Supplementary Materials for

# Endothelial caveolin-1 regulates cerebral thrombo-inflammation in acute ischemia/reperfusion injury

Xiaohao Zhang<sup>1,2,3†</sup>, Pengyu Gong<sup>4†</sup>, Ying Zhao<sup>1†</sup>, Ting Wan<sup>1</sup>, Kang Yuan<sup>1</sup>,

Yunyun Xiong<sup>5,6,7</sup>, Min Wu<sup>8</sup>, Mingming Zha<sup>1</sup>, Yunzi Li<sup>1</sup>, Teng Jiang<sup>2</sup>, Xinfeng Liu<sup>1</sup>,

Ruidong Ye<sup>1</sup>, Yi Xie<sup>1\*</sup>, Gelin Xu<sup>1\*</sup>

<sup>†</sup>Contributed equally.

\*Corresponding author. E-mail: xy\_307@126.com (Y.X.) or gelinxu@nju.edu.cn (G.X.)



Supplemental Figure 1. Endothelial and serum Cav-1 levels are decreased at tMCAO-24h.

(a) Representative images of coronal brain sections stained with TTC [quantified in (b); n = 10 in each group; mean  $\pm$  S.D; \*\**P* < 0.01 *vs.* sham by unpaired t-test). (c) The mNSS score of sham and tMCAO mice 24 h after surgery (n = 15 in each group; mean  $\pm$  S.D; \*\**P* < 0.01 *vs.* sham by unpaired t-test). (**d**) Schematic map showing eight fields in the peri-infarct region for immunostaining image acquisition in every sample. (e, f) Representative immunostaining images and quantification showing the expression of Cav-1 in endothelial cells (CD31<sup>+</sup>) (n = 6 in each group; mean  $\pm$  S.D; \*\*P < 0.01 vs. sham by unpaired t-test). (g) Representative light microscopic image of isolated brain microvessels from the peri-infarct area. (h, i) Immunoblotting and quantification showing the expression of endothelial-specific marker Claudin-5 in the isolated microvessels from the peri-infarct tissue 24h after surgery (a pool of 2 mice per sample; n = 5 samples per group; mean  $\pm$  S.D; \*\**P* < 0.01 vs. microvascular segments by unpaired t-test). (i, k) Immunoblotting and guantification showing the Cav-1 expression in isolated brain microvessels from the peri-infarct tissue (a pool of 2 mice per sample; n = 5 samples per group; \*\*P < 0.01 vs. sham by unpaired t-test). (I) Serum level of Cav-1 in sham and tMCAO mice (n = 8; mean ± S.D; \*\*P < 0.01 vs. sham by unpaired t-test). Scale bar: 20 µm.



Supplemental Figure 2. Arteriole caveolae are reduced at the peri-infarct region at tMCAO-24h.

(a) TEM images showing the alteration of arteriole caveolae (red arrows) [quantified in (b); n = 5 mice, 20 arterioles in each group; mean  $\pm$  S.D; \*\**P* < 0.01 *vs.* sham by unpaired t-test]. (c, d) Immunoblotting and quantification showing the expression of PTRF in isolated brain microvessels from the peri-infarct tissue (a pool of 2 mice per sample; n = 5 samples per group; \*\**P* < 0.01 *vs.* sham by unpaired t-test). (e, f) Representative immunostaining images and qualification showing the expression of PTRF in the endothelium (CD31<sup>+</sup>) (n = 6 in each group; mean  $\pm$  S.D; \*\**P* < 0.01 *vs.* sham by unpaired t-test). Scale bar: 500 nm in (a) and 20 µm in (e).



### Supplemental Figure 3. The cell-type specificity of Cav-1 expression under physiological and pathological conditions.

