SUPPLEMENTAL INFORMATION:

Obesity reprograms the pulmonary polyunsaturated fatty acid-derived lipidome, transcriptome, and gene-oxylipin networks

Rafia Virk¹, Nicole Buddenbaum¹, Abrar Al-Shaer¹, Michael Armstrong², Jonathan Manke², Nichole Reisdorph², Selin Sergin³, Jenifer I. Fenton³, E. Diane Wallace⁴, Brandie M. Ehrmann⁴, Hannah B. Lovins⁵, Kymberly M. Gowdy⁵, M Ryan Smith^{6,7}, Gregory Smith^{8,9}, Samir Kelada^{8,9}, and Saame Raza Shaikh¹

¹Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill NC USA

²Department of Pharmaceutical Sciences, University of Colorado Denver Anschutz Medical Campus, Aurora CO USA

 ³Department of Food Science and Human Nutrition, College of Agriculture and Natural Resources and College of Osteopathic Medicine, Michigan State University, East Lansing Michigan USA
⁴Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill NC USA
⁵Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus OH USA
⁶Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta GA USA

⁷Atlanta Department of Veterans Affairs Medical Center, Decatur, GA, USA ⁸Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill NC USA ⁹Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill NC USA

Supplemental Figure S1: Pulmonary inflammatory profile of C57BL/6 mice consuming a high fat diet. The gene expression of (A) C-X-C motif chemokine ligand 1 (CxCl1), (B) C-X-C motif chemokine ligand 2 (CxCl2), (C) CC motif chemokine ligand 2 (CCl2), (D) CC motif chemokine ligand 2 (CCl2), (E) tumor necrosis factor alpha (TNF α), and (F) interleukin 1 beta (IL-1 β) was determined by real-time PCR analysis of lung tissue for C57BL/6J male mice that either consumed a lean control or a high fat diet (HFD) for 15 weeks. (G) Differential cell counts, (H) percentage of macrophages, (I) percentage of neutrophils, and (J) total protein in bronchoalveolar lavage fluid (BALF). Data are mean ± SEM from 5-6 mice per group for A-F and 10 mice per group for G-J. *P < 0.05 from unpaired t-test.

Supplemental Figure S2: The concentration of select pulmonary fatty acids is increased with a high fat diet. (A) Palmitic acid, (B) oleic acid, (C) linoleic acid, (D) arachidonic acid, (E) n-6 docosapentaenoic acid (DPAn-6), (F) n-3 docosapentaenoic acid (DPAn-3), (G) eicosapentaenoic acid (EPA), and (H) docosahexaenoic acid (DHA). C57BL/6J male mice consumed a lean control or a high fat diet (HFD) for 15 weeks. Isolated left lungs at age 21-22 weeks were used for targeted gas chromatography analysis. Data are mean \pm SEM from 7-8 mice per group. *P < 0.05 from unpaired t-test.

Supplemental Figure S3: Metabolic profile of a genetic model of obesity. (A) Body weights. (B) Fat mass and (C) lean mass obtained by Echo MRI. (D) Fasting glucose and (E) fasting insulin levels after a 5 h fast. (F) Glucose tolerance test completed after a 5 h fast by intraperitoneal injection of glucose. For all measurements, genetically obese (*ob/ob*) male mice and lean control mice were purchased from Jackson Laboratory at 7 weeks of age and were fed normal chow for 3 weeks. Metabolic characterization was conducted at age 10 weeks where the body weights were matched with the body weights of mice fed a high fat diet. Data are mean \pm SEM from 7-8 mice per group. **P <0.01, ***P < 0.001, ****P < 0.0001 from unpaired t-test for A through E and 2-way ANOVA with Šídák's multiple comparisons test for F.

Supplemental Figure S4: Heat maps for immune-related and lipid-metabolism-related pathways and biological processes in response to high fat diet. (A) B-cell differentiation, (B) B-cell receptor signaling, (C) cell redox homeostasis, (D) glycerophospholipid metabolism, (E) immune system, (F) innate immune, (G) Peroxisome, (H) Phagocytosis, (I) phosphatidylinositol signaling system, and (J) response to oxidative stress. The heat map data are normalized to z-scores for the top 15 genes with the greatest absolute fold change and lowest adjusted p-value. C57BL/6J male mice consumed a control diet or an experimental high fat diet (HFD) for 15 weeks. N = 7-8 mice per group. All depicted pathways and biological processes are significant based on differential gene expression (DeSeq) analysis in R with Benjamani-Hochberg p-adjusted < 0.1.

Compound	Fatty acid precur sor	Associa ted pathwa v	Retenti on time	MRM	CE	R ²	LOD (pg)	LLOQ (pg)	ULOQ (pg)	Internal Standard
Resolvin E1 (RVE1)	EPA	CYP/5- LOX	5.5	349.2>107 .0	14	0.993	0.353	1.25	250	8-iso-PGF2a- d4
8-iso-15R-PGF2a	AA	ROS	7.48	353.2>193 .1	16	0.991	0.34	2.5	250	8-iso-PGF2a- d4
8-iso-PGF2a	AA	ROS	7.62	353.2>193 .1	16	0.995	0.717	1.25	250	8-iso-PGF2a- d4
Thromboxane B2 (TXB2)	AA	COX	7.66	369.2>168 .9	18	0.993	0.103	1.25	5000	8-iso-PGF2a- d4
(11B)PGF2a	AA	COX	7.83	353.2>193 .1	16	0.995	0.193	0.25	250	8-iso-PGF2a- d4
PGE2	AA	COX	8.42	351.2>315 .2	8	0.998	0.126	0.25	5000	PGE2-d4
Resolvin D3 (RVD3)	DHA	15- LOX	8.48	375.2>146 .9	14	0.997	0.365	0.5	250	PGE2-d4
PGF2a	AA	COX	8.51	353.2>309 .2	16	0.997	0.06	0.25	5000	PGF2a-D9
Prostaglandin D ₂	AA	COX	8.64	351.2>315 .3	10	0.996	0.173	0.5	5000	PGF2a-D9
Resolvin D2 (RVD2)	DHA	15- LOX	8.78	375.2>141 .0	13	0.995	0.793	1.25	250	Resolvin D2- d5
Lipoxin B4 (LXB4)	AA	5-LOX	8.85	351.2>220 .9	14	0.995	0.614	1.25	250	Resolvin D2- d5
6α -Prostaglandin I_1	AA	COX	9.41	353.2>129 .0	22	0.994	0.054	0.5	5000	8-iso-PGF2a- d4
Resolvin D1 (RVD1)	DHA	15- LOX	9.54	375.2>141 .0	13	0.998	0.19	0.5	250	Resolvin D1- d5
17(R)-Resolvin D1 (17R-RVD1)	DHA	15- LOX	9.63	375.2>140 .9	14	0.995	0.072	0.5	250	Resolvin D1- d5
Lipoxin A4 (LXA4)	AA	5-LOX	9.79	351.2>114 .9	13	0.997	0.249	0.5	250	Resolvin D2- d5
15(R)Lipoxin A4 (15R-LXA4)	AA	5-LOX	9.81	351.2>114 .9	14	0.997	0.125	1.25	250	Resolvin D2- d5
LTD4	AA	5- LOX/G ST	10.47	495.3>176 .9	17	0.994	0.063	1.25	250	LTD4-d5
7S Maresin R1	DHA	12- LOX	11.96	359.2>250 .0	9	0.994	0.488	5	250	Resolvin D2- d5
10,17-DiHDoHE	DHA	15- LOX	12.34	359.2>153 .0	13	0.994	0.245	0.25	250	LTB4-d4
LTE4	AA	5- LOX/G ST	12.38	438.2>333 .1	17	0.991	0.205	0.25	250	LTE4-d5
7R Maresin R1	DHA	15- LOX	12.41	359.2>250 .0	17	0.997	0.908	5	250	LTB4-d4
Resolvin D5 (RVD5)	DHA	15- LOX	12.41	359.2>199 .0	14	0.996	0.133	1.25	250	LTB4-d4
LTB4	AA	5-LOX	12.9	335.2>195 .1	13	0.999	0.121	0.25	5000	LTB4-d4
18-HEPE	EPA	15- LOX	15.02	317.2>299 .0	14	0.994	2.311	5	5000	LTB4-d4
12-HEPE	EPA	12- LOX	15.86	317.2>299 .0	14	0.995	1.848	5	5000	LTB4-d4
13-HODE	LA	15- LOX	16.4	295.2>277 .1	18	0.997	0.897	25	5000	9(S)-HODE- d4
13-OxoODE	LA	15- LOX	16.48	293.2>113 .0	22	0.999	1.059	5	5000	LTB4-d4
9-HODE	LA	NA	16.61	295.2>277 .0	18	0.998	0.934	12.5	5000	9(S)-HODE- d4
15-HETE	AA	15- LOX	16.78	319.2>219 .1	9	0.997	0.545	2.5	5000	LTB4-d4
17-HDHA	DHA	15- LOX	16.82	343.2>281	9	0.992	3.624	5	5000	LTB4-d4

