f	or negative contributio	
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	2106656448	[*]C(=O)[*]	-0.275
ECFP_6	1996767644	[*][c](:[*]):[cH]:[cH]	-0.251
ECFP_6	642810091	H C C C C C C C C C C C C C C C C C C C	-0.247

 $C_{19}H_{11}CI_2N_3O_4S$

Molecular Weight: 448.27933

ALogP: 3.028 Rotatable Bonds: 3

Acceptors: 5
Donors: 2

Model Prediction

Prediction: 71.4

Unit: mg/kg_body_weight/day Mahalanobis Distance: 13.1

Mahalanobis Distance p-value: 6.7e-008

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds						
Name	Ochratoxin A	542	C.I. pigment red 3			
Structure	OH HO CI	AND Enantiomer AND Enantiomer HN HN HO HO HO HO HO HO HO HO	O NZO			
Actual Endpoint (-log C)	4.79932	4.79932	0.937339			
Predicted Endpoint (-log C)	3.6353	3.6353	3.17837			
Distance	0.657	0.657	0.727			
Reference	CPDB	CPDB	CPDB			

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: -631778390: [*]C(=C1S[*][*]C1=[*])[*]
- 3. Unknown ECFP_2 feature: -661097313: [*]CN1C(=[*])[*][*]C1=[*]
- 4. Unknown ECFP_2 feature: -37698365: [*]N([*])CC(=[*])[*]

Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	1559650422	0 NH O CI H CI [*]C[*]	0.203

ECFP_6	-817402818	S N C C C C C C C C C C C C C C C C C C	0.129
ECFP_6	-1897341097	○ NH	0.0284
		or negative contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	2106656448	0 NH O CI H CI CI H CI CI H CI CI CI H CI	-0.275
ECFP_6	1996767644	[*][c](:[*]):[cH]:[cH	-0.251
ECFP_6	642810091	O NH CI CI CI [*][c](:[*]):[*]	-0.247

O HN O HN

C₂₁H₁₇N₃O₄S

Molecular Weight: 407.44237

ALogP: 2.027 Rotatable Bonds: 5

Acceptors: 5
Donors: 2

Model Prediction

Prediction: 59.4

Unit: mg/kg_body_weight/day Mahalanobis Distance: 11.8

Mahalanobis Distance p-value: 4.61e-005

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	Ochratoxin A	542	470		
Structure	OH HO CI	AND Enantomer AND Enantomer HN HO	OH O		
Actual Endpoint (-log C)	4.79932	4.79932	4.62839		
Predicted Endpoint (-log C)	3.6353	3.6353	3.93264		
Distance	0.641	0.641	0.707		
Reference	CPDB	CPDB	CPDB		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. OPS PC22 out of range. Value: 3.9887. Training min, max, SD, explained variance: -3.1587, 3.8589, 1.086, 0.0147.
- 2. Unknown ECFP_2 feature: -631778390: [*]C(=C1S[*][*]C1=[*])[*]
- 3. Unknown ECFP_2 feature: -661097313: [*]CN1C(=[*])[*][*]C1=[*]
- 4. Unknown ECFP_2 feature: -37698365: [*]N([*])CC(=[*])[*]

Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	1559650422	o → NH	0.203

ECFP_6	-2024255407	[*]C[c](:[cH]:[*]):[c H]:[*]	0.172
ECFP_6	-1897341097	O NH	0.0284
		for negative contributio	
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	2106656448	0 NH O O NH O O NH H	-0.275
ECFP_6	1996767644	[*][c](:[*]):[cH]:[cH	-0.251
ECFP_6	642810091	O NH	-0.247

C₂₁H₁₆CIF₃N₄O₃

Molecular Weight: 464.82494

ALogP: 4.175 Rotatable Bonds: 6

Acceptors: 4
Donors: 3

Model Prediction

Prediction: 19.2

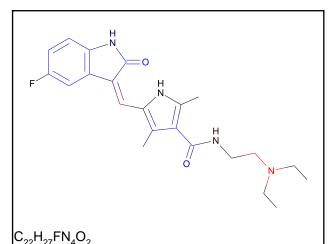
Unit: mg/kg_body_weight/day Mahalanobis Distance: 12.4

Mahalanobis Distance p-value: 2.94e-006

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	Ochratoxin A	542	4-Chloro-6-(2,3-xylidino)- 2-pyri-mi-dinylthio(N-b- hydroxy-ethyl) acetamide		
Structure	OH HO CI	AND Enantomer AND Enantomer HN HO HO HO HO HO HO HO HO HO	NN NH NH		
Actual Endpoint (-log C)	4.79932	4.79932	3.91517		
Predicted Endpoint (-log C)	3.6353	3.6353	3.92186		
Distance	0.718	0.718	0.738		
Reference	CPDB	CPDB	CPDB		


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 1338334141: [*]C(=[*])NC
- 3. Unknown ECFP_2 feature: 1413420509: [*]C(=[*])[c](:n:[*]):c:[*]

Feature Contribution						
Top features for positive contribution						
Fingerprint	Bit/Smiles	Feature Structure	Score			
ECFP_6	655739385	[*]:n:[*]	0.229			
	·	•	•			

ECFP_6	-817402818	[*]CI	0.129
ECFP_6	-176455838	[*]O[c](:[cH]:[*]):[c H]:[*]	0.0818
		for negative contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	1996767644	[*][c](:[*]):[cH]:[cH	-0.251
ECFP_6	642810091	[*][c](:[*]):[*]	-0.247
ECFP_6	-182236392		-0.232

Molecular Weight: 398.47378

ALogP: 2.997 Rotatable Bonds: 7

Acceptors: 3
Donors: 3

Model Prediction

Prediction: 33.3

Unit: mg/kg_body_weight/day Mahalanobis Distance: 13.2

Mahalanobis Distance p-value: 5.11e-008

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	455	4-Chloro-6-(2,3-xylidino)- 2-pyri-mi-dinylthio(N-b- hydroxy-ethyl) acetamide	542	
Structure	OH OH	CI NN NH NH	AND Enantiomer AND Enantiomer HN HO O	
Actual Endpoint (-log C)	3.87681	3.91517	4.79932	
Predicted Endpoint (-log C)	3.77582	3.92186	3.6353	
Distance	0.676	0.729	0.751	
Reference	CPDB	CPDB	CPDB	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: -1658273810: [*]C(=[*])[c]1:[c]([*]):[*]:[*]:[c]:1[*]
- 3. Unknown ECFP_2 feature: 980271847: [*][c]1:[*]:[*]:[nH]:[c]:1C=[*]
- 4. Unknown ECFP_2 feature: 1791989338: [*][c]1:[*]:[nH]:[c]:1C
- 5. Unknown ECFP_2 feature: 1718013682: [*]\C=C\1/C(=[*])[*][*]:[c]1:[*]
- 6. Unknown ECFP_2 feature: 1182722866: [*]C(=CC(=[*])[*])[*]

Top features for positive contribution			
Fingerprint	Bit/Smiles	Feature Structure	Score

ECFP_6	-1072294614	[*]N([*])[*]	0.428
ECFP_6	1559650422	[*]C[*]	0.203
ECFP_6	-1925046727	[*]C=[*]	0.145
	Top Features	for negative contribution	on .
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	2106656448	[*]C(=O)[*]	-0.275
ECFP_6	1996767644	[*][c](:[*]):[cH]:[cH	-0.251

ECFP_6	642810091	NH O NH NH	-0.247
		[*][c](:[*]):[*]	

 $C_{22}H_{16}CIN_3O_5S$

Molecular Weight: 469.89753

ALogP: 2.815 Rotatable Bonds: 5

Acceptors: 6
Donors: 2

Model Prediction

Prediction: 15

Unit: mg/kg_body_weight/day Mahalanobis Distance: 15.3

Mahalanobis Distance p-value: 3.43e-012

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural	Similar	Compounds
------------	---------	-----------

Name	Ochratoxin A	542	Salicylazosulfapyridine
Structure	OH HO CI	AND Enuntiomer AND Enuntiomer HN HO O	HN N N N N N N N N N N N N N N N N N N
Actual Endpoint (-log C)	6.47264	6.59334	2.39891
Predicted Endpoint (-log C)	5.06501	5.06501	3.17598
Distance	0.646	0.646	0.688
Reference	CPDB	CPDB	CPDB

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. OPS PC7 out of range. Value: -5.991. Training min, max, SD, explained variance: -5.0422, 6.1749, 1.868, 0.0335.
- 2. OPS PC16 out of range. Value: -3.9626. Training min, max, SD, explained variance: -3.6111, 5.345, 1.406, 0.0190.

Top features for positive contribution			
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_6	136627117	CI NH NH NH O NH O NH O NH O NH O NH O NH	0.69

FCFP_6	565998553	CI NHO SNO NHO [*]N1[*][*]C(=[*])C1= O	0.357
FCFP_6	1	CI NHO NHO [*]=0	0.234
		for negative contribution	n
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_6	451847724	[,]C(=CC(=[,])[,])[,]	-0.436
FCFP_6	436886043	[']\C=C(\C=['])\C =['] NHO S NHO CI	-0.383
FCFP_6	16	CI ON NH S NO NHO [*]:[cH]:[*]	-0.354

Molecular Weight: 504.3426

ALogP: 3.479 Rotatable Bonds: 5

C₂₂H₁₅Cl₂N₃O₅S

Acceptors: 6
Donors: 2

Model Prediction

Prediction: 13.6

Unit: mg/kg_body_weight/day Mahalanobis Distance: 15.3

Mahalanobis Distance p-value: 3.4e-012

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	Ochratoxin A	542	C.I. direct brown 95		
Structure	OH HO CI	AND Enantiomer AND Enantiomer HN HO HO HN HO HO HO HO HO HO			
Actual Endpoint (-log C)	6.47264	6.59334	5.31387		
Predicted Endpoint (-log C)	5.06501	5.06501	4.30266		
Distance	0.666	0.666	0.717		
Reference	CPDB	CPDB	CPDB		

Model Applicability

- 1. OPS PC7 out of range. Value: -6.0165. Training min, max, SD, explained variance: -5.0422, 6.1749, 1.868, 0.0335.
- 2. OPS PC16 out of range. Value: -3.9832. Training min, max, SD, explained variance: -3.6111, 5.345, 1.406, 0.0190.

