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Details of Coarse-grained Simulations

We carried out all molecular dynamics simulations with the software LAMMPS.S1 Umbrella

sampling was performed using collective variables implemented by the Plumed package.S2

We applied the weighted histogram methodS3,S4 and fastmbarS5 to process the data and

computed the unbiased extension length at a given force.

System Setup

We built a structural model for the chromatin with 12 nucleosomes and 20-bp linker DNA

following two steps. We first connected 12 individual nucleosomes into a continuous segment

without much regard to the overall chromatin topology. We then aligned the DNA model to a

template that closely resembles the cryo-EM structure with a two-start fibril organization.S6

We connected individual nucleosomes to build a 12mer chromatin as follows. The nu-

cleosome unit with 167-bp of DNA was extracted from the tetranucleosome X-ray structure

(PDB ID:1ZBB).S7 The DNA was taken as residues 158-324 of chain I and the corresponding

complementary segment from chain J. There are no extra base pairs at the entry side of the

nucleosome in this setup, but 20-bp linker DNA exists at the exiting end. The resulting

sequence with the core DNA (147bp) in the underline is

ACAGGATGTAACCTGCAGATACTACCAAAAGTGTATTTGGAAACTGCTCCAT

CAAAAGGCATGTTCAGCTGGATTCCAGCTGAACATGCCTTTTGATGGAGCAG

TTTCCAAATACACTTTTGGTAGTATCTGCAGGTGATTCTCCAGGGCGGCCAG

TACTTACATGC

We further replaced the coordinates for histone proteins with that from PDB ID: 1KX5,S8

which resolved the coordinates for histone tails.

We added one additional DNA base pair at the end of the linker DNA as one sticky

end using the software 3DNAS9 for alignment between neighboring nucleosomes. This 168-

bp segment is the building block for constructing the dodecamer. For example, to extend

S-3



chromatin with n nucleosomes, we align the 168-th bp of the n-th nucleosome with the

first bp of the (n + 1)-th nucleosome. The alignment determines the orientation of the

(n + 1)-th nucleosome, and the fiber is extended by one nucleosome after removing the

overlapping nucleotides. For the last (12-th) nucleosome, we deleted the linker DNA to

build the dodecamer with 1984 bp of DNA. The resulting all-atom model was converted into

the coarse-grained model with in-house scripts.

While the above procedure succeeds at building an all-atom model for the 12mer, the pre-

cise topology of the resulting structure cannot be controlled easily. To construct a two-start

fibril configuration resembling the compact and twisted Cryo-EM structure,S6 we aligned

the model to a two-start fiber structure built by the software FiberModel, as detailed below.

The structural alignment was performed using MDAnalysisS10,S11 with RMSD coordinate

fitting.S12,S13

The template was generated by the software fiberModel as the lowest energy configura-

tion.S14 FiberModel optimized fiber configurations by utilizing a series of geometric param-

eters, including the height per nucleosome along the fiber axis (h), the rotation angle per

nucleosome around the fiber axis (θ), the radius of the fiber (R), and three Euler angles that

determine the direction of each nucleosome (α, β, γ). To build a fibril chromatin structure,

we set initial values for the parameters (h, θ, R, α, β, γ) as (2.34 nm, 2.88, 7.3 nm, -3.14,

0.622, 0) as estimated from the cryo-EM structure.S6 Also, each nucleosome was treated as

a cylinder with a radius and height of 5.2 and 4.5 nm. We then used FiberModel to optimize

the chromatin structure based on parameters α and γ, keeping the other parameters fixed.

The optimization utilized the basin hopping global search technique.S15 The final structure

aligned with the FiberModel template is shown in Figure 1A.

Force Field Setup

We used the same force fields as in the tetra-nucleosome studyS16 to simulate the 12mer.

The 3SPN.2C DNA modelS17 was adopted to model each nucleotide with three coarse-

S-4



grained beads for phosphate, sugar, and base, respectively. The Cα structure-based modelS18

was adopted to simulate the conformational dynamics of individual histone proteins. Both

bonded and nonbonded interactions were generated based on the nucleosome crystal struc-

ture (PDB ID: 1KX5). For nonbonded contact potentials, two residues were considered in

contact when their minimum distance is smaller than 6Å, implemented using the Shadow

algorithm.S19 We further scaled the default interaction strengthS4 by 2.5 to prevent proteins

from unfolding at 300K. To model the disordered portions of the histones, we removed the

dihedral and contact potentials for disordered residues not included in the core histones

(residue ID: 44-135, 160-237, 258-352, 401-487, 531-622, 647-724, 745-839, 888-974). Includ-

ing the secondary structure motifs in the disordered regions of histone proteins does not

quantitatively change nucleosome stability and protein-DNA interactions (Figure S1). The

IDs continuously index residues from chain A to chain H of the crystal structure with PDB

ID: 1KX5.

In addition, residue-specific protein-protein interactions were introduced with the Miyazwa-

Jernigan (MJ) potentialS20 and scaled by a factor of 0.4. In a previous study, we showed

that the scaled MJ potential provides a balanced modeling of the radius of gyration for both

folded and disordered proteins.S16

Protein-DNA interactions include the electrostatic potential modeled at the Debye-Hückel

level with a monovalent salt concentration of 150 mM. In addition, a weak, non-specific

Lennard-Jones potential was applied between all protein-DNA beads. Detailed expression

for these potentials can be found in Ref. S21.

Our group and the de Pablo group have shown that the force field can reproduce the

energetic cost of nucleosomal DNA unwinding,S21–S23 the dependence of the unwinding bar-

rier on applied tension,S22 and the sequence-specific DNA binding strength to the histone

octamer.S24 The de Pablo group further showed that the model could reproduce the binding

strength between a pair of nucleosomes measured in DNA origami-based force spectrometer

experiments.S25,S26
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The quantitative accuracy of the coarse-grained model in reproducing single nucleosome

stability and inter-nucleosome interactions strongly supports its application to longer chro-

matin segments. Our prior study of tetranucleosomes further supports the model’s accuracy

in studying connected nucleosomes. For example, we simulated two di-nucleosomes with

different link lengths and succeeded in resolving the structural difference, quantitatively

reproducing FRET measurements from the van Noort group.S27 More details about this

comparison can be found in Figure S10 of Ref. S16. For the tetra-nucleosome, we predicted

that stacked conformations with the two columns of nucleosomes more aligned have lower

free energy than the PDB structure. This prediction was validated by independent simula-

tions performed with an explicit solvent force field SIRAHS28 and by all-atom simulations

from the Wereszczynski group.S29 More details about this comparison can be found in Figure

S5 of Ref. S16.