9-OxoODE	LA	NA	16.84	293.2>185 .0	22	0.997*	0.163	0.25	5000	9(S)-HODE- d4
14-HDHA	DHA	12- LOX	17.12	343.2>205 .0	9	0.995	0.172	1.25	5000	LTB4-d4
12-HETE	AA	12- LOX	17.4	319.2>178 .7	13	0.995	0.188	1.25	5000	9(S)-HODE- d4
8-HETE	AA	ROS	17.51	319.2>154 .9	13	0.997	0.605	1.25	5000	LTB4-d4
5-HETE	AA	5-LOX	18.08	319.2>115 .0	9	0.998*	2.035	2.5	5000	5(S)-HETE-d8
14(15)-EET	AA	СҮР	18.1	319.2>301 .1	10	0.998	0.269	0.5	250	9(S)-HODE- d4
11(12)-EET	AA	СҮР	18.65	319.2>178 .8	10	0.995	0.089	0.25	250	9(S)-HODE- d4
Carbocyclic Thromboxane A ₂	AA	COX	18.76	347.3>247 .0	22	0.995	0.647	1.25	250	9(S)-HODE- d4
8(9)-EET	AA	СҮР	18.86	319.2>301 .1	10	0.996	0.925	5	250	9(S)-HODE- d4

		Interna	al Standard	<u>ls</u>		
Compound	Fatty acid precur sor	Associa ted pathwa y	Retenti on time	MRM	CE	Conc. (pg/on column)
8-iso-PGF2a-d4	AA	ROS	8.1	357.2>197 .1	26	50
PGE2-d4	AA	COX	8.38	355.2>319 .2	8	50
PGF2a-D9	AA	COX	8.44	362.3>318 .3	21	50
Resolvin D2-d5	DHA	15- LOX	8.73	380.2>141 .0	13	50
Resolvin D1-d5	DHA	15- LOX	9.48	380.2>141 .0	13	50
LTD4-d5	AA	5- LOX/G ST	10.42	500.3>176 .8	18	50
LTE4-d5	AA	5- LOX/G ST	12.34	443.3>338 .2	18	50
LTB4-d4	AA	5-LOX	12.86	339.2>197 .1	13	50
9(S)-HODE-d4	LA	NA	16.54	299.3>281 .3	18	50
5(S)-HETE-d8	DHA	5-LOX	17.99	327.3>115 .9	14	50

*These compounds use a quadratic fit; all other compounds use linear fit

Fatty acid precursors; AA=arachidonic acid, DHA=docosahexaenoic acid, EPA=eicosapentaenoic acid,

LA=linoleic acid

 $\label{eq:second} Associated \ pathway; COX=cyclooxygenase, \ CYP=cytochrome-p450, \ GST=glutathione \ S-transferase, \ 5-LOX=5-lipoxygenase, \ S-LOX=5-lipoxygenase, \ S-LO$

12-LOX=12-Lipoxygenase, 15-LOX=15-lipoxygenase,

ROS=reactive oxygen species

Supplemental Table S1: MRM detection parameters and quantitation limits for all compounds, including internal standards utilizing a fixed fragmentor voltage of 380 V. All compounds demonstrated a linear calibration fit unless otherwise noted. Limit of detection (LOD), lower limit of quantitation (LLOQ) and upper limit of quantitation (ULOQ) were also evaluated.