Feature Contribution					
	Top features	for positive contribution	n		
Fingerprint	Bit/Smiles	Feature Structure	Score		
FCFP_6	136627117	CI CI ON H ON N S NO S NO [*]OC	0.69		

FCFP_6	565998553	CI CI NH NH NH O NH S O NH S O NH O NH O NH O	0.357
FCFP_6	1	CI CI CI ON H ON NH ON N	0.234
		for negative contributio	
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_6	451847724	CI CI CI NH O NH O S NH	-0.436
FCFP_6	436886043	[*]/C=C(/C=[*])/C(=[*	-0.383
FCFP_6	16	CI CI ONH ONH S ONN S ON S	-0.354

5.25509

3.89291

0.651

CPDB

C₁₉H₁₂CIN₃O₄S

Molecular Weight: 413.83428

ALogP: 2.363 Rotatable Bonds: 3

Acceptors: 5
Donors: 2

Model Prediction

Prediction: 14.3

Unit: mg/kg_body_weight/day Mahalanobis Distance: 11.6

Mahalanobis Distance p-value: 0.0028

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Name	Ochratoxin A	542	1,2-Dihydro-2-(5-nitro-2- thi-enyl) quinazolin-4(3H)- one
Structure	OH OH OH	AND Enantiomer AND Enantiomer HN HO HN HO HO HO HO HO HO HO	S H N N N N N N N N N N N N N N N N N N

6.59334

5.06501

0.628

CPDB

Model Applicability

Actual Endpoint (-log C)

Predicted Endpoint (-log

Distance

Reference

Structural Similar Compounds

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

6.47264

5.06501

0.628

CPDB

Feature Contribution						
Top features for positive contribution						
Fingerprint	Bit/Smiles	Feature Structure	Score			
FCFP_6	565998553	0 NH	0.357			

FCFP_6 FCFP_6	32		0.234
		N CI [*]CI	
		gative contribution	
		Feature Structure	Score
FCFP_6	991735244	[*][c]1:[*]:[cH]:[cH] :[cH]:[cH]:1	-0.422
FCFP_6	16	I*]:[cH]:[*]	-0.354
FCFP_6	590925877	NH	-0.323

 $C_{19}H_{11}CI_2N_3O_4S$

Molecular Weight: 448.27933

ALogP: 3.028 Rotatable Bonds: 3

Acceptors: 5 Donors: 2

Model Prediction

Prediction: 13

Unit: mg/kg_body_weight/day Mahalanobis Distance: 11.5

Mahalanobis Distance p-value: 0.00327

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	Ochratoxin A	542	1,2-Dihydro-2-(5-nitro-2- thi-enyl) quinazolin-4(3H)- one		
Structure	OH HO CI	AND Enantiomer AND Enantiomer HN HO O	-O-N HN N N N N N N N N N N N N N N N N N		
Actual Endpoint (-log C)	6.47264	6.59334	5.25509		
Predicted Endpoint (-log C)	5.06501	5.06501	3.89291		
Distance	0.628	0.628	0.688		
Reference	CPDB	CPDB	CPDB		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Feature Contribution						
Top features for positive contribution						
Fingerprint	Bit/Smiles	Feature Structure	Score			
FCFP_6	565998553	0 NH 0 NH 0 NH 0 CI 1 N1[*][*]C(=[*])C1= 0	0.357			

FCFP_6	1	NH O CI CI H CI CI [*]=O	0.234
FCFP_6	32	NH CI CI [*]CI	0.154
		for negative contributio	
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_6	991735244	[*][c]1:[*]:[cH]:[cH] :[cH]:[cH]:1	-0.422
FCFP_6	16	○ NH	-0.354
FCFP_6	590925877	[*]N[c](:[cH]:[*]):[c H]:[*]	-0.323

Molecular Weight: 407.44237

ALogP: 2.027 Rotatable Bonds: 5

Acceptors: 5 Donors: 2

Model Prediction

Prediction: 121

Unit: mg/kg_body_weight/day Mahalanobis Distance: 13

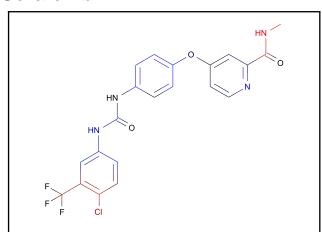
Mahalanobis Distance p-value: 5.66e-006

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for

generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediction. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate inaccurate.

Structural Similar Compounds					
Name	Ochratoxin A	542	4,4´-Sulfonylbisacetanilide		
Structure	OH OH CI	AND Enantiomer AND Enantiomer H H H H H H H H H H H H H	HN NH		
Actual Endpoint (-log C)	6.47264	6.59334	3.77655		
Predicted Endpoint (-log C)	5.06501	5.06501	3.55337		
Distance	0.608	0.608	0.669		
Reference	CPDB	CPDB	CPDB		


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Feature Cont	ribution				
	Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score		
FCFP_6	565998553	0 NH 0 NH 0 NH 0 NH 1 N1[*][*]C(=[*])C1= 0	0.357		

FCFP_6	1	S NO O NH H	0.234
FCFP_6	-885550502	[*]CNC(=[*])[*]	0.229
		or negative contributio	
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_6	-1272709286	[*]CCN[*]	-0.526
FCFP_6	991735244	[*][c]1:[*]:[cH]:[cH]:	-0.422
FCFP_6	-2093839777	[*][c]1:[cH]:[cH]:[cH]:1	-0.378

C₂₁H₁₆CIF₃N₄O₃

Molecular Weight: 464.82494

ALogP: 4.175 Rotatable Bonds: 6

Acceptors: 4 Donors: 3

Model Prediction

Prediction: 14.2

Unit: mg/kg_body_weight/day Mahalanobis Distance: 20.4

Mahalanobis Distance p-value: 9.56e-031

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccuratė.

Name	Fluvastatin	913	Ochratoxin A
Structure	HO HO HO	OH OH	OH HO CI
Actual Endpoint (-log C)	3.51742	3.51742	6.47264
Predicted Endpoint (-log C)	5.41573	5.41573	5.06501
Distance	0.597	0.597	0.666
Reference	CPDB	CPDB	CPDB

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- All properties and OPS components are within expected ranges.
- Unknown FCFP 2 feature: -1029533685: [*]:[c](:[*])C(F)(F)F

Feature Contri	ibution				
	Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score		
FCFP_6	1	[*]=O	0.234		

FCFP_6	-885550502		0.229
FCFP_6	32	[*]CI	0.154
Fingerprint	Top Features f	for negative contribution Feature Structure	Score
FCFP_6	16	*]:[cH]:[*]	-0.354
FCFP_6	590925877	[*]N[c](:[cH]:[*]):[c H]:[*]	-0.323
FCFP_6	1674451008	[*]O[c]1:[cH]:[*]:[c] ([*]):[cH]:[cH]:1	-0.233

HN O HZ

Molecular Weight: 398.47378

ALogP: 2.997 Rotatable Bonds: 7

Acceptors: 3 Donors: 3

 $C_{22}H_{27}FN_4O_2$

Model Prediction

Prediction: 4.13

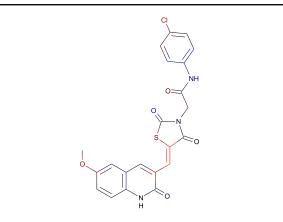
Unit: mg/kg_body_weight/day Mahalanobis Distance: 14

Mahalanobis Distance p-value: 2.69e-008

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	913	Fluvastatin	542	
Structure	OH OH	HO HO	AND Enantomer AND Enantomer HN HO O	
Actual Endpoint (-log C)	3.51742	3.51742	6.59334	
Predicted Endpoint (-log C)	5.41573	5.41573	5.06501	
Distance	0.636	0.636	0.671	
Reference	CPDB	CPDB	CPDB	


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. OPS PC18 out of range. Value: 6.1602. Training min, max, SD, explained variance: -4.1023, 4.8669, 1.305, 0.0164.

Feature Contribution						
	Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score			
FCFP_6	9	[*]N([*])[*]	0.385			
		[*]N([*])[*]		_		

FCFP_6	-587569116	[*]CCN([*])[*]	0.319
FCFP_6	1	[*]=O	0.234
		or negative contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_6	-1272709286	[*]CCN[*]	-0.526
FCFP_6	16	[*]:[cH]:[*]	-0.354
FCFP_6	590925877	[*]N[c](:[cH]:[*]):[c H]:[*]	-0.323

C₂₂H₁₆CIN₂O₅S

Molecular Weight: 469.89753

ALogP: 2.815 Rotatable Bonds: 5

Acceptors: 6
Donors: 2

Model Prediction

Prediction: 0.00186
Unit: g/kg_body_weight
Mahalanobis Distance: 32.5

Mahalanobis Distance p-value: 3.17e-029

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	GLIPIZIDE	GLYBURIDE	CHLORSULFURON		
Structure		HN ISO	HN N N N N N N N N N N N N N N N N N N		
Actual Endpoint (-log C)	3.94991	4.21661	4.15566		
Predicted Endpoint (-log C)	3.95594	4.21035	3.79771		
Distance	0.604	0.613	0.643		
Reference	NDA-17583	UPJ-26452	EPA COVER SHEET 0027;880301;(1)		

Model Applicability

- 1. OPS PC22 out of range. Value: -6.8151. Training min, max, SD, explained variance: -4.3287, 5.3383, 1.588, 0.0110.
- 2. Unknown ECFP_6 feature: -154530762: [*]N[*]
- 3. Unknown ECFP_6 feature: 912478223: [*]S[*]
- 4. Unknown ECFP_6 feature: 99947387: [*]:[c](:[*])Cl
- 5. Unknown ECFP_6 feature: -176494269: [*]:[cH]:[c](CI):[cH]:[*]
- 6. Unknown ECFP 6 feature: -177077903: [*]N[c](:[cH]:[*]):[cH]:[*]
- 7. Unknown ECFP 6 feature: 1335833675: [*]N[c](:[cH]:[*]):[c]([*]):[*]
- 8. Unknown ECFP_6 feature: 1336666212: [*][c](:[*]):[c](C=[*]):[cH]:[*]
- 9. Unknown ECFP_6 feature: 464808839: [*]C(=C[c](:[*]):[*])[*]
- 10. Unknown ECFP_6 feature: 2131425032: [*]\C=C(\C=[*])/C(=[*])[*]
- 11. Unknown ECFP_6 feature: 1298725959: [*]NC(=O)C(=[*])[*]
- 12. Unknown ECFP_6 feature: -1699286547: [*]C(=[*])N[c](:[*]):[*]
- 13. Unknown ECFP_6 feature: 1182722866: [*]C(=CC(=[*])[*])[*]
- 14. Unknown ECFP_6 feature: 1000552169: [*]\C=C\1/S[*][*]C1=[*]
- 15. Unknown ECFP_6 feature: 1945129186: [*]N1[*][*]C(=[*])C1=O
- 16. Unknown ECFP 6 feature: -661097313: [*]CN1C(=[*])[*][*]C1=[*]
- 17. Unknown ECFP_6 feature: 190445529: [*]N1[*][*]SC1=O
- 18. Unknown ECFP_6 feature: 2122741631: [*]=C1[*][*]C(=[*])S1

- Unknown ECFP_6 feature: -37698365: [*]N([*])CC(=[*])[*] Unknown ECFP_6 feature: 1731843802: [*]CC(=O)N[*] Unknown ECFP_6 feature: 1307307440: [*]:[c](:[*])OC 19.
- 20.
- 21.