(**a**–**c**) *Cav-1* mRNA and protein levels in primary cultured endothelium, OPC, oligodendrocyte, neuron, microglia, and astrocyte *in vitro* (n = 5 experiments; mean ± S.D; \*\**P* < 0.01 *vs.* endothelium by one-way ANOVA with Tukey post hoc test). (**d**–**i**) Double immunostaining of Cav-1 with NeuN (neuron marker), GFAP (astrocyte marker), Iba-1 (microglia marker), CC1 (mature oligodendrocyte marker),  $\alpha$ -SMA (vascular smooth muscle cell marker), and PDGFR $\beta$  (pericytes marker) at the peri-infarct region 24 h after tMCAO [quantified in (**j**); n = 6 in each group; mean ± S.D; \*\**P* < 0.01 *vs.* sham by unpaired t-test]. Scale bar, 20 µm.



**Supplemental Figure 4. Cav-1 deletion induces endothelial pathological changes.** (a) Representative images of microvessels (CD31<sup>+</sup>, green; Collagen IV<sup>+</sup>, red) [quantified in (**b–d**); n = 6 in each group; mean ± S.D; \**P* < 0.05, \*\**P* < 0.01 *vs.* WT mice by unpaired t-test]. (**e**, **f**) Immunofluorescent images and quantification showing the albumin leakage (red) around CD31<sup>+</sup> (green) vessels (n = 6 in each group; mean ± S.D; \*\**P* < 0.05 *vs.* WT mice by unpaired t-test). (**g**, **h**) Representative images and quantification showing thrombocytes (red) in the cerebral microvessels (CD31<sup>+</sup>, green) (n = 6 in each group; mean ± S.D; \**P* < 0.05 *vs.* WT mice by unpaired t-test]. Scale bar: 20 µm.



# Supplemental Figure 5. Cav-1 deficiency increases the microvascular permeability in tMCAO-24h.

(a) Representative images of 5 coronal brain sections in T2 MRI scans of WT tMCAO mice and *Cav-1<sup>-/-</sup>* tMCAO mice [quantified in (b); n = 6 in each group; mean ± S.D; \*\**P* < 0.01 *vs.* WT tMCAO mice by unpaired t-test]. (c) The mNSS score of tMCAO mice of two genotypes 24 h after surgery (n = 20 in each group; mean ± S.D; \*\**P* < 0.01 *vs.* WT tMCAO mice by unpaired t-test). (d–f) Immunofluorescence staining and quantification showing the albumin (red) and IgG leakage (red) around vessels (CD31<sup>+</sup>,

green) at the peri-infarct area 24 h after tMCAO (n = 6 in each group; mean  $\pm$  S.D; \**P* < 0.05; \*\**P* < 0.01 *vs.* WT tMCAO mice by unpaired t-test). (**g**) TEM images showing endothelial TJ gaps in the peri-infarct area from WT tMCAO and *Cav-1*-/- MCAO mice 24 h after surgery [quantified in (**h**, **i**); n = 5 mice in each group. Sixteen capillaries were randomly chosen in each mouse; mean  $\pm$  S.D; \**P* < 0.05 *vs.* WT tMCAO mice by unpaired t-test]. The red arrows indicate gaps between endothelial cells. The red asterisks indicate gaps between endothelial cells and basal membrane. (**j**, **i**) Immunofluorescence staining showing the expression of ZO-1 (red) and occludin (red) in the vessels (CD31<sup>+</sup>, green) at the peri-infarct area [quantified in (**k**, **m**); n = 6 in each group; mean  $\pm$  S.D; \*\**P* < 0.01 *vs.* WT tMCAO mice by unpaired t-test]. (**n–p**) Immunoblotting and quantitative analysis of TJ protein 24 h after surgery (a pool of 2 mice per sample; n = 5 samples per group; \**P* < 0.05 *vs.* WT tMCAO mice by unpaired t-test). Scale bar: 500 nm in (**g**) and 20 µm in others. BM, basal membrane.



Supplemental Figure 6. Gating strategies for flow cytometry to evaluate myeloid cell infiltration in the ischemic hemisphere at tMCAO-24h.