KEGG					List	Рор	Рор	Fold			
Pathway	Count	%	PValue	Genes	Total	Hits	Total	Enrichment	Bonferroni	Benjamini	FDR
				TRAM1, SAR1B, RPN1, HSPA4L, UBE2D3,							
				UBE2D2A, HSPBP1, UBE2J1, SEC61A1,							
				HSPH1, BAG2, LMAN2, SKP1A, UBQLN2,							
				TXNDC5, BCAP31, XBP1, SEC13, HSPA5,							
				AMFR, EDEM2, SSR3, DNAJB12, UBE2E2,							
Protein				HSPA2, RAD23B, EIF2S1, SVIP, PDIA6,							
processing in				CKAP4, PDIA4, DNAJC3, NPLOC4, DADI,							
endoplasmic	42	2 2 2 1	7.520.11	DNAJA2, DNAJB11, STT3A, P4HB, CRYAA,	(2)(1.0	7(01	2.071	2.005.09	2.005.09	2.025.09
reticulum	42	2.281	7.53E-11	SEC24D, HSPAIB, VIMP	020	108	/091	3.071	2.09E-08	2.09E-08	2.02E-08
				GALNIIZ, CHPF, UASI, ACSMI, NAGLU,							
				ALC2 ALC11 CMDL MAT1A ACSL2							
				ALO2, ALO11, CMDL, MATTA, ACSLS,							
				ACOTI SUCI C2 LAD2 ALCIOP CNE							
				IDDV LIGTAA NDUED11 DDN1 ATD51							
				IADI ADHT AKT AKS IDHB FRD							
				I DHA FUT9 PPCS AI DH3B1 RDH10							
				ATP5D PGK1 ST3GAL6 HMGCLL1 MPST							
				GGT6 ST8SIA1 IDH1 GEPT2 GEPT1							
				ASNS DHCR24 MCAT PRDX6 PAICS							
				ODPR POLAL SOLE GRHPR HAL GCLC							
				ADI1. CYP2S1. STT3A. ALPL, PLCH1.							
				ALDH18A1, GALNTL6, GCLM, GALK1,							
				GLT28D2, B4GALT1, ALAS1, PYCRL,							
				HIBADH, TAT, PIGYL, GMPPB, SMPD3,							
				THTPA, SPTLC1, ALDH2, SPTLC3, SMPD1,							
				RFK, B3GALT2, AOX3, DBT, ME1, IDS,							
				HIBCH, COX8A, CBR2, CERS3, CBR1,							
				PCYT1B, UGT1A1, SPHK2, AKR1A1,							
				AMPD1, PLA2G4A, NDUFC2, NME5,							
				UGT1A6A, FH1, UGT1A6B, CYP2A5,							
				ACOX2, TST, BDH1, DAD1, IMPAD1,							
				ALDH1A1, ITPKA, AGPS, AGXT, TKT,							
				FBP1, ALDH1A7, PAFAH1B2, ATP6V1B1,							
				PDXK, OAT, PCX, NDUFB5, HDC, ODC1,							
				HSD17B12, UQCR10, SGMS2, PTGS2,							
				HSD17B10, PAPSS1, CKMT1, GMDS,							
				MAT2A, HSD17B2, MGAT3, BPNT1,							
				MGAT2, ATP6V0E2, PRPS1L3, CBR3,							
				GALNT5, GALNT3, GCH1, TPK1, PTGES2,							
				PIGES3, C1GALT1, MBOAT1, GCK, POLE4,							
Metabolic	1.00	0.01	1 725 63	CESID, PSATI, CESIE, MGAT4A, POLE3,	(2)	10.00	7.01	1.540	4.015.05	0.415.05	2 225 65
pathways	160	8.691	1./3E-09	UUX	626	1269	7691	1.549	4.81E-07	2.41E-07	2.32E-07
Matabaliana C				GSTM4, CBK2, CBK1, GSTM2, UGTTA1,							
wenchictize h				USIUI, EPHAI, USII3, MUSII, ADH/,							
autochromo				OUTTAOA, UUTTAOD, ALDHJAT, AKK/AJ, CSTA4 CSTA2 ALDHJAT CVD2S1							
P450	22	1 105	1 355 00	CVD2E2 CSTM7 CSTM6 CDD2	676	61	7601	1 222	374E 06	1 25E 04	1 20E 06
1430	22	1.173	1.55E-08	$C 11 21^2$, $O S 11 11$, $O S 11 10$, $C D K 3$	020	04	/071	4.223	3.74E-00	1.23E-00	1.200-00

				GSTM4, GSTM2, GPX2, GGT6, GSTO1,							
				IDH1, ODC1, GSTT3, MGST1, GPX8, PGD,							
Glutathione				GCLC, GSTA4, GSTA3, LAP3, GCLM,							
metabolism	18	0.978	8.61E-07	GSTM7, GSTM6	626	55	7691	4.021	2.39E-04	5.98E-05	5.77E-05
				PHYH, ACSL1, IDH1, MPV17L, MPV17L2,							
				ACSL3, SOD2, DDO, SOD1, PRDX5,							
				SLC25A17, ACOX2, PRDX1, AGPS,							
Peroxisome	18	0.978	2.98E-04	NUDT19, FAR1, AGXT, HMGCLL1	626	83	7691	2.664	7.95E-02	1.18E-02	1.14E-02
				YWHAE, SERPINE1, PRKCZ, ACTG1,							
				SOX2, PPP1CB, PPP2CA, WNT11, CCND1,							
				YWHAQ, CDH1, YWHAH, FZD3, SMAD4,							
Hippo				WNT7B, TRP73, FZD8, YWHAZ, PPP1CA,							
signaling				MOB1B, MOB1A, PPP2R2C, PPP2R2B,							
pathway	26	1.412	4.49E-04	CTNNB1, BMPR1B, BMPR1A	626	151	7691	2.115	1.17E-01	1.56E-02	1.50E-02
				FTL1, FTH1, TRF, MT2, MT1, ATP1A1,							
Mineral				SLC5A1, STEAP1, ATP1B1, STEAP2,							
absorption	11	0.598	8.51E-04	SLC39A4	626	39	7691	3.465	2.11E-01	2.63E-02	2.53E-02
				CYFIP2, POP7, SEH1L, DDX20, RASL2-9,							
				SUMO3, NUP62, EIF4E, RPP38, EIF2B5,							
				RANBP2, SEC13, EIF2B2, EIF1AX, THOC3,							
				EIF2S1, EEF1A1, EIF5, NUP50, CLNS1A,							
				GEMIN4, NUP98, RPP25, EIF3C, EIF1A,							
RNA transport	27	1.467	1.19E-03	RAN, EIF3B	626	170	7691	1.951	2.82E-01	3.01E-02	2.90E-02
				GLT28D2, B4GALT1, DAD1, MGAT4A,							
N-Glycan				ALG5, RPN1, ALG2, MGAT3, STT3A,							
biosynthesis	12	0.652	1.56E-03	MGAT2, ALG11, ALG10B	626	49	7691	3.009	3.53E-01	3.62E-02	3.49E-02
Sulfur				MPST TST IMPAD1 RPNT1 PAPSS1							
metabolism	5	0.272	3.91E-03	WII 51, 151, IWII AD1, DI WI1, I AI 551	626	9	7691	6.826	6.63E-01	8.36E-02	8.06E-02

Supplemental Table S2: Downregulated Kegg Pathway enrichment results. Significantly downregulated genes based on differential gene expression (DeSeq) analysis with Benjamani-Hochberg p-adjusted < 0.1 were used for KEGG pathway generation. After KEGG pathway results were generated, only pathways with Benjamani-Hochberg p-adjusted < 0.1 are presented.