Feature Contrib	Feature Contribution					
	Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score			
FCFP_6	451847724	CI NH ON Nh ON Nh On Nh On Nh On Nh On Nh On Nh On Nh On Nh On Nh On Nh On Nh On No N On No N No N No No No No No No No No No No	0.16			
FCFP_6	-1143715940	CI ON NHO [*]=C1[*][*]C(=[*])S1	0.13			
ECFP_6	1559650422		0.129			
		for negative contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score			

	2106656448	NHO [*]C(=O)[*]	-0.11
FCFP_6	1	○ NH O NH	-0.102
ECFP_6	-1236483485	[*]C(=[*])N[o](:[*]):	-0.0747

 $C_{22}H_{15}CI_2N_3O_5S$

Molecular Weight: 504.3426

ALogP: 3.479 Rotatable Bonds: 5

Acceptors: 6
Donors: 2

Model Prediction

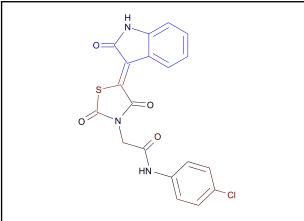
Prediction: 0.00163
Unit: g/kg_body_weight
Mahalanobis Distance: 32.6

Mahalanobis Distance p-value: 2,73e-029

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	GLYBURIDE	GLIPIZIDE	CHLORSULFURON	
Structure	HN TO HIN		HN N N N N N N N N N N N N N N N N N N	
Actual Endpoint (-log C)	4.21661	3.94991	4.15566	
Predicted Endpoint (-log C)	4.21035	3.95594	3.79771	
Distance	0.591	0.646	0.703	
Reference	UPJ-26452	NDA-17583	EPA COVER SHEET 0027;880301;(1)	


Model Applicability

- 1. OPS PC22 out of range. Value: -6.8257. Training min, max, SD, explained variance: -4.3287, 5.3383, 1.588, 0.0110.
- 2. Unknown ECFP_6 feature: -154530762: [*]N[*]
- 3. Unknown ECFP_6 feature: 912478223: [*]S[*]
- 4. Unknown ECFP_6 feature: 99947387: [*]:[c](:[*])Cl
- 5. Unknown ECFP_6 feature: -176494269: [*]:[cH]:[c](CI):[cH]:[*]
- 6. Unknown ECFP_6 feature: 1335108269: [*]N[c](:[cH]:[*]):[c]([*]):[*]
- 7. Unknown ECFP_6 feature: 1335833675: [*]N[c](:[cH]:[*]):[c]([*]):[*]
- 8. Unknown ECFP_6 feature: 1336666212: [*][c](:[*]):[c](C=[*]):[cH]:[*]
- 9. Unknown ECFP_6 feature: 464808839: [*]C(=C[c](:[*]):[*])[*]
- 10. Unknown ECFP_6 feature: 2131425032: [*]\C=C(\C=[*])/C(=[*])[*]
- 11. Unknown ECFP 6 feature: 1298725959: [*]NC(=O)C(=[*])[*]
- 12. Unknown ECFP_6 feature: -1699286547: [*]C(=[*])N[c](:[*]):[*]
- 13. Unknown ECFP_6 feature: 1182722866: [*]C(=CC(=[*])[*])[*]
- 14. Unknown ECFP_6 feature: 1000552169: [*]\C=C\1/S[*][*]C1=[*]
- 15. Unknown ECFP_6 feature: 1945129186: [*]N1[*][*]C(=[*])C1=O
- 16. Unknown ECFP_6 feature: -661097313: [*]CN1C(=[*])[*][*]C1=[*]
- 17. Unknown ECFP_6 feature: 190445529: [*]N1[*][*]SC1=O
- 18. Unknown ECFP_6 feature: 2122741631: [*]=C1[*][*]C(=[*])S1

- Unknown ECFP_6 feature: -37698365: [*]N([*])CC(=[*])[*] Unknown ECFP_6 feature: 1731843802: [*]CC(=O)N[*] Unknown ECFP_6 feature: 1307307440: [*]:[c](:[*])OC 19.
- 20.
- 21.

Feature Conti	ribution						
	Top features for positive contribution						
Fingerprint	Bit/Smiles	Feature Structure	Score				
FCFP_6	451847724	CI CI NH O NH O S NH O	0.16				
FCFP_6	-1143715940	CI CI ONH	0.13				
ECFP_6	1559650422	CI	0.129				
		for negative contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score				

	2106656448	NH O NH O O O O O O O O O	-0.11
FCFP_6	1	S NH O S	-0.102
ECFP_6	-1236483485	CI CI ON NHO NHO [*]C(=[*])N[c](:[*]): [*]	-0.0747

 $C_{19}H_{12}CIN_3O_4S$

Molecular Weight: 413.83428

ALogP: 2.363 Rotatable Bonds: 3

Acceptors: 5
Donors: 2

Model Prediction

Prediction: 0.0298

Unit: g/kg_body_weight
Mahalanobis Distance: 30.1

Mahalanobis Distance p-value: 8.84e-025

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	CHLORSULFURON	PIROXICAM	DANTROLENE.NA		
Structure	HN N N O	OH HN PT	HZ Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z		
Actual Endpoint (-log C)	4.15566	5.52028	4.19625		
Predicted Endpoint (-log C)	3.79771	4.06087	4.62637		
Distance	0.587	0.596	0.600		
Reference	EPA COVER SHEET 0027:880301:(1)	NDA-18147	NDA-17443		

Model Applicability

- 1. OPS PC22 out of range. Value: -4.9837. Training min, max, SD, explained variance: -4.3287, 5.3383, 1.588, 0.0110.
- 2. Unknown ECFP_6 feature: -154530762: [*]N[*]
- 3. Unknown ECFP_6 feature: 912478223: [*]S[*]
- 4. Unknown ECFP_6 feature: 1997021792: [*]:[cH]:[cH]:[cH]:[*]
- 5. Unknown ECFP_6 feature: 1335833675: [*]N[c](:[cH]:[*]):[c]([*]):[*]
- 6. Unknown ECFP_6 feature: -1699286547: [*]C(=[*])N[c](:[*]):[*]
- 7. Unknown ECFP_6 feature: 1298725959: [*]NC(=O)C(=[*])[*]
- 8. Unknown ECFP_6 feature: 1790105651: [*]C(=C1C(=[*])[*][*]:[c]1:[*])[*]
- 9. Unknown ECFP_6 feature: -631778390: [*]C(=C1S[*][*]C1=[*])[*]
- 10. Unknown ECFP 6 feature: 2122741631: [*]=C1[*][*][C(=[*])S1
- 11. Unknown ECFP 6 feature: 190445529: [*]N1[*][*]SC1=O
- 12. Unknown ECFP_6 feature: -661097313: [*]CN1C(=[*])[*][*]C1=[*]
- 13. Unknown ECFP_6 feature: 1945129186: [*]N1[*][*]C(=[*])C1=O
- 14. Unknown ECFP_6 feature: -37698365: [*]N([*])CC(=[*])[*]
- 15. Unknown ECFP_6 feature: 1731843802: [*]CC(=O)N[*]
- 16. Unknown ECFP_6 feature: -177077903: [*]N[c](:[cH]:[*]):[cH]:[*]
- 17. Unknown ECFP_6 feature: -176494269: [*]:[cH]:[c](CI):[cH]:[*]
- 18. Unknown ECFP_6 feature: 99947387: [*]:[c](:[*])Cl

Feature Cont	ribution					
	Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score			
FCFP_6	-1143715940		0.13			
ECFP_6	1559650422	[*]=C1[*][*]C(=[*])S1	0.129			
FCFP_6	32	[*]C[*]	0.101			
_		S C C C C C C C C C C C C C C C C C C C				
	Top Features	for negative contributio	n			
Fingerprint	Bit/Smiles	Feature Structure	Score			
FCFP_6	991735244	* O	-0.134			

ECFP_6	1564392544	o NH O O O O O O O O O O O O O O O O O O	-0.133
ECFP_6	2106656448	H	-0.11

 $C_{19}H_{11}CI_2N_3O_4S$

Molecular Weight: 448.27933

ALogP: 3.028 Rotatable Bonds: 3

Acceptors: 5
Donors: 2

Model Prediction

Prediction: 0.0284

Unit: g/kg_body_weight
Mahalanobis Distance: 30.1

Mahalanobis Distance p-value: 7.98e-025

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	CHLORSULFURON	DANTROLENE.NA	PIROXICAM		
Structure	HN N N N N N N N N N N N N N N N N N N	THE STATE OF THE S	OH HN M		
Actual Endpoint (-log C)	4.15566	4.19625	5.52028		
Predicted Endpoint (-log C)	3.79771	4.62637	4.06087		
Distance	0.634	0.656	0.668		
Reference	EPA COVER SHEET 0027;880301;(1)	NDA-17443	NDA-18147		

Model Applicability

- 1. OPS PC22 out of range. Value: -4.9943. Training min, max, SD, explained variance: -4.3287, 5.3383, 1.588, 0.0110.
- 2. Unknown ECFP_6 feature: -154530762: [*]N[*]
- 3. Unknown ECFP_6 feature: 912478223: [*]S[*]
- 4. Unknown ECFP_6 feature: 1997021792: [*]:[cH]:[cH]:[cH]:[*]
- 5. Unknown ECFP_6 feature: 1335833675: [*]N[c](:[cH]:[*]):[c]([*]):[*]
- 6. Unknown ECFP_6 feature: -1699286547: [*]C(=[*])N[c](:[*]):[*]
- 7. Unknown ECFP_6 feature: 1298725959: [*]NC(=O)C(=[*])[*]
- 8. Unknown ECFP_6 feature: 1790105651: [*]C(=C1C(=[*])[*][*]:[c]1:[*])[*]
- 9. Unknown ECFP_6 feature: -631778390: [*]C(=C1S[*][*]C1=[*])[*]
- 10. Unknown ECFP 6 feature: 2122741631: [*]=C1[*][*][C(=[*])S1
- 11. Unknown ECFP 6 feature: 190445529: [*]N1[*][*]SC1=O
- 12. Unknown ECFP_6 feature: -661097313: [*]CN1C(=[*])[*][*]C1=[*]
- 13. Unknown ECFP_6 feature: 1945129186: [*]N1[*][*]C(=[*])C1=O
- 14. Unknown ECFP_6 feature: -37698365: [*]N([*])CC(=[*])[*]
- 15. Unknown ECFP_6 feature: 1731843802: [*]CC(=O)N[*]
- 16. Unknown ECFP_6 feature: 1335108269: [*]N[c](:[cH]:[*]):[c]([*]):[*]
- 17. Unknown ECFP_6 feature: -176494269: [*]:[cH]:[c](CI):[cH]:[*]
- 18. Unknown ECFP_6 feature: 99947387: [*]:[c](:[*])Cl