Free Energy Profiles for Chromatin Under Tension

We defined two collective variables to explore chromatin configurations and compute free en-

ergy profiles. The unwrapping variable, qwrap, quantifies DNA unwrapping using the distance

between neighboring nucleosome di,i+1. It is defined as

qwrap =
1

11

11∑
i=1

exp

[
−(max(di,i+1, do)− do)2

2σ2
w

]
. (S1)

do = 15 nm is close to the distance between two neighboring nucleosomes in the PDB struc-

ture (PDB ID: 1KX5),S8 and we used σw = 4 nm. The function max selects the larger

value of the two distances. The above definition makes use of the geometric constraint that

increase in the distances between neighboring nucleosomes (di,i+1) can only arise from nu-

cleosome unwrapping. The unstacking variable, dstack, measures the mean distance between
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i-th and (i+ 2)-th nucleosomes as

dstack =
1

10

10∑
i=1

di,i+2. (S2)

Umbrella simulations with the two collective variables at forces 0-3 pN were carried

out to compute the free energy profiles. To compare our simulations with force-extension

experiments, we applied force fext along the z-axis projection of the DNA end-to-end distance

(Lz). The two DNA ends were defined as the geometric centers of all the coarse-grained beads

for the first and last five base pairs. The potential energy function of these simulations at

center (qo, do) and force fext is defined as

Ubiased = U(r) +
κq
2

(qwrap − qo)2 +
κd
2

(dstack − do)2 − fextLz, (S3)

where U(r) corresponds to the interaction energy defined by the force field. The umbrella

centers (qo, do) were initially placed on a uniform grid [0.45:0.90:0.15]×[10:30:5] nm. We

introduced additional centers to improve the overlap between umbrella simulations. A com-

plete list of the umbrella centers and the restraining constants is provided in Table S1.

At the extension force larger than 3 pN, the 12mer can adopt configurations that cover a

wide range of qwrap and dstack. Uniform sampling of the entire accessible phase space becomes

too costly computationally. Therefore, we only carried out one-dimensional umbrella sim-

ulations with dstack as the collective variable. The corresponding potential energy function

was defined as

Ubiased = U(r) +
κd
2

(dstack − do)2 − fextLz. (S4)

We used κd = 0.05 kcal/(mol · nm2), and do spans from 10 to 50 nm with a step size of 2.5

nm.

S-7



Initial configurations from the neural network model

Conformational sampling of the coarse-grained model is challenging due to strong but non-

specific electrostatic interactions. We initialized the umbrella sampling simulations with

the most probable configurations predicted by a neural network under a similar setup to

alleviate the sampling challenge. As detailed in the Section: Neural Network Model for the

12mer Chromatin, the neural network model quantifies the stability of chromatin configura-

tions using inter-nucleosome distances. It is computationally efficient and allows equilibrium

sampling of chromatin configurations.

For a coarse-grained umbrella simulation centered at (qNo , d
N
o ) with extension force fext ≤

3 pN, we carried out replica exchange Monte Carlo sampling of the following biased free

energy

Fbiased = F12(d) +
κq
2

(qwrap − qNo )2 +
κd
2

(dstack − dNo )2 − fextL, (S5)

with κq = 47.8 kcal/mol and κd = 4.78 × 10−2 kcal/(mol · nm2). F12(d) quantifies the free

energy of the 12-mer as function of inter-nucleosome distances, d, with a neural network

model. More details about the free energy function can be found in the Section: Neural

Network Model for the 12mer Chromatin. L is the distance between the first and the last

nucleosomes. See Section: Numerical Simulations of the Neural Network Model for sampling

details. We used the samples collected in the final 300000 steps of the 300K replica for a

K-means clustering analysis with 10 centers. The configuration closest to the center of the

largest cluster was selected as the most probable configuration.

For simulations with 3.5 pN force, we only performed umbrella sampling of the neural

network model at a limited set of values for dNo = 10.0 nm, 15.0 nm, 20.0 nm, 25.0 nm, and

30.0 nm. qNo was set as 0.45. A total of five neural network configurations were constructed.

We assigned these configurations to initialize coarse-grained simulations by minimizing the

difference between dNo and the corresponding umbrella center of coarse-grained simulations.

For simulations with 4 pN force, we performed two sets of coarse-grained simulations.

S-8



These simulations were initialized with neural network configurations obtained from umbrella

sampling with centers located at [qNo =0.45, 0.6] × [dNo =10:30:5] nm.

The neural network model represents chromatin structures with inter-nucleosome dis-

tances. We performed short targeted molecular dynamics simulations starting from the

two-helix fiber to build coarse-grained model structures consistent with the most probable

configurations from the neural network sampling. These simulations bias on all the inter-

nucleosome distances with a restraining constant of 23.9 kcal/(mol · nm2) for approximately

300000 steps. The end configurations of these simulations were used to initialize the coarse-

grained umbrella simulations.

One-dimensional free energy calculations at 4.5 pN force

For simulations with 4.5 pN force, the neural network model is no longer sufficient for

producing equilibrated, most probable starting configurations. It was trained using tetra-

nucleosome configurations with a maximum extension of 50 nm, so the model can at most

predict an end-to-end distance of 183 nm. This value is smaller than that anticipated in

the linear regime (∼ 270 nm). We performed two independent sets of umbrella simulations

using different initial configurations as detailed below.

In the first set of simulations, we initialized the trajectories using the end configurations

from the second set of 4 pN simulations presented in the main text (Table S1). A total of

17 simulations were performed.

From the first set of umbrella simulations, we observed that chromatin at large end-to-end

distances tends to fall into configurations with clusters formed by neighboring nucleosomes.

To sample more extended configurations, we introduced another collective variable, dmin
i,i+1,

defined as min(di,i+1), to initialize the second set of umbrella simulations from the most

probable configuration predicted from the neuronal network model at 4 pN. The new variable

quantifies the minimal distance between nearest-neighbor nucleosomes. Explicit biases on

dmin
i,i+1 help overcome the energetic barrier associated with breaking these clusters. Specifically,
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we ran nine umbrella-sampling simulations using harmonic biases on dmin
i,i+1, with umbrella

centers placed on a uniform grid of [5.0:25:2.5] nm and an umbrella bias of 0.0005 kcal/(mol ·

nm2). Each simulation lasted for 12.75 million steps and was performed with the presence

of a 4.5 pN force on the DNA end-to-end distance. The end structures of these simulations

were used to initialize production simulations at the 4.5 pN force with harmonic biases on

dstack as all simulations presented in the main text. The production runs lasted 25 million

steps.

We combined the two data sets to estimate the chromatin extension at 4.5 pN.