					List	Рор	Рор	Fold			
KEGG Pathway	Count	%	PValue	Genes	Total	Hits	Total	Enrichment	Bonferroni	Benjamini	FDR
				PDGFRA, PLA2G4F, DGKD, CHKA,							
				SLC44A2, PRKCB, PLA2G4B, DGKA,							
Choline metabolism in		1.28	1.25E-	WAS, PIK3CD, TSC1, DGKZ, PIK3R5,							1.72E
cancer	18	3	04	PLD2, MAPK10, DGKQ, RPS6KB2, DGKH	474	101	7691	2.892	3.16E-02	1.84E-02	-02
				SYK, MYO10, PRKCB, PRKCD, WAS,							
				ASAP3, PIK3CD, PIK3R5, PLD2, FCGR1,							
Fc gamma R-mediated		1.14	1.57E-	INPP5D, RPS6KB2, AMPH, DOCK2,							1.72E
phagocytosis	16	0	04	FCGR2B, LAT	474	84	7691	3.091	3.96E-02	1.84E-02	-02
				DGKD, PRKCB, DGKA, PIK3CD, OCRL,							
				DGKZ, PIK3R5, INPP4A, PIKFYVE,							
Phosphatidylinositol		1.21	2.50E-	INPP5D, DGKQ, INPP5K, IP6K1, PLCD3,							1.72E
signaling system	17	2	04	PLCB2, IP6K2, DGKH	474	97	7691	2.844	6.23E-02	1.84E-02	-02
				CR2, CD72, SYK, PIK3CD, MALT1,							
B cell receptor signaling		0.99	2.86E-	RASGRP3, PIK3R5, IKBKB, INPP5D,							1.72E
pathway	14	8	04	CD19, PTPN6, FCGR2B, CD22, CARD11	474	70	7691	3.245	7.09E-02	1.84E-02	-02
				PLA2G4F, DGKD, PCYT2, CHKA,							
				PNPLA7, PLA2G4B, DGKA, PLD4, TAZ,							
Glycerophospholipid		1.14	5.59E-	DGKZ, PLD2, PLA2G15, DGKQ, PNPLA6,							2.68E
metabolism	16	0	04	LPIN2, DGKH	474	94	7691	2.762	1.34E-01	2.87E-02	-02
				CSF1R, TAF15, CCNT2, CSF2, LDB1,							
				LMO2, ASPSCR1, PAX5, TRAF1, RUNX2,							
				ETV5, BAIAP3, FCGR1, RXRB, LYL1,							
Transcriptional		1.56	1.13E-	HHEX, MAF, EWSR1, IL2RB, ITGB7,							4.53E
misregulation in cancer	22	8	03	HIST2H3C1, GRIA3	474	165	7691	2.163	2.53E-01	4.85E-02	-02
				STAT5A, IL15RA, PIAS3, STAT5B, CSF2,							
				IL15, STAT2, PIK3CD, IFNLR1, TYK2,							
Jak-STAT signaling		1.42	1.36E-	CSF2RA, PIK3R5, LEP, IL2RB, IL3RA,							4.56E
pathway	20	6	03	IL21R, EP300, PTPN6, IL7R, JAK3	474	145	7691	2.238	2.95E-01	4.88E-02	-02
				IKBKB, MAPK10, NLRP1B, NAIP5,							
NOD-like receptor		0.78	2.22E-	NLRP1A, NAIP6, CARD9, NLRP3, NOD1,							5.92E
signaling pathway	11	4	03	NLRC4, MEFV	474	57	7691	3.131	4.35E-01	6.34E-02	-02
				MAP3K3, PLA2G4F, PRKCB, PLA2G4B,							
				PRKCD, ADCY4, ADCY3, ADCY7, PLD2,							
		0.99	2.63E-	MAPK10, MAPK7, GNRH1, CAMK2G,							6.31E
GnRH signaling pathway	14	8	03	PLCB2	474	88	7691	2.581	4.92E-01	6.76E-02	-02

Supplemental Table S3: Upregulated Kegg Pathway enrichment results. Significantly upregulated genes based on differential gene expression (DeSeq) analysis with Benjamani-Hochberg p-adjusted < 0.1 were used for KEGG pathway generation. After KEGG pathway results were generated only pathways with Benjamani-Hochberg p-adjusted < 0.1 are presented.

Biological					List	Рор	Рор	Fold			
Process	Count	%	PValue	Genes	Total	Hits	Total	Enrichment	Bonferroni	Benjamini	FDR
				SPAG16, TTC26, SPEF2, TRAF3IP1, ULK4, CBY1, CDC14A, TCTN2, IQUB, TMEM107, TEKT3, NEK1, IFT57, SNAP29, DNAAF1, CCDC113, RFX3, KIF24, NME5, RPGRIP1L, WDR35, KIF27, IFT88, FAM161A, IFT81, TMEM216, WDPCP, RABL2, SSX2IP, CCN0, UNC119B, INTU, ARL6.							
cilium morphogenesis	54	2.933	1.53E-18	ARL3, DYNC2LI1, IFT74, ARL13B, RAB23, TMEM67, NPHP3, TTC30A1, TTC30A2, D1ERTD622E, BBS1, IFT122, FOXJ1, PARVA, TMEM231, DNAIC2, TTC8, TMEM17, TTC30B, B9D1, ATXN10	1461	170	18082	3.931	6.18E-15	6.18E-15	6.15E- 15
ailium				SPAG16, TTC26, INTU, TRAF3IP1, ARL6, CBY1, CDC14A, DYNC2L11, IFT74, ARL13B, TMEM67, RAB23, TCTN2, TMEM107, NEK1, TTC30A1, TTC30A2, IFT57, SNAP29, BBS1, CCDC113, RFX3, IFT122, FOX11, KIF24, NME5, RPGRIP1L, WDR35, KIF27, TMEM231, DNAIC2, TTC8, IFT88, TMEM17, FAM161A, TTC30B, IFT81, TMEM216, POD1, WDPCB, PAPL 2, ATXN10							2 295
assembly	44	2.390	1.68E-16	SSX2IP. CCNO	1461	129	18082	4.221	9.00E-13	3.40E-13	5.56E- 13
call projection				SPAG16, UNC119B, INTU, CCDC67, TRAF3IP1, ARL6, CCDC103, AK7, DYNC2L11, IFT74, DCDC2A, TMEM67, TCTN2, TMEM107, IQUB, NEK1, TTC30A1, TEKT4, TTC30A2, SNAP29, D1ERTD622E, DNAAF3, CCDC113, PIFO, IFT122, FOXJ1, KIF24, PARVA, WDR35, KIF27, TMEM231, DNAIC2, TTC8, RP1, IFT88, TMEM17, EAML61A, TTC30P, IET81, TMEM216, ABMC4							2 00E
organization	45	2.444	2.30E-14	B9D1, WDPCP, SSX2IP, CCNO	1461	151	18082	3.688	9.31E-11	3.11E-11	5.09E- 11
cell redox homeostasis	22	1.195	1.85E-08	TXN1, TXNDC9, PRDX6B, PTGES2, NXN, GLRX5, TXNRD1, TXNL1, DNAJC16, PDIA6, PRDX6, PDIA4, GCLC, PRDX5, PRDX4, SCO1, TMX1, PRDX1, QSOX1, P4HB, VIMP, TXNDC5	1461	65	18082	4.189	7.51E-05	1.72E-05	1.71E- 05
protein folding	32	1 738	2 125 08	TXN1, HSPA4L, TUBA1B, DNAJB6, BAG2, DNAJB4, QSOX1, CCT5, TXNDC5, CCT4, CCT3, RANBP2, RIC3, NUDC, ST13, VBP1, TXNL1, AHSA1, TBCC, PDIA6, PDIA4, CCT6A, TMX1, DNAJA4, CDC37, TCP1, DNAJA2, DNAJB11, PEDN1, PAHB, EKBP4, CPXAA	1461	128	18082	3 094	8 50E 05	1 72E 05	1.71E- 05
oxidation- reduction	32	1./38	2.12E-08	TYDINI, PHED, FRDP4, CKTAA TXN1, DHRS13, PYCRL, SRXN1, HIBADH, LOXL2, CHCHD4, AKR7A5, ALDH2, IYD, FADS6, FTH1, AOX3, ME1, QSOX1, ME2, CBR2, CBR1, PHYH, GPX2, GST01, DI01, AKR1A1, GPX8, NDUFC2, PGD, PTGR1, CYP39A1, ALDH3A1, POR, ACOX2, ASPH, BDH1, TMX1, ALDH1A1, AGPS, AKR1C13, BLVRB, FAR1, STEAP1, STEAP2, ALDH1A7, FTO, NXN.	1401	128	10082	3.094	0.39E-03	1.72E-03	2.62E-
process	93	5.052	4.44E-07	NDUFB11, NDUFB5, MGST1, HSD17B12,	1461	676	18082	1.703	1.80E-03	2.64E-04	04