Feature Contribution					
Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score		
FCFP_6	-1143715940	O=NH O=NH O=NH O=NH O=NH O=NH O=NH O=NH	0.13		
ECFP_6	1559650422	O NH CI S N CI [*]C[*]	0.129		
FCFP_6	32	NH CI CI [*]CI	0.101		
	Top Features for negative contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score		
FCFP_6	991735244	[*][c]1:[*]:[cH]:[cH]	-0.134		

ECFP_6	1564392544	ONH ONH ONH ONH ONH ONH ONH ONH	-0.133
ECFP_6	2106656448	O=NH S ON ON ON O NH CI (*]C(=O)[*]	-0.11

O HN O HN

 $C_{21}H_{17}N_3O_4S$

Molecular Weight: 407.44237

ALogP: 2.027 Rotatable Bonds: 5

Acceptors: 5
Donors: 2

Model Prediction

Prediction: 0.0695

Unit: g/kg_body_weight
Mahalanobis Distance: 32.5

Mahalanobis Distance p-value: 3.22e-029

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds			
Name	GLIPIZIDE	DANTROLENE.NA	CHLORSULFURON
Structure		T Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	HN M O
Actual Endpoint (-log C)	3.94991	4.19625	4.15566
Predicted Endpoint (-log C)	3.95594	4.62637	3.79771
Distance	0.583	0.600	0.614
Reference	NDA-17583	NDA-17443	EPA COVER SHEET 0027;880301;(1)

Model Applicability

- 1. OPS PC22 out of range. Value: -5.6255. Training min, max, SD, explained variance: -4.3287, 5.3383, 1.588, 0.0110.
- 2. Unknown ECFP_6 feature: -154530762: [*]N[*]
- 3. Unknown ECFP_6 feature: 912478223: [*]S[*]
- 4. Unknown ECFP_6 feature: 1997021792: [*]:[cH]:[cH]:[cH]:[*]
- 5. Unknown ECFP_6 feature: 1335833675: [*]N[c](:[cH]:[*]):[c]([*]):[*]
- 6. Unknown ECFP_6 feature: -1699286547: [*]C(=[*])N[c](:[*]):[*]
- 7. Unknown ECFP_6 feature: 1298725959: [*]NC(=O)C(=[*])[*]
- 8. Unknown ECFP_6 feature: 1790105651: [*]C(=C1C(=[*])[*][*]:[c]1:[*])[*]
- 9. Unknown ECFP_6 feature: -631778390: [*]C(=C1S[*][*]C1=[*])[*]
- 10. Unknown ECFP 6 feature: 2122741631: [*]=C1[*][*]C(=[*])S1
- 11. Unknown ECFP 6 feature: 190445529: [*]N1[*][*]SC1=O
- 12. Unknown ECFP_6 feature: -661097313: [*]CN1C(=[*])[*][*]C1=[*]
- 13. Unknown ECFP_6 feature: 1945129186: [*]N1[*][*]C(=[*])C1=O
- 14. Unknown ECFP_6 feature: -37698365: [*]N([*])CC(=[*])[*]
- 15. Unknown ECFP_6 feature: 1731843802: [*]CC(=O)N[*]
- 16. Unknown ECFP_6 feature: 497523368: [*]CNC(=[*])[*]17. Unknown ECFP 6 feature: -1791034651: [*]CCN[*]
- 18. Unknown ECFP 6 feature: -1795525632: [*]CC[c](:[*]):[*]

	Top features	for positive contribution	n
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_6	-1143715940	0 NH 0 NH 0 NH 0 NH 1 NH 1 NH 1 NH 1 NH 1 NH 1 NH 1 NH 1	0.13
ECFP_6	1559650422		0.129
FCFP_6	3	[*]C[*]	0.0924
		o → N O N H O N N N N N N N N N N N N N N N	
	Top Features	for negative contributio	n
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_6	991735244	[*][c]1:[*]:[cH]:[cH] :[cH]:[cH]:1	-0.134

ECFP_6	1564392544	[*][c]1:[*]:[cH]:[cH] :[cH]:[cH]:1	-0.133
ECFP_6	2106656448	S O NH O NH H H H H H H H H H H H H H H H	-0.11

HN O N

C₂₁H₁₆CIF₃N₄O₃

Molecular Weight: 464.82494

ALogP: 4.175 Rotatable Bonds: 6

Acceptors: 4
Donors: 3

Model Prediction

Prediction: 0.00483
Unit: g/kg_body_weight
Mahalanobis Distance: 30

Mahalanobis Distance p-value: 1,21e-024

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Simi	lar Compounds
-----------------	---------------

Name	GLYBURIDE	D & C RED 9	SODIUM ACIFLUORFEN
Structure	HN BO	ON O	F Hu CI OH
Actual Endpoint (-log C)	4.21661	3.87715	4.16036
Predicted Endpoint (-log C)	4.21035	3.6546	4.65915
Distance	0.636	0.722	0.736
Reference	UPJ-26452	NTP REPORT # 225	EPA COVER SHEET 0192;891101;(1)

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_6 feature: -1046436026: [*]F
- 3. Unknown ECFP_6 feature: 99947387: [*]:[c](:[*])Cl
- 4. Unknown ECFP_6 feature: 226796801: [*]C([*])([*])F
- Unknown ECFP_6 feature: 1305253718: [*]:[c](:[*])O[c](:[*]):[*]Unknown ECFP_6 feature: -677309799: [*][c](:[*]):n:[cH]:[*]
- 7. Unknown ECFP_6 feature: 1338334141: [*]C(=[*])NC
- 8. Unknown ECFP_6 feature: -177077903: [*]N[c](:[cH]:[*]):[cH]:[*]
- 9. Unknown ECFP_6 feature: 1336678434: [*][c](:[*]):[c](:[cH]:[*])C([*])([*])[*]
- 10. Unknown ECFP_6 feature: -649580166: [*]NC(=O)N[*]
- 11. Unknown ECFP_6 feature: -1952889961: [*]:[c](:[*])C(F)(F)F
- 12. Unknown ECFP_6 feature: 1413420509: [*]C(=[*])[c](:[cH]:[*]):n:[*]
- 13. Unknown ECFP_6 feature: 1996163143: [*]:[cH]:[cH]:n:[*]
- 14. Unknown ECFP_6 feature: 1430169877: [*]NC(=O)[c](:[*]):[*]
- 15. Unknown ECFP_6 feature: 864287155: [*]NC

Feature Contribution

Top features for positive contribution

Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	-176455838	[*]O[c](:[cH]:[*]):[c H]:[*]	0.106
FCFP_6	32	1941	0.101
. 6. 1 _0		F CI [*]CI	
FCFP_6	3	[*]N[*]	0.0924
	Top Features	for negative contributio	n
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_6	1	N°	-0.102

Top Features for negative contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	
FCFP_6	1	F E CI	-0.102	
		[*]=O		

ECFP_6	-1236483485	N	-0.0747
FCFP_6	203677720	[*][c](:[*]):[cH]:[*]	-0.0713

Molecular Weight: 398.47378

ALogP: 2.997 Rotatable Bonds: 7

Acceptors: 3
Donors: 3

C₂₂H₂₇FN₄O₂

Model Prediction

Prediction: 0.0397

Unit: g/kg_body_weight
Mahalanobis Distance: 38.1

Mahalanobis Distance p-value: 6.11e-039

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	METOCLOPRAMIDE	PROPAFENONE.HCL	ISOXABEN	
Structure	H ₂ N ₁ , NH	OH H	N NH NH	
Actual Endpoint (-log C)	4.47683	3.10196	3.81665	
Predicted Endpoint (-log C)	3.8785	2.93237	4.42315	
Distance	0.630	0.693	0.693	
Reference	NDA-17854	NDA-19151	EPA COVER SHEET 0339;881201;(1)	

Model Applicability

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_6 feature: -1046436026: [*]F
- 3. Unknown ECFP_6 feature: -152683720: [*]:[nH]:[*]
- 4. Unknown ECFP_6 feature: -154530762: [*]N[*]
- 5. Unknown ECFP_6 feature: 220735655: [*]:[c](:[*])F
- 6. Unknown ECFP_6 feature: -1866225067: [*]CN(C[*])C[*]
- 7. Unknown ECFP_6 feature: 558201926: [*][c]1:[*]:[*]:[c]([*]):[nH]:1
- 8. Unknown ECFP_6 feature: 497523368: [*]CNC(=[*])[*]
- 9. Unknown ECFP_6 feature: -1699286547: [*]C(=[*])N[c](:[*]):[*]
- 10. Unknown ECFP_6 feature: -1789942192: [*]CCN([*])[*]
- 11. Unknown ECFP_6 feature: -1658273810: [*]C(=[*])[c]1:[c]([*]):[*]:[c]:1[*]
- 12. Unknown ECFP_6 feature: 1576255326: [*][c]1:[*]:[*]:[c]([*]):[c]:1C
- 13. Unknown ECFP_6 feature: 980271847: [*][c]1:[*]:[*]:[nH]:[c]:1C=[*]
- 14. Unknown ECFP_6 feature: -1791034651: [*]CCN[*]
- 15. Unknown ECFP_6 feature: 1791989338: [*][c]1:[*]:[nH]:[c]:1C
- 16. Unknown ECFP_6 feature: -949131419: [*]N([*])CC
- 17. Unknown ECFP_6 feature: 1430169877: [*]NC(=0)[c](:[*]):[*]
- 18. Unknown ECFP_6 feature: 1718013682: [*]\C=C\1/C(=[*])[*][*]:[c]1:[*]
- 19. Unknown ECFP_6 feature: 1182722866: [*]C(=CC(=[*])[*])[*]

- 20. Unknown ECFP_6 feature: 1335833675: [*]N[c](:[cH]:[*]):[c]([*]):[*]
- 21. Unknown ECFP_6 feature: 1298725959: [*]NC(=0)C(=[*])[*]
- 22. Unknown ECFP_6 feature: -176686665: [*]:[cH]:[c](F):[cH]:[*]

Feature Contri	bution		
	Top features	for positive contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	1559650422	[*]C[*]	0.129
FCFP_6	32	[*]CI	0.101
FCFP_6	3	[*]N[*]	0.0924
		for negative contribution	1
Fingerprint	Bit/Smiles	Feature Structure	Score

ECFP_6	2106656448	[*]C(=O)[*]	-0.11
FCFP_6	1	[*]=O	-0.102
FCFP_6	136597326	[*]CC	-0.0815

 $C_{22}H_{16}CIN_3O_5S$

Molecular Weight: 469.89753

ALogP: 2.815 Rotatable Bonds: 5

Acceptors: 6
Donors: 2

Model Prediction

Prediction: 0.0264

Unit: g/kg_body_weight
Mahalanobis Distance: 11.5

Mahalanobis Distance p-value: 1.06e-007

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	FUROSEMIDE	SALICYLAZOSULFAPYRI DINE	COUMAPHOS	
Structure	HO O NH2 NH2 O S O O O O O O O O O O O O O O O O O	HN HO HO HO H	CIANTO	
Actual Endpoint (-log C)	4.04236	3.375	5.60537	
Predicted Endpoint (-log C)	2.8614	2.80292	4.15004	
Distance	0.665	0.740	0.766	
Reference	NCI/NTP TR-356	NCI/NTP TR-457	NCI/NTP TR-96	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. OPS PC5 out of range. Value: 5.3542. Training min, max, SD, explained variance: -3.3892, 5.0834, 1.644, 0.0611.