Estimating the extension per nucleosome from experimental data

We processed the force-extension curve from single-molecule force spectroscopy experiments

to compute the extension per nucleosome. The extension length from experiments includes

contributions from the DNA handle and the chromatin. Following previous study,S30 we

estimate the DNA handle extension as

Lz,handle = Lc,handle ×

(
1− 1

2

√
kBT

fextA
+
fext

S

)
(S6)

where kB is Boltzmann constant, T is temperature, A is the persistence length of DNA, fext

is the extension force along the z-axis, and S is the stretching modulus. We used A = 50 nm,

S = 900 pN, and T = 300 K. The contour length of the DNA handle, Lc,handle, is estimated

as

Lc,handle = [nbp − NRL× (nnucl − 1)− 147]b (S7)

where nbp is the total number of base pairs in DNA, NRL is nucleosomal repeat length, nnucl

is the total number of nucleosomes, and b is the length of each base pair. We used NRL =

167 bp, nnucl = 25, nbp = 7045 bp, and b = 0.34 nm.

Subtracting the extension of the DNA handle from the total extension length Lz, the
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extension per nucleosome can be estimated as

Lz,nucl =
Lz − Lz,handle

nnucl − 1
. (S8)

Theoretical predictions of chromatin extension along the z-axis

To better understand the linear extension of chromatin at small forces, we introduced an

analytical model based on simulation results without extension force.

We approximate the unbiased free energy profile for chromatin extension at zero force

with a harmonic function, F (L) = a(L−L0)2+b, where L is the extension length, i.e., the end-

to-end distance. The parameters were obtained by a least-squares fitting to the simulation

data presented in Figure 1C of the main text, resulting in a = 1.200 × 10−2 kBT/nm2,

L0 = 26.83 nm, and b = 0.3820 kBT . The corresponding free energy profile with an extension

force f along the z-axis can be defined as Ff (L) = F (L)−fL cos θ, where θ is the azimuthal

angle (i.e. the angle between the fiber end-to-end distance direction and the z-axis). From

this expression, the average extension along the z-axis can be computed as

〈Lz〉f =

∫∞
0

∫ π
0
L cos θe−βFf (L)L2dL sin θdθ∫∞

0

∫ π
0
e−βFf (L)L2dL sin θdθ

(S9)

Numerical integration of the above equation led to 〈Lz〉f = 0, 33.87, 45.76, and 56.36 nm

for extension force of 0, 1, 2, and 3 pN, respectively. The extension per nucleosome along

the z-axis (Zext per nucleosome) is defined as 〈Lz〉f/11 and shown in Figure S7.

Decomposing Inter-nucleosome Distances into Shear and Normal

Motions

As discussed in the main text, two distinct motions can increase the distance between i-

th and (i + 2)-th nucleosomes and the collective variable dstack. To characterize these two

motions quantitatively, we introduced a coordinate system for each nucleosome. Following de
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Pablo and coworkers,S25 we defined the origin of the coordinate system using the geometric

center of residues 63-120, 165-217, 263-324, 398-462, 550-607, 652-704, 750-811, and 885-949.

The IDs continuously index residues from chain A to chain H of PDB 1KX5. Two additional

points were introduced to define the nucleosomal plane using the geometric center of the

dyad that includes CG atoms 81-131, 568-618, and the geometric center of CG atoms 63-

120, 165-217, 750-811, and 885-949. Two unit vectors, u and v, can then be defined using

the vectors pointing from the origin to the dyad and the third point. Atoms in the third

point were chosen such that u and v are approximately orthogonal to each other. The unit

normal vector w for nucleosome plane can then be defined as parallel to the cross product,

u× v. An illustration of the various axes is provided in Figure S11.

With the nucleosomal axes defined above, the distances between two nucleosomes can be

decomposed to the distances within the nucleosomal plane, i.e., shearing, and the distance

perpendicular to the plane, i.e., unstacking. Denoting the vector from nucleosome i to

nucleosome i + 2 as di,i+2 (here we use the distance between the coordinate origins for the

two nucleosomes), the corresponding normal and shear distances are dni,i+2 = |di,i+2 ·wi| and

dsi,i+2 =
√
|di,i+2|2 − dni,i+2

2. The normal and shear distances for the 12mer chromatin, dn and

ds, are defined using the mean values of all nucleosome i and i+2 pairs as dn = 1
10

∑10
i=1 d

n
i,i+2

and ds = 1
10

∑10
i=1 d

s
i,i+2.

Free Energy Calculations for Two Interacting 12mers

To quantify the impact of chromatin-chromatin interactions and crowding on the stability

of fibril configurations, we carried out simulations with two chromatin segments. Umbrella

sampling was performed using two collective variables. The first variable quantifies the

average extension of the two 12mers with d̄stack defined as

d̄stack =
1

2
(d1

stack + d2
stack). (S10)
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dstack is defined in Eq. S2 and 1, 2 index the two 12mers. The second variable measures

the number of contacts between the two chromatins. Contacts were defined at the nucleo-

some level, and a pair of nucleosomes is denoted as in-contact if the distance between their

geometric centers (di,j) is less than 15 nm. Mathematically, the interchain contacts, C, is

defined as

C =
12∑
i=1

24∑
j=13

1− (di,j/do)
6

1− (di,j/do)12
, (S11)

where i and j indices over nucleosomes from the two 12mers and do = 15 nm.

We biased the simulations towards various collective variable values for a comprehen-

sive exploration of the phase space. Details of the umbrella centers and force restraints

used in our simulations are provided in Table S2. Simulations with umbrella centers d̄stack

biased to values ≤ 10nm were initialized using the two-helix fibril configuration for each

chromatin placed at ≥ 20 nm apart. The rest of the simulations were initialized with ex-

tended chromatin configurations extracted from the neural network simulations. Chromatin

configurations in simulations with 4 pN extension force at umbrella centers do were adopted

here for simulations that biased d̄stack to the same values. Only chromatin configurations

for the first set of simulations with 4 pN extension force were used here (see Section: One-

dimensional free energy calculations at 4 pN ). The initial five million steps of each trajectory

were discarded as equilibration in our free energy calculations.

Neural Network Model for the 12mer Chromatin

To facilitate conformational sampling of the 12mer, we introduced a neural network model

to quantify the free energy of chromatin configurations as a function of inter-nucleosomal

distances. The neural network model is a generalization of the free energy surface for a

tetra-nucleosome determined in a previous study.S16
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Parameterizing the Tetra-nucleosome Free Energy Landscape with

Neural Networks

In Ref. S16, we parameterized a neural network model to compute the free energy of a

tetra-nucleosome (A) from the six internuclesome distances (d).