				UQCR10, ADH7, PTGS2, HSD17B10, DDO, LDHB, PRDX5, LDHA, PRDX4, RDH10, AGMO, PRDX1, CREG1, ALDH3B1, HSD17B2, CYP2F2, CHML, CBR3, MDH1B, CYB5B, SDR42E1, NQO1, WWOX, IDH1, TXNRD1, TXNL1, BBOX1, DHCR24, FMO3, DOHH, FAM213A, SOD2, CP, PRDX6, SOD1, HIGD2A, QDPR, SQLE, GRHPR, ADI1, CYP2S1, PIR, ALDH18A1, CYB561, UOX							
positive regulation of telomerase RNA localization to Cajal body	10	0 543	4 55E-07	CCT6A, CCT3, SHQ1, RUVBL1, TCP1, NHP2, NAF1_CCT5_NOP10_CCT4	1461	15	18082	8 251	1 84E-03	2 64E-04	2.62E- 04
		10.91	4.552-07	SLC23A2, PITPNA, AQP4, SLC4A4, ABRA, NIPAL4, CCDC91, COG8, STARD4, RBP4, RBP2, NUP98, BLZF1, SLC45A4, UNC119B, SEH1L, SLC45A3, ABCB6, SAR1B, SLC35D3, MTTP, ATP5J, SLC5A1, SLC5A3, GABARAP, SEC14L3, SCFD2, KCNMB1, TTPA, KCNMB2, ATP5D, KCNMB4, APOB, RAB11FIP4, SLC10A5, XBP1, SLC16A12, RAB39B, SLC16A11, CP, FXYD6, CLIC6, ARF4, ARF1, TRAM1, RAB7, ORM1, SLC35F3, SRPR, SLC7A11, OSBPL10, SERP1, CHMP1A, TMED2, TSP0, TMED7, SEC13, SLC2A12, SLC39A11, COMMD1, TMC5, SORCS2, VAMP8, CLDN10, RAMP3, SYPL, RASL2-9, UQCR10, SLC7A1, SLC7A2, LMAN2, ATP6V0E2, YKT6, BCAP31, RANBP2, GABRP, LRRC26, DYNLT1B, YIF1A, TMC01, RABIF, TTC8, ESYT3, CYB561, TXN1, MTC12, SYS1, GOLT1B, RAB3D, HDLBP, TOMM20, CHCHD4, LAPTM4B, SLC39A9, SLC16A7, TMEM38B, KPNA3, SLC39A4, KPNA1, KCNH3, SLC38A1, MMG71, SLC30A4, THOC3, ATP1B1, STIM1, TMX1, SCNN1B, SCG5, CHMP4B, RAB38, STEAP1, STEAP2, SLC26A2, TMED10, NDUFB11, KCNE4, ARL6, ARL3, SLC1A1, SLC01A5, SLC1A4, LIN7C, G3BP2, AP4S1, RAB6B, AP1M2, RAB4A, OSBPL3, M6PR, BSPRY, HIGD2A, 2610002M06RIK, CHMP2B, SPIRE2, IFT27, DYNLRB2, PLEKHF2, SLC48A1, OSCP1, TTC26, SFT2D3, SLC2A1, TRF, PCTP, BICD1, SEC61A1, MFSD5, NUP62, TNP01, SNAP29, ABCC3, EIF5A, JAGN1, ABCC1, DYNLT3, NDUFC2, VPS37A, VPS37B, DDX19A, SLC25A17, CHMP3, SLC25A10, SEC22B, SLC25A5, SLC25A13, SEC22C, NDUFB5, RAB1B, GOSR2, ATP10A, SLC3A2, ATP1A1, ATP2C2, RAB25, RAB23.			10082	0.231	1.8+L-03	2.0+L-0+	1.28E-
transport	201	8	2.54E-06	IGF2BP2, HNRNPA1, LRRC8E, SLC25A25,	1461	1822	18082	1.365	1.02E-02	1.29E-03	03