for positive contribution Feature Structure	Score
Feature Structure	Score
O.	
NHO SHO [*]OC	0.173
	S NO

FCFP_2	-1143715940	CI ON H ON NHO [*]=C1[*][*]C(=[*])S1	0.095
FCFP_2	1036089772	CI ON NHO [*]:[c](:[*])OC	0.0749
		or negative contributio	
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_2	71476542	CI NH NH NH [*]:[c](:[*])CI	-0.134
FCFP_2	1872154524	CI NHO SNO SNO [*]C(=O)[*]	-0.105
FCFP_2	203677720	[*][c](:[*]):[cH]:[*]	-0.0829

 $C_{22}H_{15}CI_2N_3O_5S$

Molecular Weight: 504.3426

ALogP: 3.479 Rotatable Bonds: 5

Acceptors: 6
Donors: 2

Model Prediction

Prediction: 0.0211

Unit: g/kg_body_weight
Mahalanobis Distance: 11.6

Mahalanobis Distance p-value: 6.59e-008

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	FUROSEMIDE	SALICYLAZOSULFAPYRI DINE	COUMAPHOS	
Structure	HO O NH2 NH2 O S O	N HN HO OH	CIANOS	
Actual Endpoint (-log C)	4.04236	3.375	5.60537	
Predicted Endpoint (-log C)	2.8614	2.80292	4.15004	
Distance	0.730	0.759	0.783	
Reference	NCI/NTP TR-356	NCI/NTP TR-457	NCI/NTP TR-96	

Model Applicability

- 1. OPS PC5 out of range. Value: 5.472. Training min, max, SD, explained variance: -3.3892, 5.0834, 1.644, 0.0611.
- 2. OPS PC9 out of range. Value: 3.4423. Training min, max, SD, explained variance: -2.8548, 3.3954, 1.263, 0.0360.

Feature Contribution Top features for positive contribution				
136627117		0.173		
	Top features Bit/Smiles	Bit/Smiles Feature Structure 136627117	Top features for positive contribution Bit/Smiles Feature Structure Score 136627117 CI OCI DIA DIA DIA DIA DIA DIA DIA DIA DIA DI	

FCFP_2	-1143715940	CI CI ON NH ON NH ON NH ON [*]=C1[*][*]C(=[*])S1	0.095
FCFP_2	1036089772	CI CI ON H ON NH O [*]:[c](:[*])OC	0.0749
		egative contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_2	71476542	CI CI O H O H S NO (NH O [*]:[c](:[*])CI	-0.134
FCFP_2	1872154524	CI CI ON H ON NH O NH O [*]C(=O)[*]	-0.105
FCFP_2	203677720	CI CO CI ON H S NO [*][c](:[*]):[c](C=[*]):[cH]:[*]	-0.0829

 $C_{19}H_{12}CIN_3O_4S$

Molecular Weight: 413.83428

ALogP: 2.363 Rotatable Bonds: 3

Acceptors: 5 Donors: 2

Model Prediction

Prediction: 0.0592 Unit: g/kg_body_weight

Mahalanobis Distance: 10.1

Mahalanobis Distance p-value: 2.57e-005

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	FUROSEMIDE	DAPSONE	ACETOHEXAMIDE	
Structure	HO O NH ₂	H ₂ N O O O O O O O O O O O O O O O O O O O	NH ONH ONI ONI ONI ONI ONI ONI ONI ONI ONI ONI	
Actual Endpoint (-log C)	4.04236	3.66258	2.55683	
Predicted Endpoint (-log C)	2.8614	3.26993	3.62413	
Distance	0.586	0.644	0.661	
Reference	NCI/NTP TR-356	NCI/NTP TR-20	NCI/NTP TR-050	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. OPS PC5 out of range. Value: 5.5028. Training min, max, SD, explained variance: -3.3892, 5.0834, 1.644, 0.0611.

Feature Contribution Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	
FCFP_2	-1143715940	H	0.095	

FCFP_2	3	O O O N T C I [*]N[*]	0.0737
FCFP_2	565998553	ON NO N	0.00813
	Top Features for ne		
Fingerprint		Feature Structure	Score
FCFP_2	71476542		-0.134
FCFP_2	1872154524	H	-0.105
FCFP_2	203677720		-0.0829

 $C_{19}H_{11}CI_{2}N_{3}O_{4}S$

Molecular Weight: 448.27933

ALogP: 3.028
Rotatable Bonds: 3

Acceptors: 5
Donors: 2

Model Prediction

Prediction: 0.0478

Unit: g/kg_body_weight Mahalanobis Distance: 10.2

Mahalanobis Distance p-value: 1.82e-005

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	FUROSEMIDE	1-AMINO-2,4- DIBROMOANTHRAQUINO NE	OXAZEPAM	
Structure	HO O NH2 NH2 O S O	H ₂ N ₁ , Br	HO the NH NH NH CI	
Actual Endpoint (-log C)	4.04236	2.82966	3.05262	
Predicted Endpoint (-log C)	2.8614	3.92444	3.13073	
Distance	0.639	0.676	0.696	
Reference	NCI/NTP TR-356	NCI/NTP TR-383	NCI/NTP TR-468	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. OPS PC5 out of range. Value: 5.6206. Training min, max, SD, explained variance: -3.3892, 5.0834, 1.644, 0.0611.

Feature Cont	Feature Contribution				
	Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score		
FCFP_2	-1143715940	O=NH O=NH O=NH O=NH O=NH O=NH O=NH O=NH	0.095		
	-	•	-		

FCFP_2	3 565998553	S O C C I H C I T I T I T I T I T I T I T I T I T I	0.0737
	Top Features for ne	[*]N1[*][*]C(=[*])C1= egative contribution	
Fingerprint			Score
FCFP_2	71476542	O NH O CI N O CI H CI [*]:[c](:[*])CI	-0.134
FCFP_2	1872154524	0 NH O CI NH CI	-0.105
FCFP_2	203677720	* c (:[*]):[c (C=[*):[cH]:[*]	-0.0829

 $C_{21}H_{17}N_3O_4S$

Molecular Weight: 407.44237

ALogP: 2.027 Rotatable Bonds: 5

Acceptors: 5 Donors: 2

Model Prediction

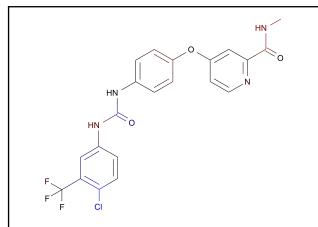
Prediction: 0.0423
Unit: g/kg_body_weight
Mahalanobis Distance: 11.7

Mahalanobis Distance p-value: 4.23e-008

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediction. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	FUROSEMIDE	ACETOHEXAMIDE	DAPSONE	
Structure	HO O NH ₂	NH ONE ONE ONE	H ₂ N O O O O O O O O O O O O O O O O O O O	
Actual Endpoint (-log C)	4.04236	2.55683	3.66258	
Predicted Endpoint (-log C)	2.8614	3.62413	3.26993	
Distance	0.613	0.631	0.666	
Reference	NCI/NTP TR-356	NCI/NTP TR-050	NCI/NTP TR-20	


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Feature Contribution					
	Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score		
FCFP_2	-885550502	[*]CNC(=[*])[*]	0.115		

FCFP_2	-1143715940	0 NH 0 NH 0	0.095
FCFP_2	3	NH	0.0737
		or negative contributio	
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_2	1872154524	[*]C(=O)[*]	-0.105
FCFP_2	203677720	[*][c](:[*]):[cH]:[*]	-0.0829
FCFP_2	1	O → NH O	-0.0796

C₂₁H₁₆CIF₃N₄O₃

Molecular Weight: 464.82494

ALogP: 4.175 Rotatable Bonds: 6

Acceptors: 4 Donors: 3

Model Prediction

Prediction: 0.0885

Unit: g/kg_body_weight
Mahalanobis Distance: 12.4

Mahalanobis Distance p-value: 1.76e-009

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	FUROSEMIDE	PHENOLPHTHALEIN	DISPERSE YELLOW 3		
Structure	HO O NH2 NH2 S O S O	НО	NH NH		
Actual Endpoint (-log C)	4.04236	2.20184	2.77703		
Predicted Endpoint (-log C)	2.8614	2.8857	2.80195		
Distance	0.741	0.780	0.799		
Reference	NCI/NTP TR-356	NCI/NTP TR-465	NCI/NTP TR-222		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Feature Contribution					
Top features for positive contribution					
Bit/Smiles	Feature Structure	Score			
-885550502	F _F C _I [*]CNC(=[*])[*]	0.115			
	Top features Bit/Smiles	Bit/Smiles Feature Structure -885550502	Top features for positive contribution Bit/Smiles Feature Structure Score -885550502 0.115		

FCFP_2	3	[*]N[*]	0.0737
FCFP_2	332760439	[*]O[c](:[cH]:[*]):[c H]:[*]	0.0611
		for negative contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_2	71476542	F _F C _I [*]:[c](:[*])CI	-0.134
FCFP_2	1872154524	F C C [*]C(=O)[*]	-0.105
FCFP_2	203677720	[*][c](:[*]):[cH]:[*]	-0.0829

Sunitinib

TOPKAT_Rat_Maximum_Tolerated_Dose_Feed

F H N N N N N N N N N N N N N N N N N N

Molecular Weight: 398.47378

ALogP: 2.997 Rotatable Bonds: 7

Acceptors: 3 Donors: 3

 $C_{22}H_{27}FN_4O_2$

Model Prediction

Prediction: 0.178

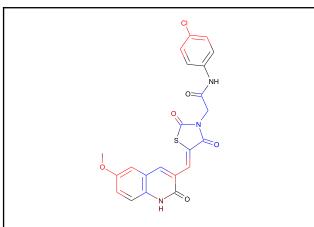
Unit: g/kg_body_weight Mahalanobis Distance: 9.78

Mahalanobis Distance p-value: 9.94e-005

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	CHLORPROPAMIDE	DISPERSE YELLOW 3	TOLBUTAMIDE		
Structure	C Z H	OH NH	O I S N H		
Actual Endpoint (-log C)	3.0107	2.77703	2.3985		
Predicted Endpoint (-log C)	3.18321	2.80195	3.32272		
Distance	0.657	0.661	0.672		
Reference	NCI/NTP TR-045	NCI/NTP TR-222	NCI/NTP TR-031		