To make the neural network’s output invariant with respect to nucleosome indexing

order, i.e., A(d = (d12, d13, d14, d23, d24, d34)) = A(d̃ = (d34, d24, d14, d23, d13, d12)), we further

converted the inter-nucleosome distances into symmetrical features s(d) = (s1(d), s2(d),

s3(d), s4(d), s5(d), s6(d)) as follows:

s1 = d12 + d34

s2 = d13 + d24

s3 = d14

s4 = d23

s5 = d12 · d13 + d24 · d34

s6 = d12 · d2
13 + d2

24 · d34.

(S12)

From the above definition, it is straightforward to verify that s(d) = s(d̃). In addition, given

any s in the range of s(d), two solutions of d exist for Eq. (S12) and these two solutions cor-

responds to the two different ways of indexing nucleosome. Specifically, if one of the solution

is d = (d12, d13, d14, d23, d24, d34), the other solution will be d̃ = (d34, d24, d14, d23, d13, d12).

Therefore, the features s(d) are symmetric and only symmetric to the two ways of indexing

nucleosomes.

Using the symmetric features as input, i.e., A(d) = A(s(d)), a neural network with two

fully connected hidden layers, each of which has 200 nodes, was used to parameterize the

free energy. The neural network was trained by minimizing the loss function

||(−∇A(d))− F(d)||2 + λ||w||2, (S13)
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where w are weight parameters of the neural network. F(d) are mean forces at d estimated

using restrained molecular dynamics simulations (see below). λ = 6 × 10−4 is the weight

decay factor and acts as a regularizer of optimization. Overall, the neural network has 41801

(7× 200 + 201× 200 + 201× 1 = 41801) parameters, which is smaller than the total number

of constraints 10000 × 6 = 60000. The Adam optimizerS31 was used to train the neural

network for 100000 steps with a learning rate of 0.001. To prevent over fitting and improve

the robustness of neural networks, we trained 30 models independently and used the average

results to estimate the final free energy.

To estimate mean forces at different chromatin configurations with inter-nucleosome dis-

tances do, we carried out restrained molecular dynamics simulations with the harmonic

biasing potential

Vb =
1

2

3∑
i=1

4∑
j=i+1

k(dij(r)− doij)2, (S14)

where i and j are indexes of the four nucleosomes, k = 1000 kJ/(mol·nm2), and doij is the

inter-nucleosome distances between nucleosome i and j for the selected center do. The mean

forces were estimated as

Fo
ij =

1

T

T∑
t=1

k(dtij − doij). (S15)

Here T = 50, 000 represents the number of configurations collected from a 500,000 step-long

trajectory.

Ten thousand tetra-nucleosome configurations were selected to compute mean forces and

parameterize the neural network. To ensure that these configurations cover relevant struc-

tures for chromatin folding, we selected them from simulation trajectories that repeatedly

probe chromatin folding and unfolding. These trajectories were performed by combining

metadynamics with temperature accelerated molecular dynamics (TAMD) to bias the sim-

ulations along two collective variables Rg and Q. The radius of gyration, Rg, is defined
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as

Rg =

√√√√1

4

4∑
i=1

(ri − rcom)2, (S16)

where ri is the geometric center of the i-th nucleosome using the coordinates of nucleosome

core histone residues. rcom is the center of mass coordinate for all nucleosomes. Q measures

the similarity of a given tetra-nuclesome configuration to the crystal structure (PDB ID:

1ZBB) and is defined as

Q =
1

6

3∑
i=1

4∑
j=i+1

exp

[
−

(rij − roij)2

2σ2

]
, (S17)

where rij measures the distance between the center of the two nucleosomes. More simulation

details can be found in Ref. S16.

Generalizing Tetra-nucleosome Results to 12mer Chromatin

We generalized the tetra-nucleosome neural network model to estimate the free energy of

12mer. We defined Fn(1 . . . , n) as the free energy of an oligomer including n nucleosomes

of indices 1, . . . , n. We assumed that each nucleosome with index i could only interact with

nucleosomes i ± 1/2/3, ignoring nucleosome pair interactions beyond tetramers. As shown

in Figure S4, mean distances for these nucleosome pairs are much larger and no interactions

are expected among them. Under this assumption, the free energy of n + 1 nucleosomes

(Fn+1) can be determined from the following recursive relationship as

Fn+1(1, . . . , n+ 1) = Fn(1, . . . , n) + F4(n− 2, n− 1, n, n+ 1)− F3(n− 2, n− 1, n). (S18)

Subtracting the free energy (F3) avoids the double-counting from adding the tetrameric

contribution (F4).

The trimer free energy is estimated as follows. Assuming that the fourth nucleosome is

far away from the rest of the three and its interaction with them can be ignored, the free
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energy difference between the two should be a constant. Therefore, we have

F3(d1,2, d1,3, d2,3) = F4(d1,2, d1,3, d2,3, d1,4 = d2,4 = d3,4 = 15nm) + const. (S19)

Here di,j refers the distance between nucleosome i and j. The distances from the fourth

nucleosome to the other three (i.e. d1,4, d2,4, d3,4) were set as 15 nm. For d3,4, this value

is comparable to the distance between neighboring nucleosomes in the PDB structure for

a tetra-nucleosome to avoid significant DNA unwrapping or DNA overstretching. It is also

large enough to unstack i and i ± 2 nucleosomes and to dissociate i and i ± 3 nucleosome

contacts, based on previous computational results.S25 The effectiveness of this generalized

neural network model is verified based on the fact that it can accurately predict the extension

at different forces (Figure S5).

Given all the di,i±1/2/3 and assuming a left-handed helix, the relative position of each

nucleosome can be uniquely determined geometrically, as long as the distances satisfy some

geometric requirements such as triangle inequality. After determining the relative position

of each nucleosome, the full set of distances (i.e. distances between any two different nucleo-

somes) was used to bias coarse-grained simulations towards the most probable configurations

predicted by the neural network sampling.

Numerical Simulations of the Neural Network Model

We used the replica-exchange Monte Carlo algorithm to explore the free energy surface

defined by the neural network. 20 Replicas with temperatures as the geometric sequence

from 300 K to 2000 K were used. 500000 steps of simulations were performed for each

replica. The initial 20000 steps were used to optimize the MC simulation step size so that

the mean acceptance rate of MC movement is ∼ 0.20-0.25. The exchange between two

neighboring replicas was attempted every 50 steps. We used the samples collected in the

final 300000 steps of the replica at 300 K for analysis.
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Details of Validation Simulations

Simulations Starting from Uniformly Extended Chromatin Config-

urations

As detailed in the Section: Free Energy Profiles for Chromatin Under Tension, we used

chromatin configurations predicted by the neural network model to initialize the umbrella

simulations. From the initial configurations, we performed extensive, long molecular dynam-

ics simulations to alleviate any biases that the neural network model might have introduced.