				SLC25A24, SLC12A2, D1ERTD622E, TIMM8B, CYB5B, KCNJ8, TMEM30B, TXNL1, KCNIP4, LCA5, KCNJ15, GOLPH3, CLCN5, RAB15, RAB18, KCNK1, KCNK2, SLC25A33, FOLR1, RAN, SLC25A35							
ventricular											
system	10	0.542	1.05E.05	BBS1, MBOAT7, ULK4, ARMC4, HYDIN, NME5,	1461	20	19092	C 100	4 195 02	4745.02	4.72E-
development	10	0.543	1.05E-05	MNATT, DPCD, AK8, KIF27	1461	20	18082	6.188	4.18E-02	4.74E-03	03
				TACSTD2, TWF1, SLC3A2, BZW1, FAM129B.							
				CNN3, LDHA, BAG3, EPCAM, PRDX1, BSG,							
				EIF4H, SFN, RPS2, LRRFIP1, EMD, YKT6,							
				SPTBN2, NUDC, IDH1, AHSA1, PARVA,							
cell-cell	24	1 9 4 7	1.06E.05	YWHAZ, PRDX6, PAICS, EIF5, VAPA, GIPC1,	1461	190	10000	2 226	7.65E.02	7 42E 02	7.39E-
adhesion	54	1.647	1.90E-03	DI EKHEZ TTC26 ADE4 DAB7 ADE1 TDAM1	1401	169	16062	2.220	7.03E-02	7.45E-05	05
				SYS1 SFT2D3 GOLT1B RAB3D TOMM20							
				ABRA, CHCHD4, SEC61A1, CCDC91, SERP1,							
				NUP62, CHMP1A, TNPO1, KPNA3, SNAP29,							
				KPNA1, EIF5A, SEC13, JAGN1, COG8, VPS37A,							
				COMMD1, VPS37B, VAMP8, DDX19A, CHMP3,							
				CHMP4B, RAB38, NUP98, SEC22B, BLZF1,							
				SEC22C, UNC119B, RAMP3, SEH1L, TMED10,							
				SAKIB, AKLO, KABIB, AKLO, GUSKZ, KASLZ-9,							
				DAR23 I MAN2 ADIS1 VETE DAR6R ADIM2							
				D1FRTD622E BCAP31 RANBP2 TIMM8B							
				RAB4A, XBP1, LCA5, RAB39B, YIF1A, RABIF.							
protein				GOLPH3, TTC8, 2610002M06RIK, RAB15,							7.39E-
transport	78	4.237	2.02E-05	CHMP2B, RAB18, SPIRE2, IFT27, RAN	1461	592	18082	1.631	7.85E-02	7.43E-03	03
intraciliary				TTC26, IFT74, TTC30B, TRAF3IP1, IFT81, ARL3,							8.34E-
transport	11	0.598	2.68E-05	LCA5, IFT27, TTC30A1, TTC30A2, IFT57	1461	27	18082	5.042	1.03E-01	8.38E-03	03
axoneme	10	0.540	0.000.05	SPAG16, RP1, LRGUK, RSPH1, RSPH4A, SPEF2,	1461	22	10000	5 (0)	1.025.01	0.005.00	8.34E-
assembly	10	0.543	2.69E-05	KSPH9, AK7, GAS8, CCDC40	1461	22	18082	5.626	1.03E-01	8.38E-03	1.25E
detection of	7	0.280	4 22E 05	STIMI, KCNMBI, KCNMB2, KCNMB4, CALM3,	1461	10	19092	8 661	1.61E.01	1.25E.02	1.25E- 02
	/	0.380	4.55E-05	EIE2B5 XBP1 SDE2L1 HSPA5 EAM129A	1401	10	16062	8.004	1.01E-01	1.25E-02	02
response to				THBS1_EIF2S1_PDIA6_PDIA4_UFM1_TMX1							
endoplasmic				TMEM33, STC2, UFC1, TMBIM6, P4HB, NRBF2,							2.47E-
reticulum stress	18	0.978	9.35E-05	TXNDC5	1461	76	18082	2.931	3.15E-01	2.48E-02	02
glutathione				GSTM4, GSTM2, GGT6, GSTO1, IDH1, GSTT3,							
metabolic				MGST1, SOD2, SOD1, GCLC, GSTA4, GSTA3,							2.47E-
process	14	0.760	9.80E-05	GCLM, GSTM7	1461	49	18082	3.536	3.28E-01	2.48E-02	02
epithelial				ODEE2 ULVA NMEE AVA DOOD VIE22 CAGO							2.075
cilium	0	0.425	1 21E 04	SPEF2, ULK4, NME5, AK7, DPCD, KIF27, GAS8,	1461	16	10000	6 100	4 12E 01	2 08E 02	2.9/E-
movement	8	0.455	1.51E-04	EIE2R5 CALCA EIE2R2 PERPI TACP1 HSDA2	1401	10	16062	0.188	4.13E-01	2.96E-02	02
				SOD1. GCLC. CCKAR. DNAJA4. DNAJA2. CCL2							2.97E-
response to heat	15	0.815	1.33E-04	CD14, HSPA1B, LRP11	1461	57	18082	3.257	4.16E-01	2.98E-02	02

				SMAD4, INTU, TRAF3IP1, IFT122, GRHL2,							
				TMEM231, LMBR1, IFT88, CHST11, RAB23,							
embryonic digit				IMPAD1, TMEM107, CTNNB1, B9D1, WDPCP,							4.18E-
morphogenesis	16	0.869	1.97E-04	BMPR1A	1461	66	18082	3.000	5.50E-01	4.20E-02	02
				TAGLN, EHF, UPK2, SIX1, DNPH1, CNN3,							
epithelial cell				MUC1, UPK1A, TST, ELF3, CES1D, CASP6,							4.74E-
differentiation	16	0.869	2.35E-04	TOLLIP, ANXA7, TAGLN2, CTSB	1461	67	18082	2.956	6.14E-01	4.76E-02	02
cilium				DNAIC2, RSPH4A, CCDC103, DNAAF1, ARMC4,							5.91E-
movement	11	0.598	3.21E-04	HYDIN, LRRC6, RSPH9, DNALI1, GAS8, CCDC40	1461	35	18082	3.890	7.28E-01	5.94E-02	02
motile cilium				DNAAF3, INTU, DNAAF1, ULK4, FOXJ1, LRRC6,							5.91E-
assembly	10	0.543	3.22E-04	RSPH9, ZMYND10, IFT57, CCDC40	1461	29	18082	4.268	7.29E-01	5.94E-02	02
				SLC23A2, PRNP, NQO1, ABCC1, GPX2, SRXN1,							
				TAT, OGG1, IDH1, TXNRD1, GPX8, PEBP1,							
				DHCR24, SLC7A11, SOD2, PTGS2, SOD1,							
response to				RCAN1, GCLC, PRDX5, PRDX1, STC2,							6.76E-
oxidative stress	24	1.304	3.91E-04	ALDH1A1, GCLM	1461	133	18082	2.233	7.95E-01	6.80E-02	02
				GJB2, CDH1, CTSL, STC2, BSG, LIF, PLA2G4A,							6.76E-
decidualization	9	0.489	4 03E-04	PTGS2 CTSB	1461	24	18082	4 641	8.04E-01	6.80E-02	02

Supplemental Table S4: Downregulated biological processes via gene ontology analysis. Significantly downregulated genes based on differential gene expression (DeSeq) analysis with Benjamani-Hochberg p-adjusted < 0.1 were used for gene ontology biological pathway generation. After results were generated, only biological processes with p-value < 0.001 are presented.