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

1. All properties and OPS components are within expected ranges.

Feature Contribution Top features for positive contribution				
FCFP_2	-885550502	[*]CNC(=[*])[*]	0.115	
		[*]CNC(=[*])[*]		

	3	[*]N[*]	0.0737
FCFP_2	136120670	[*]:[c](:[*])C	0.064
	Top Features for ne		
= -		Feature Structure	Score
	71476542	[*]:[c](:[*])CI	-0.134
FCFP_2	1872154524	[*]C(=O)[*]	-0.105
FCFP_2	203677720	[*][c](:[*]):[c](C=[*]):[cH]:[*]	-0.0829

C₂₂H₁₆CIN₃O₅S

Molecular Weight: 469.89753

ALogP: 2.815
Rotatable Bonds: 5

Acceptors: 6
Donors: 2

Model Prediction

Prediction: 0.000779
Unit: g/kg_body_weight
Mahalanobis Distance: 11.7

Mahalanobis Distance p-value: 2.5e-008

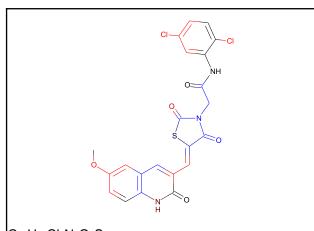
Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	OCHRATOXIN	PENICILLIN VK	SULFISOOXAZOLE		
Structure	OH MANH OH HO WALL OF THE PARTY	O H D H	H ₂ N OI N H		
Actual Endpoint (-log C)	6.28396	2.54455	2.82494		
Predicted Endpoint (-log C)	5.12358	3.9702	3.0705		
Distance	0.628	0.725	0.908		
Reference	NCI/NTP TR-358	NCI/NTP TR-336	NCI/NTP TR-138		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.


- Molecular_Weight out of range. Value: 469.9. Training min, max, mean, SD: 68.074, 434.63, 171.13, 85.06.
- 2. OPS PC5 out of range. Value: -4.1326. Training min, max, SD, explained variance: -3.4, 4.1587, 1.489, 0.0686.
- 3. OPS PC10 out of range. Value: 2.8975. Training min, max, SD, explained variance: -3.9696, 2.3971, 0.982, 0.0298.
- 4. Unknown FCFP_2 feature: 436915834: [*]\C=C\1/S[*][*]C1=[*]
- 5. Unknown FCFP_2 feature: -1986158408: [*]N1[*][*]SC1=O

Feature Contribution

I op features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	

FCFP_2	332760439	C O N H O N N N N N N N N N N N N N N	0.672
FCFP_2	32	NHO NHO [*]CI	0.526
FCFP_2	1	CI NH NH O [*]=O	0.511
		for negative contributio	
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_2	203677720	[*][c](:[*]):[c](C=[*]):[cH]:[*]	-0.406
FCFP_2	565998553	CI NHO SNO NHO [*]N1[*][*]C(=[*])C1=	-0.348

1872154524	CI	-0.307
	O ≺ H	
	s No	
	1872154524	

 $C_{22}H_{15}CI_2N_3O_5S$

Molecular Weight: 504.3426

ALogP: 3.479 Rotatable Bonds: 5

Acceptors: 6 Donors: 2

Model Prediction

Prediction: 0.00054
Unit: g/kg_body_weight
Mahalanobis Distance: 12

Mahalanobis Distance p-value: 1.01e-008

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	OCHRATOXIN	PENICILLIN VK	SULFISOOXAZOLE		
Structure	OH MANH CI HO WAY AND THE COLUMN	O NH	H ₂ N O S C T T T T T T T T T T T T T T T T T T		
Actual Endpoint (-log C)	6.28396	2.54455	2.82494		
Predicted Endpoint (-log C)	5.12358	3.9702	3.0705		
Distance	0.667	0.808	0.994		
Reference	NCI/NTP TR-358	NCI/NTP TR-336	NCI/NTP TR-138		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- Molecular_Weight out of range. Value: 504.34. Training min, max, mean, SD: 68.074, 434.63, 171.13, 85.06.
- 2. OPS PC5 out of range. Value: -4.1507. Training min, max, SD, explained variance: -3.4, 4.1587, 1.489, 0.0686.
- 3. OPS PC10 out of range. Value: 2.77. Training min, max, SD, explained variance: -3.9696, 2.3971, 0.982, 0.0298.
- 4. Unknown FCFP_2 feature: 436915834: [*]\C=C\1/S[*][*]C1=[*]
- 5. Unknown FCFP_2 feature: -1986158408: [*]N1[*][*]SC1=O

Feature Contribution

Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	

FCFP_2	332760439	CI CI ON H	0.672
FCFP_2	32	CI CI	0.526
FCFP_2	1	CI CI NH NH O	0.511
	Top Features	for negative contributio	
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_2	203677720	CI CO ON H S N ON H ON H	-0.406
FCFP_2	565998553	CI CI N N N N S N O NH O S N O O NH O S O O O O O O O O O O O O O O O O O	-0.348

FCFP_2

FCFP_2	1872154524	CI 🔷 CI	-0.307
		o≼' _H	
		s no	
		ONHO	
		[*]C(=O)[*]	

Molecular Weight: 413.83428

ALogP: 2.363
Rotatable Bonds: 3

Acceptors: 5
Donors: 2

Model Prediction

Prediction: 0.0146
Unit: g/kg_body_weight
Mahalanobis Distance: 8.45

Mahalanobis Distance p-value: 0.000601

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	OCHRATOXIN	PENICILLIN VK	SULFISOOXAZOLE		
Structure	OH MANH OH HO WALL OF THE PARTY	O NH O TES	H ₂ N OI N H		
Actual Endpoint (-log C)	6.28396	2.54455	2.82494		
Predicted Endpoint (-log C)	5.12358	3.9702	3.0705		
Distance	0.624	0.691	0.703		
Reference	NCI/NTP TR-358	NCI/NTP TR-336	NCI/NTP TR-138		

Model Applicability

- 1. OPS PC5 out of range. Value: -3.9678. Training min, max, SD, explained variance: -3.4, 4.1587, 1.489, 0.0686.
- 2. OPS PC10 out of range. Value: 2.9633. Training min, max, SD, explained variance: -3.9696, 2.3971, 0.982, 0.0298.
- 3. Unknown FCFP_2 feature: -1678275541: [*]C(=C1C(=[*])[*][*]:[c]1:[*])[*]
- 4. Unknown FCFP_2 feature: 436915834: [*]\C=C\1/S[*][*]C1=[*]
- 5. Unknown FCFP_2 feature: -1986158408: [*]N1[*][*]SC1=O

Feature Contribution						
	Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score			
FCFP_2	32	S O O CI	0.526			

FCFP_2 FCFP_2	367998008	O O N T T T T T T T T T T T T T T T T T	0.511
	Ton Features for no	[*]:[cH]:[c](CI):[cH] :[*] egative contribution	
Fingerprint			Score
FCFP_2	203677720	o NH S O O O O O O O O O O O O O O O O O O O	-0.406
FCFP_2	565998553	0 NH O NH O O O O O O O O O O O O O O O O	-0.348
FCFP_2	1872154524	H	-0.307

 $C_{19}H_{11}CI_2N_3O_4S$

Molecular Weight: 448.27933

ALogP: 3.028 Rotatable Bonds: 3

Acceptors: 5
Donors: 2

Model Prediction

Prediction: 0.0102

Unit: g/kg_body_weight
Mahalanobis Distance: 8.86

Mahalanobis Distance p-value: 0.000184

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	OCHRATOXIN	PENICILLIN VK	SULFISOOXAZOLE		
Structure	OH MNH HO WHO WHO WHO WHO WHO WHO WHO WHO WHO	O H	H ₂ N OI N H		
Actual Endpoint (-log C)	6.28396	2.54455	2.82494		
Predicted Endpoint (-log C)	5.12358	3.9702	3.0705		
Distance	0.622	0.756	0.795		
Reference	NCI/NTP TR-358	NCI/NTP TR-336	NCI/NTP TR-138		

Model Applicability

- Molecular_Weight out of range. Value: 448.28. Training min, max, mean, SD: 68.074, 434.63, 171.13, 85.06.
- 2. OPS PC5 out of range. Value: -3.9859. Training min, max, SD, explained variance: -3.4, 4.1587, 1.489, 0.0686.
- 3. OPS PC10 out of range. Value: 2.8356. Training min, max, SD, explained variance: -3.9696, 2.3971, 0.982, 0.0298.
- 4. Unknown FCFP_2 feature: -1678275541: [*]C(=C1C(=[*])[*][*]:[c]1:[*])[*]
- 5. Unknown FCFP_2 feature: 436915834: [*]\C=C\1/S[*][*]C1=[*]
- 6. Unknown FCFP 2 feature: -1986158408: [*]N1[*][*]SC1=O

Feature Cont	ribution			
Top features for positive contribution				
Fingerprint	Bit/Smiles	Feature Structure	Score	

FCFP_2	32	S C C C C [*]CI	0.526
FCFP_2	1	S NH C C C C C C C C C C C C C C C C C C	0.511
FCFP_2	367998008	ONH OCI NO CI H CI [*]:[cH]:[c](CI):[cH] :[*]	0.413
		egative contribution	
Fingerprint		Feature Structure	Score
FCFP_2	203677720	* c (:[*]):[c (C=[*):[cH]:[*]	-0.406
FCFP_2	565998553	ONH CI S O CI H CI [*]N1[*][*]C(=[*])C1= O	-0.348

FCFP_2	1872154524	S NH C CI	-0.307
		[*]C(=O)[*]	

 $C_{21}H_{17}N_3O_4S$

Molecular Weight: 407.44237

ALogP: 2.027 Rotatable Bonds: 5

Acceptors: 5
Donors: 2

Model Prediction

Prediction: 0.33

Unit: g/kg_body_weight
Mahalanobis Distance: 7.34

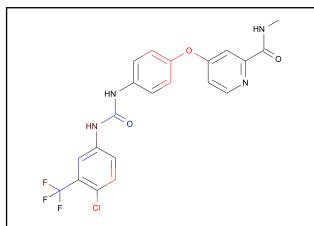
Mahalanobis Distance p-value: 0.0112

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	PENICILLIN VK	OCHRATOXIN	SULFISOOXAZOLE	
Structure	OH OH	OH MANH CI HO WATER THE COLUMN TH	H ₂ N OI N H	
Actual Endpoint (-log C)	2.54455	6.28396	2.82494	
Predicted Endpoint (-log C)	3.9702	5.12358	3.0705	
Distance	0.626	0.630	0.700	
Reference	NCI/NTP TR-336	NCI/NTP TR-358	NCI/NTP TR-138	