We acknowledge that, despite our best effort, it remains possible that the simulations are

not sufficient to remove biases that the neural network might introduce. As an additional test,

we carried out a new set of umbrella simulations starting from uniformly extended chromatin

structures. By design, the initial configurations are free of clutches. These simulations were

again performed with the presence of a 4 pN extension force for direct comparison with

results presented in the main text.

To facilitate the conformational sampling of clutched versus uniform chromatin confor-

mations, we performed two dimensional umbrella simulations using both dstack and α. As

mentioned in the main text, dstack uses the average distance between 1-3 nucleosomes to

measure the average chromatin extension. α is defined as the ratio of the maximum and

minimum distance between 1-3 nucleosomes, i.e., α = dmax
i,i+2/d

min
i,i+2. For clutched configura-

tions, the distance at the interface between two nucleosome clusters is expected to be much

larger than the distance between nucleosomes within the same cluster, and α will be much

larger than one. On the other hand, for more uniformly extended configurations, α will

approach one. The maximal and minimal values of di,i+2 were computed with the following
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expressions with analytical derivatives

dmax
i,i+2 =β1 ln

(
10∑
i=1

edi,i+2/β1

)

dmin
i,i+2 =β2/ ln

(
10∑
i=1

eβ2/di,i+2

)
,

(S20)

where β1 = 0.1 nm and β2 = 1000 nm. The list of umbrella centers is provided in Table S3.

We initialized these umbrella simulations with two uniform chromatin configurations

that lack nucleosome clutches (Figure S13A). Both configurations were obtained from biased

simulations initialized with the fibril structures. The less extended uniform structure with

an end-to-end distance per nucleosome of 7.74 nm was produced by restricting pair-wise

nucleosome distances di,i+1, di,i+2, di,i+3 to 15, 20, 25 nm, respectively. The more extended

uniform chromatin structure with an end-to-end distance per nucleosome of 13.64 nm was

prepared with a constant-velocity pulling simulation that stretches the end-to-end distance

to 150 nm. The entire 147 bp nucleosomal DNA and the histone core proteins were rigidified

during the biasing simulations to prevent DNA unwrapping and clutch formation.

From the two initial configurations, we first carried out 0.5 million steps equilibration

simulations to relax them towards individual umbrella centers. Simulations with dstack ≤ 20

nm started from the structure with a end-to-end distance per nucleosome of 7.74 nm (Figure

S13A, top), and the rest of the simulations started from the second structure. The relaxation

was achieved with a moving harmonic restraint Urelax(t) defined as

Urelax(t) =
1

2

[
κdstack(t)(dstack − dstack,0(t))2 + κα(t)(α− α0(t))2

]
, (S21)

where κdstack(t) and κα(t) are time-dependent harmonic restraint constants. dstack,0(t) and

α0(t) are time-dependent moving restraint centers. Values for these time-dependent quanti-

ties are provided in Table S4.

During the relaxation period, for umbrella centers with dstack ≤ 25 nm and α ≤ 4, we kept
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the entire 147 bp nucleosomal DNA and the histone core rigidified to avoid DNA unwrapping

and clutch formation. For umbrella simulations at larger dstack values, no such restrictions

were applied since doing so may prevent chromatin extension.

After equilibration, we launched production simulations that lasted 10 million steps and

saved the configurations every 5000 steps. The production simulations used the same force

field setup as those presented in the main text. The first three million steps were discarded

and the rest of the data were used for free energy calculations.

Simulations with Fully Rigidified Nucleosomes

To explore the role of DNA unwrapping on nucleosome clutch formation and inter-chain

contacts, we performed additional simulations with fully rigidified nucleosomes. Unlike sim-

ulations presented in the main text, the entire 147 bp nucleosomal DNA and the histone

core were constrained together as rigid bodies in the native configurations using the same

algorithms. Only linker DNA and histone tails remain flexible.

Chromatin extension under 4 pN force

To more directly evaluate the impact of DNA unwrapping on clutch formation, we carried

out a new set of simulations with fully rigidified nucleosomes to study chromatin extension

under 4 pN force. A total of 10 umbrella simulations were performed to bias dstack to

values between 10 nm to 32.5 nm, with an increment of 2.5 nm. We set the umbrella

restraining constant κ = 100.0 kcal/(mol · nm2) in the first 400,000 steps to drive chromatin

configurations towards the restraining centers. After that, the umbrella bias was relaxed

to κ = 0.05 kcal/(mol · nm2) and the simulations continued for another 15 millions steps.

The initial 1 million steps were excluded when calculating the free energy profile. Umbrella

centers and force restraints used in these simulations are provided in Table S5.

Two sets of configurations were used to initialize the above simulations. They were

produced by constant-velocity pulling simulations over 5 million steps initialized from a
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fibril structure. The pulling bias was applied to the z-axis projection of the end-to-end

distance. Fiver pulling simulations were performed using independent random seeds with a

target bias of 75 nm, and another five with a target bias of 150 nm. In total, these pulling

simulations produced ten configurations. The first five 75 nm configurations were used to

initialize umbrella simulations centered between 10 nm to 20 nm. The second five 150 nm

configurations were used to initialize umbrella simulations centered between 22.5 nm to 32.5

nm.

Inter-chain contacts with two 12mer simulations

To explore the contribution of nucleosomal DNA unwrapping to inter-chain contacts, we

carried out additional simulations following the same protocol as that described in Section:

Free Energy Calculations for Two Interacting 12mers, but with fully rigidified nucleosomes.

Initial configurations of these simulations were obtained from a constant-velocity pulling

simulation that drives the chromatin z-axis extension towards 75 nm over 20 million steps.

The two 12mers adopt identical configurations at the beginning of the simulations and were

separated 20 nm part as measured by the center-of-mass distance. Umbrella centers and

harmonic restraining constants used in these simulations are provided in Table S5. The

initial 5 million steps of the umbrella sampling were discarded as equilibration.
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Table S1: Summary of umbrella simulation details for free energy calculations at various
extension forces. The format for umbrella centers, “start:end:step”, indicates the a series of
values from “start” to “end” with a spacing of “step”. The two restraining constants are
shown in the format “(κqwrap (kcal/mol), κdstack (kcal/(mol · nm2)))”.