Biological	Growt	0/	DValess	Carrier	List	Pop	Pop	Fold	D	D !!!	EDD
Process	Count	%	Pvalue	SMC1 CUTA TRIO MAST2 DCKA ADAE DIV2CD	Total	HIIS	Total	Enrichment	Bonierroni	Benjamini	FDK
				STK10 IKBKB STK10 FASTK SPEG PRKG2							
				MAP3K8 IAK3 MAP3K5 EPHA 4 PDGERA MAP 4 K2							
				EPHA7 RPS6KL1 SYK PRKCB PRKCD TNNI3K							
				TYK2 DGKZ D8ERTD82E FGR DGKO HKDC1							
				ULK3, PRKD2, ALPK3, EPHA1, ALPK1, BLK, CSF1R,							
				PFKFB4, PKN3, PAPSS2, CKMT2, DGUOK, MAPK7,							
				MKNK1, STK38, GRK6, CSK, IP6K1, MARK3,							
				CAMK2G, BUB1, MAP4K3, IP6K2, NTRK2, MAP3K3,							
				HIPK4, CDK19, DMPK, CHKA, EIF2AK3, DCLK2,							
				CDC7, EIF2AK4, MERTK, CLK4, CLK2, UCKL1,							
phosphorylat				MAPK10, CLK1, CDK8, PIKFYVE, CDK5, FES,							7.99E
ion	79	5.631	2.16E-09	TAOK2, RPS6KB2, CDK10, PKN1, FGFR4	1144	612	18082	2.040	8.01E-06	8.01E-06	-06
				DGKD, MAST3, DGKA, ARAF, CBLB, NRBP2, MCF2L,							
				RGS9, JAK3, UNC13B, MAP4K2, SYK, PRKCB,							
				NFAM1, PRKCD, HMHA1, TYK2, GMIP, DGKZ, LAX1,							
				ADUCEE DCVU DCS14 DVN2 NDD2 ADCV4							
				ADCV3 NOD1 PASCEP2 PASCEP1 ADCV7							
				MKNK1 INPP5D STK38 DVI 1 CSK MAP4K3							
intracellular				SH2B1 MAP3K3 STAC3 DCLK2 MY09B SMAD7							
signal				PIKFYVE, NEURL2, LEP, PTPN6, PKN1, RGS11.							3.09E
transduction	57	4.063	1.67E-08	PLCD3, LAT	1144	400	18082	2.252	6.21E-05	3.10E-05	-05
				TRIO, MAST3, ARAF, IKBKB, STK10, NRBP2, FASTK,							
				SPEG, PRKG2, MAP3K8, JAK3, MAP3K5, EPHA4,							
				PDGFRA, MAP4K2, EPHA7, MORC3, RPS6KL1, SYK,							
				PRKCB, STRADB, PRKCD, PHKA1, TNNI3K, TYK2,							
				D8ERTD82E, FGR, ULK3, PRKD2, ALPK3, EPHA1,							
				ALPK1, BLK, CSF1R, PKN3, NPR2, DGUOK, MAPK7,							
				MKNK1, STK38, GRK6, CSK, MARK3, CAMK2G,							
				BUB1, MAP4K3, N1KK2, MAP3K3, HIPK4, CDK19,							
mustain				MEDTY CLK4 CLK2 D2DX7 MADV10 CLK1 CDV9							
protein				DAN3 CDK5 FES TAOK2 P2KA7, MAPK10, CLK1, CDK6,							1 23E
ion	71	5.061	9 93F-08	FGFR4	1144	576	18082	1 948	3 69F-04	1 23E-04	-04
Ion	,1	5.001	7.75 <u>E</u> 00	DCLRE1C PIK3CD LRMP MAP3K8 JAK3 MAP3K5		570	10002	1.910	5.072 01	1.252 01	01
				MAP4K2, CR2, SYK, DDX58, PRKCB, SP110, LAX1.							
				LIME1, TLR1, FCGR1, FGR, NAIP5, IRF3, NAIP6, IRF1,							
				PRKD2, TLR7, CD300C, CSF1R, NLRP1B, UNC93B1,							
				NLRC5, AKAP8, OAS1B, NOD1, NLRC4, MEFV,							
				SAMHD1, LY9, INPP5D, BTLA, NLRP3, CSK,							
immune				SLAMF6, GSDMD, SEMA4A, CARD9, LY86, SSC5D,							
system				EIF2AK4, SERPINA3G, MARCO, TBKBP1, HC, LAT,							3.29E
process	52	3.706	3.55E-07	MY01G	1144	383	18082	2.146	1.32E-03	3.30E-04	-04
				CRTC2, ZFP445, CCNK, PRDM9, ZFP444, CCNT2,							
transcription,		1154		HDAC10, PKDM0, UBP1, NUC2L, IKZF3, PNN,							2.150
DINA- templated	162	11.54	3 /8E 05	DACHI, ZFP30, SOAI/, EP300, SOA8, CCNL2, ZFP3/9, PIAS3 TI E2 ZEP607 ZEP210 $DPKCP SD110 THOC1$	1144	1995	18082	1 350	1 21E 01	2 15E 02	2.15E
tempiateu	102	/	J.40E-03	11755, 1162, 21107, 211217, FKKUD, SF110, 1HUUL,	1144	1000	10002	1.550	1.210-01	2.1JE-02	-02