Supplemental Figure 7. AAV-*Tie1-Cav-1* decreases the infarct volume and mNSS score at tMCAO-24h.

(a) Representative images of 5 coronal brain sections in T2 MRI scans of wild-type tMCAO and *Cav-1*<sup>-/-</sup> tMCAO mice transfected with AAV-*Tie1*-C or AAV-*Tie1*-*Cav-1* [quantified in (b); n = 6 in each group; mean  $\pm$  S.D; \*\**P* < 0.01 *vs.* AAV-*Tie1*-C-transfected mice by one-way ANOVA with Tukey post hoc test]. (c) The mNSS score of wild-type tMCAO and *Cav-1*<sup>-/-</sup> tMCAO mice transfected with AAV-*Tie1*-C or AAV-*Tie1*-C or AAV-*Tie1*-C or and *Cav-1*<sup>-/-</sup> tMCAO mice transfected with AAV-*Tie1*-C or AAV-*Tie1*-C or and *Cav-1*<sup>-/-</sup> tMCAO mice transfected with AAV-*Tie1*-C or AAV-*Tie1*-C or and *Cav-1*<sup>-/-</sup> tMCAO mice transfected with AAV-*Tie1*-C or AAV-*Tie1*-C or and *Cav-1*<sup>-/-</sup> tMCAO mice transfected with AAV-*Tie1*-C or AAV-*Tie1*-C or and *Cav-1* (n = 20 in each group; mean  $\pm$  S.D; \**P* < 0.05; \*\**P* < 0.01 *vs.* AAV-*Tie1*-C-transfected mice by one-way ANOVA with Tukey post hoc test).



#### Supplemental Figure 8. AAV-*Tie1-Cav-1* does not affect the PTRF level.

(**a**, **b**) Representative fluorescent images and qualification of PTRF (red) in microvessels (CD31<sup>+</sup>, green) at the peri-infarct tissue 24 h after tMCAO (n = 6 in each group; mean  $\pm$  S.D; one-way ANOVA with Tukey post hoc test). Scale bar: 20 µm.



# Supplemental Figure 9. AAV-*Tie1-Cav-1* increases TJ protein expression at tMCAO-24h.

(**a**, **c**) Immunofluorescence staining showing the expression of ZO-1 (red) and occludin (red) in the vessels (CD31<sup>+</sup>, green) at the peri-infarct area 24 h after tMCAO [quantified in (**b**, **d**); n = 6 in each group; mean ± S.D; \*\**P* < 0.01 *vs.* AAV-*Tie1*-C-transfected mice by one-way ANOVA with Tukey post hoc test]. (**e–g**) Quantitative analysis for immunoblotting of TJ proteins 24 h after tMCAO (a pool of 2 mice per sample; n = 5 samples per group; \**P* < 0.05; \*\**P* < 0.01 *vs.* AAV-*Tie1*-C-transfected mice by one-way ANOVA with Tukey post hoc test]. Scale bar: 20 µm.



Supplemental Figure 10. Cav-1 siRNA suppresses endothelial Cav-1 as well as RXR-γ expression at tMCAO-24h.

(a) Experimental flow chart. (b) Representative immunofluorescence staining showing the co-localization of siRNA (cyan), Cav-1 (red) and CD31 (gray) in siRNA-injected WT Sham mice (n = 6 in each group). (c) Representative images of immunofluorescence staining for Cav-1 (red) or RXR- $\gamma$  (cyan) in the cerebral microvessels (CD31<sup>+</sup>, green) [quantified in (d, e); n = 6 in each group; mean ± S.D; \**P* < 0.05; \*\**P* < 0.01 *vs.* control siRNA-injected mice by unpaired t-test]. (f–h) Immunoblotting and quantification displaying the expression of Cav-1 and RXR- $\gamma$  in brain microvascular segments from the 2 groups (a pool of 2 mice per sample; n = 5 samples per group; mean ± S.D; \**P* < 0.05; \*\**P* < 0.01 *vs.* control siRNA-injected mice by unpaired t-test]. Scale bar: 20 µm.