Model Applicability


Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP_2 feature: -1678275541: [*]C(=C1C(=[*])[*][*]:[c]1:[*])[*]
- 3. Unknown FCFP_2 feature: 436915834: [*]\C=C\1/S[*][*]C1=[*]
- 4. Unknown FCFP_2 feature: -1986158408: [*]N1[*][*]SC1=O

Top features for positive contribution Fingerprint Bit/Smiles Feature Structure Score FCFP_2 1 0.511

FCFP_2	3	NH NH NH NH (*)N[*]	0.104
		for negative contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_2	203677720	[*][c](:[*]):[c](C=[*]):[cH]:[*]	-0.406
FCFP_2	565998553	[*]N1[*][*]C(=[*])C1=	-0.348
FCFP_2	1872154524	NH O NH O NH O NH	-0.307

[*]C(=O)[*]

C₂₁H₁₆CIF₃N₄O₃

Molecular Weight: 464.82494

ALogP: 4.175 Rotatable Bonds: 6

Acceptors: 4
Donors: 3

Model Prediction

Prediction: 0.000918
Unit: g/kg_body_weight
Mahalanobis Distance: 12.2

Mahalanobis Distance p-value: 4.69e-009

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	OCHRATOXIN	SULFISOOXAZOLE	PENICILLIN VK	
Structure	OH MNH HO W	H ₂ N O S N T H	O NH O TO S	
Actual Endpoint (-log C)	6.28396	2.82494	2.54455	
Predicted Endpoint (-log C)	5.12358	3.0705	3.9702	
Distance	0.758	0.997	1.159	
Reference	NCI/NTP TR-358	NCI/NTP TR-138	NCI/NTP TR-336	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. Molecular_Weight out of range. Value: 464.82. Training min, max, mean, SD: 68.074, 434.63, 171.13, 85.06.
- 2. Num_AromaticRings out of range. Value: 3. Training min, max, mean, SD: 0, 2, 0.5625, 0.693.
- 3. OPS PC5 out of range. Value: -3.5737. Training min, max, SD, explained variance: -3.4, 4.1587, 1.489, 0.0686.
- 4. OPS PC7 out of range. Value: -3.8342. Training min, max, SD, explained variance: -2.8003, 2.9332, 1.16, 0.0416.
- 5. Unknown FCFP_2 feature: 1499521844: [*]NC(=O)N[*]
- 6. Unknown FCFP_2 feature: -1029533685: [*]:[c](:[*])C(F)(F)F
- 7. Unknown FCFP_2 feature: 136686699: [*]NC

Feature Contribution

Top features for positive contribution				
Fingerprint Bit/Smiles Feature Structure Score				

FCFP_2	332760439	[*]O[c](:[cH]:[*]):[c H]:[*]	0.672
FCFP_2	32	[*]CI	0.526
FCFP_2	1	[*]=O	0.511
-		for negative contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score
FCFP_2	203677720	[*][c](:[*]):[c](C=[*]):[cH]:[*]	-0.406
FCFP_2	1872154524	[*]C(=O)[*]	-0.307

FCFP_2	0	Ņ -0.29	
		N [*] O	
		F _F CI	
		[*]C=[*]	

Sunitinib

TOPKAT_Rat_Maximum_Tolerated_Dose_Gavage

H N O H N N O N N N N N N N N N N N N N

Molecular Weight: 398.47378

ALogP: 2.997 Rotatable Bonds: 7

Acceptors: 3
Donors: 3

C₂₂H₂₇FN₄O₂

Model Prediction

Prediction: 0.161

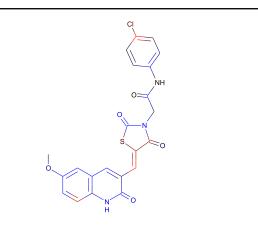
Unit: g/kg_body_weight
Mahalanobis Distance: 9.68

Mahalanobis Distance p-value: 1.53e-005

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	OCHRATOXIN	SULFISOOXAZOLE	PROBENECID	
Structure	OH MANUTURE OF THE PARTY OF THE	H ₂ N OI NATURE H	DH O HO	
Actual Endpoint (-log C)	6.28396	2.82494	2.85333	
Predicted Endpoint (-log C)	5.12358	3.0705	2.4258	
Distance	0.784	0.908	0.912	
Reference	NCI/NTP TR-358	NCI/NTP TR-138	NCI/NTP TR-395	


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. OPS PC7 out of range. Value: -3.6239. Training min, max, SD, explained variance: -2.8003, 2.9332, 1.16, 0.0416.
- 2. Unknown FCFP_2 feature: 19: [*]:[nH]:[*]
- Unknown FCFP_2 feature: 2005402822: [*][c]1:[*]:[c]([*]):[nH]:1
 Unknown FCFP_2 feature: 203707511: [*][c]1:[*]:[*]:[nH]:[c]:1C=[*]
 Unknown FCFP 2 feature: -1678275541: [*]C(=C1C(=[*])[*][*]:[c]1:[*])[*]

Top features for positive contribution Fingerprint Bit/Smiles Feature Structure Score FCFP_2 32 0.526

FCFP_2	367998008	[*]=O	0.511
FCFP_2		[*]:[cH]:[c](Cl):[cH] :[*]	0.413
Fingerprint		egative contribution Feature Structure	Score
FCFP_2	136597326	[*]CC	-0.489
FCFP_2	203677720	[*][c](:[*]):[c](C=[*]):[cH]:[*]	-0.406
FCFP_2	1872154524	[*]C(=O)[*]	-0.307

C₂₂H₁₆CIN₃O₅S

Molecular Weight: 469.89753

ALogP: 2.815 Rotatable Bonds: 5

Acceptors: 6
Donors: 2

Model Prediction

Prediction: 0.936

Unit: g/kg_body_weight
Mahalanobis Distance: 24.1

Mahalanobis Distance p-value: 4.69e-026

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	PIRETANIDE	ETHYL-bis- COUMACETATE	OCHRATOXIN A		
Structure	O OH NH 2 S O S O	OB OH	OH MANUAL		
Actual Endpoint (-log C)	1.811	2.687	4.305		
Predicted Endpoint (-log C)	1.83976	2.7054	3.03558		
Distance	0.600	0.612	0.614		
Reference	DRFUD4 2:393:77	FEPRA7 10:303:51	FCTXAV 6:479:68		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. OPS PC58 out of range. Value: -4.1027. Training min, max, SD, explained variance: -4.0974, 5.4085, 1.034, 0.0039.
- Unknown ECFP_2 feature: 2131425032: [*]\C=C(\C=[*])/C(=[*])[*]
 Unknown ECFP_2 feature: 1000552169: [*]\C=C\1/S[*][*]C1=[*]
- 4. Unknown FCFP_6 feature: 16: [*]:[cH]:[*]
- 5. Unknown FCFP_6 feature: 71476542: [*]:[c](:[*])Cl
- 6. Unknown FCFP_6 feature: 1618154665: [*][c](:[*]):[cH]:[cH]:[*]
 7. Unknown FCFP 6 feature: 451371068: [*]C(=C[c](:[*]):[*])[*]

Feature Contribution

Top features for positive contribution					
Fingerprint	Bit/Smiles	Feature Structure	Score		
			-		

ECFP_6	642810091	[*][c](:[*]):[*]	0.281
ECFP_6	-1897341097	CI NHO S NHO [*]N[*]	0.216
FCFP_6	436915834	[*]\C=C\1/S[*][*]C1=[1]	0.184
		for negative contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	2106656448	[*]C(=O)[*]	-0.352
ECFP_6	-817402818		-0.263

ECFP_6	-176455838	CI	-0.257
		o-	
		s No	
		[*]O[c](:[cH]:[*]):[c	
		H]:[*]	

 $C_{22}H_{15}CI_2N_3O_5S$

Molecular Weight: 504.3426

ALogP: 3.479 Rotatable Bonds: 5

Acceptors: 6
Donors: 2

Model Prediction

Prediction: 0.316

Unit: g/kg_body_weight
Mahalanobis Distance: 24.1

Mahalanobis Distance p-value: 3.74e-026

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	OCHRATOXIN A	BROMOFENOXIME	ETHYL-bis- COUMACETATE		
Structure	OH MNH OH HOW	O NAME OF THE PARTY OF THE PART	OH OH		
Actual Endpoint (-log C)	4.305	2.622	2.687		
Predicted Endpoint (-log C)	3.03558	3.41798	2.7054		
Distance	0.647	0.662	0.666		
Reference	FCTXAV 6;479;68	85ARAE 2;203;77	FEPRA7 10;303;51		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. OPS PC58 out of range. Value: -4.1222. Training min, max, SD, explained variance: -4.0974, 5.4085, 1.034, 0.0039.
- 2. Unknown ECFP_2 feature: 2131425032: [*]\C=C(\C=[*])/C(=[*])[*]
- 3. Unknown ECFP_2 feature: 1000552169: [*]\C=C\1/S[*][*]C1=[*]
- 4. Unknown FCFP_6 feature: 16: [*]:[cH]:[*]
- 5. Unknown FCFP_6 feature: 71476542: [*]:[c](:[*])Cl
- 6. Unknown FCFP_6 feature: 1618154665: [*][c](:[*]):[cH]:[*]
- 7. Unknown FCFP_6 feature: 451371068: [*]C(=C[c](:[*]):[*])[*]

Feature Contribution

Top features for positive contribution					
Fingerprint Bit/Smiles Feature Structure Score					
			-		

ECFP_6	642810091	CI CI	0.281
		N N	
		O H	
		s \hat{b}_0	
		NH O	
		[*][c](:[*]):[*]	
ECFP_6	-1897341097	cı 🔷 cı	0.216
		N O ≼ H	
		0 1 N S	
		NH O	
ECFP_6	577592657	[*]N[*]	0.194
ECFP_6	077592057	CI 🔷 CI	0.194
		O NH	
		s No	
		[*][c]1:[*]:[cH]:[cH]	
		[*][c]1:[*]:[cH]:[cH] :[c](CI):[cH]:1	
	Top Features for ne	egative contribution	
Fingerprint			Score
ECFP_6	2106656448	cı 🔷 cı	-0.352
		N O ≼ H	
		0 N	
		NH O	
FOED 0	047400040	[*]C(=O)[*]	0.000
ECFP_6	-817402818	CI 🔷 CI	-0.263
		O = N	
		0 N S N O	
		\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	
		1 12.	