		1	1	UDGEDDO DUNIZO MAE DMTEL ENGOL	, 1		1 1	1 1	1	1 1	(I
				HDGFRP2, RUNX2, MAF, DM1F1, EWSR1,	, I						
	1			TIMELESS, ZFP692, HOXB3, ZSCAN26, PREB,	, İ						
	1			ZFP451, INO80D, NOTCH4, GATA2, HELZ2, ZFP57,	, İ						
	1			ZFP182, DEAF1, ZKSCAN3, SAFB2, LPXN, NLRP3,	, İ						
				E4F1, ZFP740, STAT5A, ZFP512, STAT5B, CBX/,	, I					1	
				ZFP511, SETDB1, BCL11A, SS18L1, PHF12, EAF2,	, I					1	
				RFXANK, POU2F2, POU6F1, SMAD7, CDK8, TFCP2,	, I					1	
				TADA2A, GON4L, SNAI2, BRWD1, RBAK, ZSCAN2,	, I					1	
				RERE, ZMYND15, MESP1, CSRNP2, RARG, CIITA,	, I					1	
				HIP1, TCF25, PHF1, AKAP8L, HIF3A, MED12, LYL1,	, I					1	
				HHEX, SCML4, SIN3B, SIX5, ZMYM5, UIMC1,	, I					1	
				HMG20A, ZFP641, CIC, ZFP280D, ZFP280C, TEAD3,	, I			1		1	
				BATF2, MYOCD, ZFP532, PEG3, NCOA3, DNMT3A,	, I			1		1	
				ZFP932, MKL1, TET1, IL16, PROX2, PAX5, SIRT7,	, I					1	
				SAFB, COMMD4, TRAF7, GCFC2, KAT2A, IRF3,	, I			1		1	
				TAL1, ELF4, IRF1, TFEC, MED20, RBPJL, HDAC5,	, I			1		1	
				SP100, SMARCD3, SFSWAP, SRRT, ZBTB48, AKAP8,	, I			1		1	
	, I			CXXC1, HDAC6, HDAC7, ZFP12, RXRB, TFPT,	, I	, I				1	
				ABLIM2, RBBP5, ATOH8, HSF4, ZFP263, PCGF1,	, I			1		1	
	I I			BRD8, HES2, MLXIP, BRF1, NFYA, STAT2, GTF2H2,	, I	, I				1	
				TBX6, ZFP354A, PER3, POLR3A, TEF, PAGR1A,	, I			1		1	
				TNIP2, ERCC2, PKN1, PAXBP1, TARDBP, LPIN2,	, I			1		1	
		'		ZFP276, ZFP28	,	I		ļ			
				BLK, CSF1R, NLRP1B, NLRP1A, UNC93B1, AKAP8,	, I						
				NLRC5, PIK3CD, NOD1, OAS1B, NLRC4, MEFV,	, I						
				SAMHD1, LY9, MALT1, NLRP3, SLAMF6, TRIM26,	, I						
				CSK, JAK3, MAP3K5, GSDMD, MAP4K2, CR2, SYK,	, I						
innate				SP110, DDX58, CARD9, LY86, CYBB, SSC5D, TYK2,	, I						
immune				TLR1, FGR, FCGR1, MARCO, NAIP5, POLR3A, IRF3,	ı İ						3.25E
response	47	3.350	6.15E-05	FES, NAIP6, ELF4, IRF1, TBKBP1, TLR7, HC, TRIM11	1144	400	18082	1.857	2.04E-01	3.26E-02	-02
regulation of				ITSN2, TRIO, PLEKHG2, ARHGEF26, ARHGEF15,	,		1				
Rho protein				ARHGEF25, ARHGEF39, ARHGEF18, MYO9B, FGD6,	, I						
signal				ALS2CL, MCF2L, EPS8L1, ARHGEF1, ARHGEF40,	ı İ						3.62E
transduction	16	1.140	8.12E-05	ARHGEF6	1144	77	18082	3.284	2.60E-01	3.63E-02	-02
				CSF1R, SMG1, STK10, MKNK1, CSK, JAK3, CAMK2G,	, I						
				EPHA4, PDGFRA, NTRK2, MAP3K3, HIPK4, SYK,	, I						
protein				PRKCD, EIF2AK3, PHKA1, EIF2AK4, CLK4, CLK2,	, I						
autophospho		1	0.005.05	CLK1, FGR, CDK5, FES, ULK3, PRKD2, EPHA1,		100	10000			0.000.00	3.62E
rylation	27	1.924	8.80E-05	FGFR4	1144	183	18082	2.332	2.79E-01	3.63E-02	-02
peptidyl-				STAT5A, PDGFRA, EPHA4, CSFIR, SYK, CLK4,	, İ						
tyrosine				CLK2, CLK1, FGR, FES, PTPN6, FGFR4, EPHA1, JAK3	, İ						6.715
phosphorylat	1.4	0.000	1.015.04		1 1144		10000	2.404	4.005.01	6 7 2 5 0 2	6./IE
10n	14	0.998	1.81E-04		1144	65	18082	3.404	4.90E-01	6./3E-02	-02
peptidyl-				HIPK4, MORC3, SMG1, SYK, DMPK, PRKCB, MAS13,	, İ						
serine	1			PKN3, PKKCD, EIF2AK3, DCLK2, CDC7, PKD1, CLK1,	, İ						0.00
phosphorylat	21	1 407	2.595.04	MAPK/, CDK5, MKNK1, S1K38, RICTOR, PRKD2,	1 1144	122	10000	2.400	C 17E 01	0.705.00	8.69E
1011	21	1.497	2.58E-04	PKNI	1144	133	18082	2.496	6.1/E-01	8.72E-02	-02
	10	0.055		LEP, ELMO2, PLD4, PRTN3, CDC7, ABCA7, MYO/A,			10000	2.40	5 1 25 01	101501	1.04E
phagocytosis	12	0.855	3.36E-04	TULPI, MERTK, GATA2, UNC13D, MYOIG	1144	52	18082	3.648	7.13E-01	1.04E-01	-01

regulation of				NTRK2, EPHA4, TSC1, POT1B, OCRL, RASAL3,							
GTPase				RASGRP1, RAP1GAP, RASGRP3, RASA4, RICTOR,							1.28E
activity	14	0.998	4.50E-04	EPHA1, AGRN, SBF1	1144	71	18082	3.117	8.13E-01	1.29E-01	-01
B cell				HDAC5, CR2, DCLRE1C, BCL11A, POLM,							
differentiatio				5830417I10RIK, NFAM1, HDAC7, LYL1, HHEX,							1.31E
n	15	1.069	5.10E-04	GON4L, CLCF1, EP300, JAK3, CARD11	1144	81	18082	2.927	8.50E-01	1.31E-01	-01
sarcomere				NEURL2, ACTN2, TNNT2, TCAP, LDB3, NKX2-5,							1.31E
organization	9	0.641	5.30E-04	MYPN, TTN, LMOD2	1144	31	18082	4.589	8.61E-01	1.31E-01	-01
muscle				TMOD1, CHRNB1, ACTN2, TMOD4, TNNT2, SCN7A,							2.29E
contraction	11	0.784	9.88E-04	TAZ, CLCN1, TRDN, TTN, LMOD2	1144	50	18082	3.477	9.75E-01	2.29E-01	-01

Supplemental Table S5: Upregulated biological processes via gene ontology analysis. Significantly upregulated genes based on differential gene expression (DeSeq) analysis with Benjamani-Hochberg p-adjusted < 0.1 were used for gene ontology biological pathway generation. After results were generated, only biological processes with p-value < 0.001 are presented.

Phosphoglyceride Metabolism								
Metabolite	Genes (network threshold)							
	Control	HFD						
15-HEPE	No network	Was (0.74), Pik3r5 (0.87), Prkcb (0.97), Pik3cd (0.97)						
19,20-DiHDPA	Chka (-0.85)	Pik3r5 (0.85), Prkcb (0.90), Pik3r5 (0.96)						
11-HDHA	No network	Pik3r5 (0.87), Prkcb (0.90), Pik3cd (0.96)						
14-HDHA	Prkcb (-0.76), Rps6kb2 (-0.72)	Was (0.72), Pik3r5 (0.86), Prkcb (0.90), Pik3cd (0.96)						
B-cell Receptor Signaling								
Metabolite	Genes (network threshold)							
	Control	HFD						
		Inpp5d (0.73), Fcgr2b (0.86), Pik3r5 (0.90), Ptpn6 (0.97), Syk (1),						
15-HEPE	No network	Pik3cd (1)						
19,20-DiHDPA	No network	Cd19 (-0.72), Pik3r5 (0.75)						
11-HDHA	Rasgrp3 (-0.71)	Inpp5d (0.74), Pik3r5 (0.88), Fcgr2b (0.90), Syk (0.93), Pik3cd (0.96)						
14-HDHA	No network	Inpp5d (0.73), Pik3r5 (0.87), Fcgr2b (0.90), Syk (0.94), Pik3cd (0.96)						

Supplemental Table S6: Integration of transcriptomic and metabolomic analyses shows different network interactions for key n-3 PUFAderived oxylipins with specific transcriptomic pathways. Differential network analysis for select n-3 PUFA derived oxylipins (15-HEPE, 19,20-DiHDPA, 11-HDHA, and 14-HDHA) was conducted for genes present in the Phosphoglyceride metabolism and B-cell receptor signaling pathways using xMWAS, a software for data integration. Here the genes are listed for each metabolite network with its network threshold value.