Supplemental Figure 11. Knockdown of RXR-γ does not change the level of caveolae.

(**a**, **b**) Quantitative analysis for immunoblotting of PTRF (a pool of 2 mice per sample; n = 5 samples per group; mean ± S.D; unpaired t-test). (**c**) Representative images of immunofluorescence staining of PTRF (red) in the cerebral microvessels (CD31<sup>+</sup>, green) [quantified in (**d**); n = 6 in each group; mean ± S.D; unpaired t-test]. Scale bar: 20  $\mu$ m.



# Supplemental Figure 12. Knockdown of RXR-γ did not affect TJ integrity and BBB leakage under Cav-1 overexpression.

(a) Experimental flow chart. (**b**, **c**) TEM images and quantification showing TJ gaps (red arrows) in the peri-infarct area 24h after tMCAO (n = 5 mice in each group. Sixteen capillaries were randomly chosen in each mouse; mean  $\pm$  S.D; unpaired t-test). The red arrows indicate gaps between endothelial cells. (**d**–**g**) Immunofluorescence staining and quantifications showing the expression of ZO-1 (red) and occludin (red) in the CD31<sup>+</sup> vessels (green) (n = 6 in each group; mean  $\pm$  S.D; unpaired t-test). (**h**–**j**) Immunoblotting and quantitative analysis of TJ proteins in microvascular segments (a pool of 2 mice per sample; n = 5 samples per group; unpaired t-test). (**K**, **L**) Representative images of immunofluorescence staining and quantification of extravasated FITC-dextran (3 kDa; white arrows) from CD31<sup>+</sup> microvessels (red) (n = 6 mice in each group; mean  $\pm$  S.D; unpaired t-test). Scale bar: 500 nm in (**b**) and 20 µm in others. BM, basal membrane.

| Primer name | Primer sequence |                       |
|-------------|-----------------|-----------------------|
| Cav-1       | Forward         | GAAGGGACACACAGTTTCG   |
|             | Reverse         | AGGAAGGAGAGAATGGCAA   |
| Spdef       | Forward         | GGCTCAACAAGGAGAAAGG   |
|             | Reverse         | TGTAATACTGGCGGATGGA   |
| Gpr65       | Forward         | TGGCAGATAAACCTCAAC    |
|             | Reverse         | AGCATAGGACGAAAGTCA    |
| ltih4       | Forward         | TATTACCTTGCCGCTTCC    |
|             | Reverse         | CATACTTACCAGTCACCTCCA |
| Sis         | Forward         | CACTGAGCAGAATCCCTT    |
|             | Reverse         | TGATGTGGCACTTCGTAT    |
| Fgf21       | Forward         | CACCGCAGTCCAGAAAGT    |
|             | Reverse         | TGGCTGTTGGCAAAGAAA    |
| Slc17a9     | Forward         | TGCCCTGGAGACAACTAT    |
|             | Reverse         | TGATGACTCTGTAACCCTGAC |
| Slc15a1     | Forward         | AGCGGCTACCAGTTCTTC    |
|             | Reverse         | TGTTGGGTGGGATGTCTT    |
| Lcn2        | Forward         | AAGGCAGCTTTACGATGT    |
|             | Reverse         | TGGTTGTAGTCCGTGGTG    |
| Rxrg        | Forward         | CGTGCTGTTTAACCCAGAT   |
|             | Reverse         | AGGTGTTCCAGGCATTTC    |
| ldo1        | Forward         | AGGATGCGTGACTTTGTG    |
|             | Reverse         | TCTGGAAGATGCTGCTCT    |
| Adra2b      | Forward         | CGTGCGTGGTGCGAGGTCTA  |
|             | Reverse         | TTGATGCGGCGTGGAGTGC   |
| GAPDH       | Forward         | AAGAAGGTGGTGAAGCAGG   |
|             | Reverse         | GAAGGTGGAAGAGTGGGAGT  |