ECFP_6	-176455838	CI 🔷 CI	-0.257
		O N N	
		o S O	
		[*]O[c](:[cH]:[*]):[c H]:[*]	

C₁₉H₁₂CIN₃O₄S

Molecular Weight: 413.83428

ALogP: 2.363 Rotatable Bonds: 3

Acceptors: 5
Donors: 2

Model Prediction

Prediction: 1.67

Unit: g/kg_body_weight
Mahalanobis Distance: 21.3

Mahalanobis Distance p-value: 2.24e-013

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	PIRETANIDE	1H-1;4- BENZODIAZEPINE-1- CARBOXAMIDE; 2;3- DIHYDRO-N-METHYL-7- NITRO-2-OXO-5-PHENYL-	PIROXICAM		
Structure	O OH NH 2 O SO O OH	N H N O H N O O O O O O O O O O O O O O	OH HNW N		
Actual Endpoint (-log C)	1.811	2.171	3.186		
Predicted Endpoint (-log C)	1.83976	2.64752	2.63418		
Distance	0.568	0.610	0.623		
Reference	DRFUD4 2;393;77	TAKHAA 29;153;70	ARZNAD 28;1714;78		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP_6 feature: 16: [*]:[cH]:[*]
- 3. Unknown FCFP_6 feature: 1618154665: [*][c](:[*]):[cH]:[cH]:[*]
- 4. Unknown FCFP_6 feature: -1678275541: [*]C(=C1C(=[*])[*][*]:[c]1:[*])[*]
- 5. Unknown FCFP_6 feature: 71476542: [*]:[c](:[*])Cl

Feature Contribution Top features for positive contribution Fingerprint Bit/Smiles Feature Structure Score

ECFP_6	642810091	[*][c](:[*]):[*]	0.281
ECFP_6	-1897341097	S N C C I [*]N[*]	0.216
FCFP_6	436915834	0 NH 0 CI	0.184
		or negative contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	2106656448	O= H N O O N O O N H O CI [*]C(=O)[*]	-0.352
ECFP_6	-817402818	O H C C I [*]CI	-0.263

FCFP_6	566058135		-0.216
		[*]NC(=O)C(=[*])[*]	

 $C_{19}H_{11}CI_2N_3O_4S$

Molecular Weight: 448.27933

ALogP: 3.028 Rotatable Bonds: 3

Acceptors: 5
Donors: 2

Model Prediction

Prediction: 0.707

Unit: g/kg_body_weight
Mahalanobis Distance: 21.3

Mahalanobis Distance p-value: 2.05e-013

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds					
Name	PIRETANIDE	OCHRATOXIN A	CLONITRALID		
Structure	O OH NH 2 ON SINGLE OF THE 2 ON	OH OH OH OH OH	CI AND HIN ON O		
Actual Endpoint (-log C)	1.811	4.305	2.816		
Predicted Endpoint (-log C)	1.83976	3.03558	2.74335		
Distance	0.618	0.623	0.640		
Reference	DRFUD4 2;393;77	FCTXAV 6;479;68	85ARAE 3;103;76/77		

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP_6 feature: 16: [*]:[cH]:[*]
- 3. Unknown FCFP_6 feature: 1618154665: [*][c](:[*]):[cH]:[cH]:[*]
- 4. Unknown FCFP_6 feature: -1678275541: [*]C(=C1C(=[*])[*][*]:[c]1:[*])[*]
- 5. Unknown FCFP_6 feature: 71476542: [*]:[c](:[*])Cl

Top features for positive contribution Fingerprint Bit/Smiles Feature Structure Score ECFP_6 642810091 0.281

ECFP_6	-1897341097	NH ON	0.216
ECFP_6	577592657	[*][c]1:[*]:[cH]:[cH]:1	0.194
		or negative contributio	
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	2106656448	O=NH S O O CI NH CI [*]C(=O)[*]	-0.352
ECFP_6	-817402818	ONH CI CI LI	-0.263
FCFP_6	566058135	O=NH O=NH O N O N O N O CI H CI I*]NC(=O)C(=[*])[*]	-0.216

 $C_{21}H_{17}N_3O_4S$

Molecular Weight: 407.44237

ALogP: 2.027 Rotatable Bonds: 5

Acceptors: 5
Donors: 2

Model Prediction

Prediction: 1.93

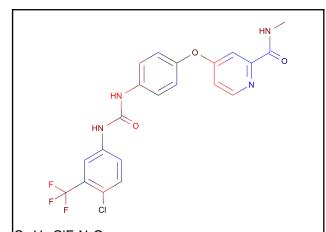
Unit: g/kg_body_weight Mahalanobis Distance: 23.3

Mahalanobis Distance p-value: 2.09e-022

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds			
Name	PIRETANIDE	CARBAMIC ACID; [1-[(5- CYANOPENTYL)CARBAM OYL]BENZIMIDAZOL-2- YL]-; METHYL ESTER	PENICILLIN G; POTASSIUM SALT (K STRIPPED)
Structure	O OH NH 2 O S O	NH H	NH N
Actual Endpoint (-log C)	1.811	2.12	1.698
Predicted Endpoint (-log C)	1.83976	1.78415	1.80749
Distance	0.521	0.571	0.617
Reference	DRFUD4 2;393;77	85ARAE 4;118;76/77	AIPTAK 123;295;60


Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP_6 feature: 16: [*]:[cH]:[*]
- 3. Unknown FCFP_6 feature: 1618154665: [*][c](:[*]):[cH]:[cH]:[*]
- 4. Unknown FCFP_6 feature: -1678275541: [*]C(=C1C(=[*])[*][*][*][c]1:[*])[*]

Top features for positive contribution Fingerprint Bit/Smiles Feature Structure Score ECFP_6 642810091 0.281

ECFP_6	-1897341097	ONH ON	0.216
ECFP_6	1571214559	[*]N[*] ONH ONH ONH (CHI): (C	0.19
		or negative contributio	
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	2106656448	[*]C(=O)[*]	-0.352
ECFP_6	497523368	[*]CNC(=[*])[*]	-0.301
FCFP_6	566058135	[*]NC(=O)C(=[*])[*]	-0.216

C₂₁H₁₆CIF₃N₄O₃

Molecular Weight: 464.82494

ALogP: 4.175
Rotatable Bonds: 6

Acceptors: 4
Donors: 3

Model Prediction

Prediction: 0.823

Unit: g/kg_body_weight Mahalanobis Distance: 21

Mahalanobis Distance p-value: 1.93e-012

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly non-normal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	FLUBENDAZOLE	PHOSPHORAMIDOTHIOIC ACID; ACETIMIDOYL-; O;O-bis-(p- CHLOROPHENYL)ESTER	BEZAFIBRATE	
Structure	N NH O	CI NH	H Z O O O O O O O O O O O O O O O O O O	
Actual Endpoint (-log C)	2.088	5.006	1.946	
Predicted Endpoint (-log C)	2.69288	3.23989	2.54395	
Distance	0.697	0.703	0.721	
Reference	YRTMA6 9;11;78	FMCHA2 -;C149;89	ARZNAD 30;2023;80	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown FCFP_6 feature: 16: [*]:[cH]:[*]
- 3. Unknown FCFP_6 feature: 71476542: [*]:[c](:[*])Cl
- 4. Unknown FCFP_6 feature: 1747237384: [*][c](:[*]):n:[cH]:[*]
 5. Unknown FCFP_6 feature: 1618154665: [*][c](:[*]):[cH]:[cH]:[*]
- 6. Unknown FCFP_6 feature: 136686699: [*]NC

Feature Contribution

Top features for positive contribution Fingerprint Bit/Smiles Feature Structure Score

FCFP_6	71953198	F CI [*]C([*])([*])F	0.392
ECFP_6	-1046436026	[*]F	0.349
ECFP_6	642810091		0.281
	Top Features	for negative contribution	
Fingerprint	Bit/Smiles	Feature Structure	Score
ECFP_6	226796801	[*]C([*])([*])F	-0.32
ECFP_6	-817402818	F = CI [*]CI	-0.263

ECFP_6	-176455838	Ϋ́	-0.257
		N _o o	
		[*]O[c](:[cH]:[*]):[c	
		H]:[*]	

HZ O HZ O Z

Molecular Weight: 398.47378

ALogP: 2.997 Rotatable Bonds: 7 Acceptors: 3

Donors: 3

C₂₂H₂₇FN₄O₂

Model Prediction

Prediction: 2.88

Unit: g/kg_body_weight
Mahalanobis Distance: 23.7

Mahalanobis Distance p-value: 3.38e-024

Mahalanobis Distance: The Mahalanobis distance (MD) is a generalization of the Euclidean distance that accounts for correlations among the X properties. It is calculated as the distance to the center of the training data. The larger the MD, the less trustworthy the prediction.

Mahalanobis Distance p-value: The p-value gives the fraction of training data with an MD greater than or equal to the one for the given sample, assuming normally distributed data. The smaller the p-value, the less trustworthy the prediciton. For highly nonnormal X properties (e.g., fingerprints), the MD p-value is wildly inaccurate.

Structural Similar Compounds				
Name	METHYLERGONOVINE	CLEBOPRIDE; MALATE SALT (MALATE STRIPPED)	DOMPERIDONE	
Structure	HN HN OH	NH 2 CI	HN N N N N N N N N N N N N N N N N N N	
Actual Endpoint (-log C)	3.562	2.168	1.91	
Predicted Endpoint (-log C)	2.94539	2.89926	2.49077	
Distance	0.567	0.599	0.601	
Reference	27ZIAQ -;163;73	OYYAA2 25;803;83	YACHDS 8;3991;80	

Model Applicability

Unknown features are fingerprint features in the query molecule, but not found or appearing too infrequently in the training set.

- 1. All properties and OPS components are within expected ranges.
- 2. Unknown ECFP_2 feature: 980271847: [*][c]1:[*]:[*]:[nH]:[c]:1C=[*]
- Unknown FCFP_6 feature: 19: [*]:[nH]:[*]
 Unknown FCFP_6 feature: 16: [*]:[cH]:[*]
- 5. Unknown FCFP_6 feature: 71476542: [*]:[c](:[*])Cl
- 6. Unknown FCFP_6 feature: 2005402822: [*][c]1:[*]:[c]([*]):[nH]:1
- 7. Unknown FCFP_6 feature: 203707511: [*][c]1:[*]:[nH]:[c]:1C=[*]
- 8. Unknown FCFP_6 feature: -1678275541: [*]C(=C1C(=[*])[*][*]:[c]1:[*])[*]
- 9. Unknown FCFP_6 feature: 451371068: [*]C(=C[c](:[*]):[*])[*]
- 10. Unknown FCFP_6 feature: 1618154665: [*][c](:[*]):[cH]:[cH]:[*]

Feature Contribution Top features for positive contribution Fingerprint Bit/Smiles Feature Structure Score

ECFP_6	-1046436026	NH	0.349
		NH NH	
		[*]F	
ECFP_6	642810091	NH O NH NH	0.281
		[*][c](:[*]):[*]	
FCFP_6	1852108031	P NH O NH O	0.226
		[*]CCN(CC)CC	
	Top Features for ne	egative contribution	
Fingerprint			Score
ECFP_6	2106656448	NH O NH O NH	-0.352
		[*]C(=O)[*]	
ECFP_6	497523368	NH O NH N	-0.301
		[*]CNC(=[*])[*]	

FCFP_6	566058135		-0.216
		NH O	
		NH	
		0 N	
		[*]NC(=O)C(=[*])[*]	