Extension force
(pN)

Umbrella center:
qwrap

Umbrella center:
dstack (nm)

Restraining
constants

Simulation length
(million steps)

0 0.45:0.90:0.15 10.0:30.0:5.0 (50, 0.05) 10.5
0 1.00 6.0:10.0:0.5 (47.8, 1.20) 10
0 1.00 10.0:15.0:2.5 (47.8, 0.120) 10
0 1.00 12.5:15.0:2.5 (47.8, 0.478) 10
0 0.75:0.95:0.05 6.0:10.0:0.5 (120, 1.20) 10
0 0.90:0.95:0.05 10.0:15.0:2.5 (120, 0.120) 10
0 0.90:0.95:0.05 12.5:15.0:2.5 (120, 0.478) 10
0 0.80:0.85:0.05 10.0:20.0:2.5 (120, 0.0120) 10
0 0.75:0.85:0.05 12.5:20.0:2.5 (120, 0.478) 10
1 0.45:0.90:0.15 10.0:30.0:5.0 (50, 0.05) 10
2 0.45:0.90:0.15 10.0:30.0:5.0 (50, 0.05) 10
3 0.45:0.90:0.15 10.0:30.0:5.0 (50, 0.05) 15
3 0.45 10.0:20.0:5.0 (50, 0.2) 15
3 0.60 10.0:20.0:5.0 (50, 0.2) 15
3 0.75 10.0:30.0:5.0 (50, 0.2) 15
3 0.90 10.0:30.0:5.0 (50, 0.2) 15

3.5 (1st set) n.a. 10.0:50.0:2.5 (0, 0.05) 25
4 (1st set) n.a. 10.0:50.0:2.5 (0, 0.05) 24.5
4 (2nd set) n.a. 10.0:50.0:2.5 (0, 0.05) 25
4.5 (1st set) n.a. 10.0:50.0:2.5 (0, 0.05) 25
4.5 (2nd set) n.a. 10.0:50.0:2.5 (0, 0.05) 25
4.5 (3rd set) n.a. 47.5:50.0:2.5 (0, 0.5) 25
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Table S2: Summary of umbrella simulation details for free energy calculations with two 12-
mers. The same format as in Table S1 is adopted here. The two restraining constants are
shown in the format “(κC (kcal/mol), κd̄ (kcal/(mol · nm2)))”

.

Umbrella center:
C

Umbrella center:
d̄ (nm)

Restraining
constants

Simulation length
(million steps)

30.0:45.0:5.0 10.0:25.0:2.5 (0.1, 0.05) 20
10.0:20.0:5.0 6.0:10.0:0.5 (0.120, 1.20) 10
10.0:20.0:5.0 10.0:25.0:2.5 (0.478, 0.239) 10
10.0:20.0:5.0 10.0:25.0:2.5 (0.120, 0.0478) 10
10.0:20.0:5.0 9.0:9.5:0.5 (0.120, 4.78) 10
25.0:45.0:5.0 6.0:10.0:0.5 (0.120, 1.20) 20

25.0 10.0:25.0:2.5 (0.120, 0.0478) 20
25.0:45.0:5.0 9.0:9.5:0.5 (0.120, 4.78) 20

25.0 10.0 (0.120, 4.78) 20
25.0:45.0:5.0 10.0 (0.478, 0.239) 20
30.0:45.0:5.0 10.0 (0.120, 0.0478) 20
30.0:40.0:5.0 12.5:15.0:2.5 (0.478, 0.239) 20
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Table S3: Summary of umbrella simulation details for free energy calculations using dstack

and α as collective variables. The same format as in Table S1 is adopted here. The two
restraining constants are shown in the format “(κdstack (kcal/(mol · nm2)), κα (kcal/mol))”

Umbrella center:
dstack (nm)

Umbrella center:
α

Restraining
constants

Simulation length
(million steps)

10.0:35.0:2.5 2.0:8.0:2.0 (0.05, 0.2) 10
22.5:27.5:2.5 2.0:8.0:2.0 (0.2, 0.2) 10
10.0:25.0:2.5 2.0:4.0:2.0 (0.05, 0.5) 10

Table S4: Summary of simulations with moving restraints to target chromatin con-
figurations towards specific umbrella centers using dstack and α as collective vari-
ables. The format for “restraining constants and centers” is (κdstack (kcal/(mol ·
nm2)), κα (kcal/mol)), (dstack,0 (nm), α0 (1)). We only listed the restraining constants and
centers at simulation time of zero, 4 × 105 and 5 × 105 steps, and values in between these
time points were updated via linear interpolation during the simulation.

Umbrella center:
dstack (nm)

Umbrella center:
α

Restraining
constants and centers

at t = 0

Restraining
constants and centers
at t = 4× 105 steps

Restraining
constants and centers
at t = 4× 105 steps

10.0:25.0:2.5 2.0:4.0:2.0 (50, 200), (30, 1) (50, 200), (dstack, α) (0.05, 0.2), (dstack, α)
10.0:20.0:2.5 6.0:8.0:2.0 (50, 200), (20, 1) (50, 200), (dstack, α) (0.05, 0.2), (dstack, α)
22.5:25.0:2.5 6.0:8.0:2.0 (50, 200), (30, 1) (50, 200), (dstack, α) (0.05, 0.2), (dstack, α)
27.5:35.0:2.5 2.0:8.0:2.0 (50, 200), (30, 1) (50, 200), (dstack, α) (0.05, 0.2), (dstack, α)

S-24



Table S5: Summary of umbrella simulation details for free energy calculations with two 12-
mers with fully rigidified nucleosomes. The same format as in Table S1 is adopted here, and
the units for the two restraining constants are κC (kcal/mol), κd̄stack (kcal/(mol · nm2)).

Umbrella center:
C

Umbrella center:
d̄stack (nm)

Restraining
constants

Simulation length
(million steps)