Table S1. Real-time PCR primers in this study.

| Variables                              | All patients, n = 270 | With ENI, n = 100    | Without ENI, n = 170 | P value |
|----------------------------------------|-----------------------|----------------------|----------------------|---------|
| Demographic characteristics            |                       |                      |                      |         |
| Age, years                             | 68.4 ± 12.4           | 66.7 ± 12.9          | 69.2 ± 12.2          | 0.099   |
| Male, n (%)                            | 171 (63.3)            | 68 (68.0)            | 103 (60.6)           | 0.222   |
| Clinical data                          |                       |                      |                      |         |
| Hypertension                           | 190 (70.4)            | 69 (69.0)            | 121 (71.2)           | 0.705   |
| Diabetes mellitus                      | 65 (24.1)             | 15 (15.0)            | 50 (29.4)            | 0.007   |
| Hyperlipidemia                         | 30 (11.1)             | 6 (6.0)              | 24 (4.1)             | 0.040   |
| Systolic blood pressure, mmHg          | 137.2 ± 23.5          | 137.6 ± 24.9         | 136.5 ± 22.6         | 0.697   |
| Diastolic blood pressure, mmHg         | 82.2 ± 14.7           | 81.6 ± 14.6          | 82.5 ± 14.7          | 0.622   |
| Time from onset to recanalization, min | 357.5 (251.0, 540.0)  | 351.0 (231.0, 532.5) | 360.0 (270.0, 541.5) | 0.312   |
| Baseline NIHSS, score                  | 13.0 (10.0, 16.0)     | 13.0 (11.0, 17.0)    | 12.0 (8.0, 16.5)     | 0.023   |
| Baseline ASPECTS, score                | 9.0 (8.0, 9.0)        | 9.0 (8.0, 9.0)       | 8.0 (8.0, 9.0)       | 0.001   |
| Prior intravenous thrombolysis, n (%)  | 119 (44.1)            | 48 (48.0)            | 71 (41.8)            | 0.319   |
| Poor collateral status, n (%)          | 134 (49.6)            | 47 (47.0)            | 87 (51.2)            | 0.507   |
| Caveolin-1 levels, ng/mL               | 0.191 (0.109, 0.298)  | 0.201 (0.136, 0.327) | 0.178 (0.088, 0.278) | 0.028   |

Table S2. Comparison of baseline data according to patients with and without ENI.

Abbreviations: ASPECTS, the Alberta Stroke Program Early Computed Tomography Score; NIHSS, National Institute of Health Stroke Scale.

Table S3. Physiological parameters and tMCAO-24h mortality in WT and *Cav-1*<sup>-/-</sup> mice.

| Variables               | WT mice     | <i>Cav-1</i> <sup>-/-</sup> mice | P value |
|-------------------------|-------------|----------------------------------|---------|
| Weight, g               | 23.5 ± 0.9  | 23.8 ± 0.5                       | 0.375   |
| BP, mmHg                | 104.5 ± 5.6 | 106.2 ± 5.0                      | 0.599   |
| pH                      | 7.38 ± 0.05 | 7.38 ± 0.03                      | 0.846   |
| Pco <sub>2</sub> , mmHg | 39.3 ± 2.2  | 39.8 ± 1.2                       | 0.629   |
| Po <sub>2</sub> , mmHg  | 98.7 ± 2.7  | 99.2 ± 1.7                       | 0.712   |
| Bleeding time, s        | 55.2 ± 8.3  | 49.0 ± 10.5                      | 0.285   |
| tMCAO-24h mortality, %* | 8.6         | 17.1                             | 0.284   |

Values presented as Mean  $\pm$  S.D. n = 6 mice in each group. \* n = 35 in each group for calculating the mortality.