30.0:55.0:5.0 6.0:10.0:0.5 (0.0478, 0.478) 20
30.0:55.0:5.0 10.0:17.5:2.5 (0.0478, 0.239) 20
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Figure S1: Secondary structure motifs for disordered histone tails negligibly impact nucleo-
some stability and protein-DNA interactions. The two curves correspond to the free energy
profiles of the outer layer nucleosomal DNA unwrapping as a function of the DNA end-to-
end distance. These profiles were determined from replica-exchange umbrella simulations
with biases on the end-to-end distance of the nucleosomal DNA. The two sets of simulations
only differ in the treatment of histone tails but otherwise share identical settings. The black
curve was computed using simulations performed with the same model as that presented
in the main text. On the other hand, the red curve was determined using simulations that
explicitly accounted for secondary structure biases in the disordered histone tails. In partic-
ular, we used AlphaFold2S32 to predict the structure of all the histone tails. We built new
structure-based models for histone tails that account for the bonds, angles, and dihedrals
from these initial structures. Therefore, the new models should reproduce the residue folding
of histone tails and their tendency to form any secondary/tertiary structures. The umbrella
centers were placed on a uniform grid [5.0:70.0:5.0] nm. The temperature replica exchange
was applied between temperatures from 300 K to 410 K with a spacing of 10 K. Each simu-
lation replica lasted for 5.5 million steps with a time step of 10.0 fs, and the first 250k steps
were excluded for equilibration. We used the WHAM algorithmS3 to process the simulation
data from all temperatures and compute the free energy profiles. Error bars correspond to
the standard deviation of the means estimated from three independent data blocks.
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Figure S2: The cutoff distance used for the Debye Hückel potential has negligible impact on
the computed free energy profile. The black line is identical to the one presented in Figure
1 of the main text. The red curve was computed with a new set of simulations that adopted
a cutoff distance of five times Debye screening length. The new simulations were carried out
following the same simulation protocol as those presented in the main text with the presence
of 4 pN force.
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Figure S3: Rigidifying the inner layer nucleosomal DNA does not impact the energetics of
outer layer DNA unwrapping. (A) Illustration of the groups of atoms rigidified in simulations.
For simulations presented in the main text (bottom), both the histone core and inner layer
(73 bp) of nucleosome DNA (shown in blue) are treated together as one rigid body. As an
alternative treatment (top), we only rigidified the four residues and two nucleotides (shown
in blue) located on the dyad axis to avoid nucleosomal DNA sliding. (B) Free energy profiles
of outer layer nucleosomal DNA unwrapping as a function of the DNA end-to-end distance.
These profiles were determined from replica-exchange umbrella simulations with biases on
the end-to-end distance of the nucleosomal DNA. The two sets of simulations only differ in
the treatment of rigid groups, as illustrated in part A, but otherwise share identical settings.
The umbrella centers were placed on a uniform grid [5.0:70.0:5.0] nm. The temperature
replica exchange was applied between temperatures from 300 K to 410 K with a spacing
of 10 K. Exchanges among the replicas were attempted every 100 steps. Each simulation
replica lasted for at least 5.5 million steps. The simulations that rigidified both the histone
core and inner layer of nucleosomal DNA used a time step of 10.0 fs. The simulations that
only rigidified the four residues and two nucleotides on the dyad axis require a smaller time
step of 1.0 fs to ensure energy conservation. In both cases, the first 250k steps were excluded
for equilibration. We used the WHAM algorithmS3 to process the simulation data from all
temperatures and compute the free energy profiles. Error bars correspond to the standard
deviation of the means estimated from three independent data blocks.
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Figure S4: Mean distances between pairs of nucleosomes at various values of nucleosome sep-
aration n. Error bars correspond to the standard deviation of the mean estimated from three
independent data blocks. These data suggest that the average distance between nucleosome
pairs separated by four or more nucleosomes is larger than 13 nm. Therefore, nonbonded
interactions between these nucleosomes contribute negligibly to the overall potential energy
and stability of the chromatin structure. Therefore, neglecting their contribution to the
chromatin conformational free energy in the neural network model is a reasonable approx-
imation. See Section: Neural Network Model for the 12mer Chromatin for more details on
the neural network model.
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Figure S5: Comparison between experimentalS33 force-extension curve (black) and the one
predicted by the neural network model. The neural network model quantifies chromatin
stability as a function of inter-nucleosome distances. Based on the derivation shown in
Eq. S9, when the extension force is larger than 1 pN, the extension along z-axis (Lz) is
very close to the end-to-end distance (L), so that we approximated the z-axis extension per
nucleosome using the distance between first and last nucleosome (L) divided by 11. L at
different extension forces was calculated using umbrella simulations of the neural network
model. See text Section: Initial configurations from the neural network model and Section:
Neural Network Model for the 12mer Chromatin for simulation details.
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Figure S6: Two dimensional free energy profiles as a function of nucleosome unwrapping
(qwrap) and unstacking (dstack) at various extension forces determined from umbrella simula-
tions. See text Section: Free Energy Profiles for Chromatin Under Tension for simulation
details.
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Figure S7: Theoretical predictions of chromatin extension along the z-axis, Zext. We assumed
a harmonic potential for the end-to-end distance of the unbiased chromatin. Parameters in
the potential were obtained from a least-square fitting to the simulation results shown in
Figure 1C at 0 pN. From the harmonic potential, Zext can be computed with the analytical
expression provided in Eq. S9. See Section: Theoretical predictions of chromatin extension
along the z-axis for a detailed discussion.
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Figure S8: Comparison between the simulated (red) and experimentalS33 (black) force-
extension curves. The results for simulations performed with 150 mM monovalent ions
are reproduced from Fig. 1B. The green dot corresponds to chromatin extension at 4pN
force obtained from simulations with 100 mM monovalent ions. We note that while pre-
vious experimental studiesS34 have shown that lower salt concentrations lead to chromatin
decompaction, our results do not contradict them. A critical difference between the re-
sults presented here and previous experimental studies is the presence of force. In previous
studies, chromatin was probed without any tension and should, in general, adopt compact
conformations. For compact chromatin, linker DNAs come in close contact and contribute
significantly to chromatin stability. Therefore, factors that affect their repulsion, such as
increasing salt concentration, will dramatically impact chromatin extension. However, with
4 pN force, chromatin adopts much more extended configurations with very few contacts
between linker DNA (Figure 2 of the main text). Histone-DNA interactions become more
important for chromatin stability and extension in these configurations as many nucleosomes
have unwrapped. Therefore, lowering the salt concentration would enhance attraction be-
tween histone proteins and DNA to stabilize individual nucleosomes and reduce chromatin
extension. Consistent with this interpretation, many experimental studies have shown that
nucleosome unwrapping becomes more prevalent at higher salt concentrations.S35–S38
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Figure S9: Additional representative chromatin structures from simulations performed under
various extension forces. The values for the extension force are provided next to the struc-
tures. Similar to the ones shown in Figure 2 of the main text, these structures correspond
to the central configurations of the clusters identified by the single-linkage algorithm using
root mean squared distance (RMSD) as the distance between structures.

S-34



1 2 3 4 5 6 7 8 9 10 11 12

1
2

3
4

5
6

7
8

9
10

11
12

0.0 pN contact map

0.0

0.2

0.4

0.6

0.8

1.0
A

1 2 3 4 5 6 7 8 9 10 11 12

1
2

3
4

5
6

7
8

9
10

11
12

4.0 pN contact map

0.0

0.2

0.4

0.6

0.8

1.0
B

1 2 3 4 5 6 7 8 9 10 11 12

1
2

3
4

5
6

7
8

9
10

11
12

0.0 pN contact difference map

0.0

0.1

0.2

0.3

0.4

0.5C

1 2 3 4 5 6 7 8 9 10 11 12

1
2

3
4

5
6

7
8

9
10

11
12
4.0 pN contact difference map

0.0

0.1

0.2

0.3

0.4

0.5D

Figure S10: The ensemble of simulated chromatin configurations at different forces satisfy the
C2 symmetry. (A, B) Average nucleosome pair-wise contact maps computed using chromatin
structures simulated with the presence of 0 and 4 pN force. The contact between nucleosome

pairs (i, j) is defined as cij =

〈
1−

(
rij−d0

r0

)n

1−
(

rij−d0
r0

)m

〉
with d0 = 3 nm, r0 = 8 nm, n = 6, and

m = 12. The angular brackets 〈·〉 represent ensemble averaging. (C, D) Difference in
contacts between pairs of nucleosomes defined as ∆cij = |cij − c13−i,13−j|. The difference
in contacts was designed to examine the C2 symmetry of the system. For example, we
anticipate that for the 12mer, 1-2 nucleosomes should have comparable contacts as 11-12,
1-3 nucleosomes should have similar contacts as 10-12, etc. We note that the 12mer does
not have translational symmetry, since n and n+m nucleosomes are not identical due to the
boundary effects and the finite length of chromatin.
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Figure S11: Illustration of the nucleosome coordinate system used to distinguish shearing
and normal motions. The nucleosome is shown in the coarse-grained representation derived
from the crystal structure (PDB ID: 1KX5).S8 The origin of the coordinate system is defined
as the center of residues 63-120, 165-217, 263-324, 398-462, 550-607, 652-704, 750-811, and
885-949. The red arrow points from the origin to the center of residues 63-120, 165-217,
750-811, and 885-949. The green arrow points towards the nucleosome dyad defined as
the center of residues 81-131 and 568-618. The blue arrow is defined as the cross product of
vectors along the red and the green arrows. See text Section: Decomposing Inter-nucleosome
Distances into Shear and Normal Motions for further discussions.
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Figure S12: Additional representative chromatin structures at smaller and larger distances
than the average extension at 4 pN force. The end-to-end distances are provided above the
structures.
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Figure S13: Simulations initialized from uniform chromatin configurations produce clutched
structures. See text Section: Simulations starting from uniformly extended chromatin con-
figurations for additional simulation details. (A) Illustration of the two uniformly extended
configurations used to initialize the umbrella simulations. (B) Representative chromatin
structures with different end-to-end distances per nucleosome produced by umbrella sim-
ulations. We selected configurations with the most likely α values. Numbers below the
structures correspond to values for α and the end-to-end distance per nucleosome.
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Figure S14: Simulations with uniform chromatin configurations reproduce findings presented
in the main text. See text Section: Simulations starting from uniformly extended chromatin
configurations for additional simulation details. (A) Comparison of the two free energy pro-
files as a function of end-to-end distance per nucleosome obtained from simulations with
uniform chromatin configurations (black) and with configurations predicted by the neural
network model (red). The red curve is identical to that presented in Figure 1C of the main
text. The statistical equivalence of two independent sets of simulations initialized with dif-
ferent configurations within error bars supports the convergence of our results. We note that
the residual differences between the two free energy profiles highlight the challenges of sam-
pling chromatin configurations, which motivated our use of initial configurations predicted
by the neural network model for simulations presented in the main text. (B) Free energy
profile as a function of α. The global minimum at large α value supports the formation of
clutched chromatin configurations.
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Figure S15: Restricting nucleosomal DNA unwrapping reduces clutch formation. See text
Section: Simulations with Fully Rigidified Nucleosomes for additional simulation details.
(A) Representative chromatin structures with different end-to-end distances produced by
umbrella simulations. We selected configurations with the most likely α values. Numbers
next to the structures correspond to values for α and the end-to-end distance per nucleosome.
(B) Free energy profiles as a function of α = dmax

i,i+2/d
min
i,i+2 calculated from simulations under

4 pN tension with the entire 147 bp nucleosomal DNA rigidified (black) and with only
the inner 73 bp nucleosomal DNA rigidified (red). (C) The average value of α calculated
as a function of the per-nucleosome DNA end-to-end distance from simulations under 4
pN tension with the entire 147 bp nucleosomal DNA rigidified (black) and with only the
inner 73 bp nucleosomal DNA rigidified (red). Error bars are calculated from the standard
deviation estimated via block averaging. For a better comparison between these two sets of
simulations, we only show data with per-nucleosome end-to-end distance below 10 nm.
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Figure S16: Correlation between α = dmax
i,i+2/d

min
i,i+2, the ratio between maximum and min-

imum values of the 1-3 nucleosome stacking distance, and the inter or intra-nucleosome
histone-DNA interaction energies. α was introduced to quantify the degree of irregularity in
chromatin structure. As the name suggests, The intra-nucleosome energy (red) only accounts
for the interactions between histone proteins and DNA segments from the same nucleosome,
while the inter-nucleosome energy (black) quantifies interactions from different nucleosomes.
The two curves were computed using data from simulations with the 4 pN force presented
in the main text. They were shifted to set the maximum values as zero. The errorbars
correspond to the standard deviation of the mean computed via block averaging.
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Figure S17: Representative structure of two contacting chromatin segments that adopt more
extended configurations. Extension leads to more interdigitation between the two chains.
The inset highlights the interactions between inter-chain nucleosomes. The free energy and
collective variable value are indicated as the green dot in the free energy profile.
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Figure S18: The average value of ᾱ as function of d̄stack determined using the same simulations
presented in Figure 5 of the main text. α = dmax

i,i+2/d
min
i,i+2 was introduced to quantify the degree

of irregularity in chromatin structure. We averaged over two chromatin segments to define
the mean value as ᾱ = (αfiber 1 + αfiber 2)/2. The errorbars measure the standard deviation
of the mean and were estimated from three independent data blocks. This plot supports the
formation of irregular chromatin configurations with nucleosome clutches (larger ᾱ values)
as chromatin extends to break stacking interactions (higher d̄stack values).
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Figure S19: Average ᾱ (Left) and d̄stack (Right) as a function of inter-chain contact numbers
determined using simulations presented in Figure 5 of the main text. The error bars measure
the standard deviation of the mean and were estimated from three independent data blocks.
The two plots support that chromatin become more irregular (larger ᾱ values) and extended
(larger d̄stack values) as contacts form. The slight decrease in ᾱ for very large contacts arises
from chromatin compaction as seen in the drop for d̄stack. More contacts necessitate more
compact chromatin configurations.
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Figure S20: Free energy surface as a function of the inter-chain contacts and the average
extension of the two 12mers determined with simulations that permit (left) or prohibit
(right) outer nucleosomal DNA unwrapping. The left plot is identical to Figure 5A of the
main text but with a different color scale. The right plot was computed with a new set
of umbrella simulations in which the entire 147 bp nucleosomal DNA was rigified together
with the histone core. Representative structures near the free energy minimum are shown
below, with the collective variable values indicated as green dots in free energy surfaces. See
Section: Simulations with Fully Rigidified Nucleosomes for simulation details.
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