#### SUPPLEMENTAL MATERIAL

#### Table S1. The Heart Rhythm Society's Criteria<sup>10</sup> for the Diagnosis of Cardiac Sarcoidosis (CS)

#### with the Distribution of the Individual Criteria in Patients of the Present Cohort

| Likelihood of diagnosis and the underlying criteria                                                                                   | N (%) *    |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------|------------|--|--|--|--|--|
| Histological Diagnosis from Myocardial Tissue, Definite CS                                                                            |            |  |  |  |  |  |
| Non-caseating granuloma on histological examination of myocardial tissue with no alternative cause (e.g., negative organismal stains) |            |  |  |  |  |  |
| Clinical Diagnosis from Invasive and Non-Invasive Studies, Probable CS                                                                | 205 (52)   |  |  |  |  |  |
| a) Histological diagnosis of extra-cardiac sarcoidosis, and                                                                           | 205 (100)  |  |  |  |  |  |
| b) one or more of following is present                                                                                                |            |  |  |  |  |  |
| Cardiomyopathy or heart block responsive to steroid +/- immunosuppressant                                                             | NA         |  |  |  |  |  |
| Unexplained reduced LVEF (< 40 %)                                                                                                     | 34 (17)    |  |  |  |  |  |
| Unexplained sustained VT (spontaneous or induced)                                                                                     | 29 (14)    |  |  |  |  |  |
| Mobitz type II 2 <sup>nd</sup> degree heart block or 3 <sup>rd</sup> degree heart block                                               | 127 (62)   |  |  |  |  |  |
| Patchy uptake on dedicated cardiac PET#                                                                                               | 157 (77) † |  |  |  |  |  |
| Late gadolinium enhancement on CMR#                                                                                                   | 125 (61) ‡ |  |  |  |  |  |
| Positive gallium uptake                                                                                                               | NA         |  |  |  |  |  |
| c) other causes for the cardiac manifestation(s) have been reasonably excluded                                                        | 205 (100)  |  |  |  |  |  |

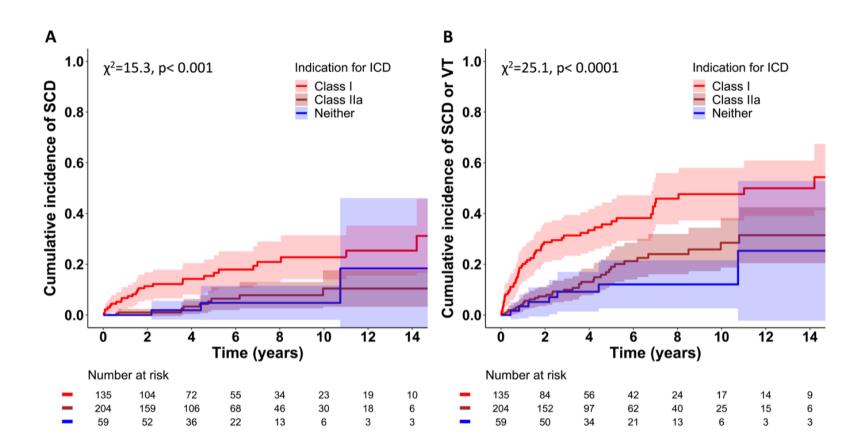
\*Number of patients (% of the entire cohort or of the clinical diagnosis group)

# In a pattern consistent with CS

+ 175 patients underwent PET

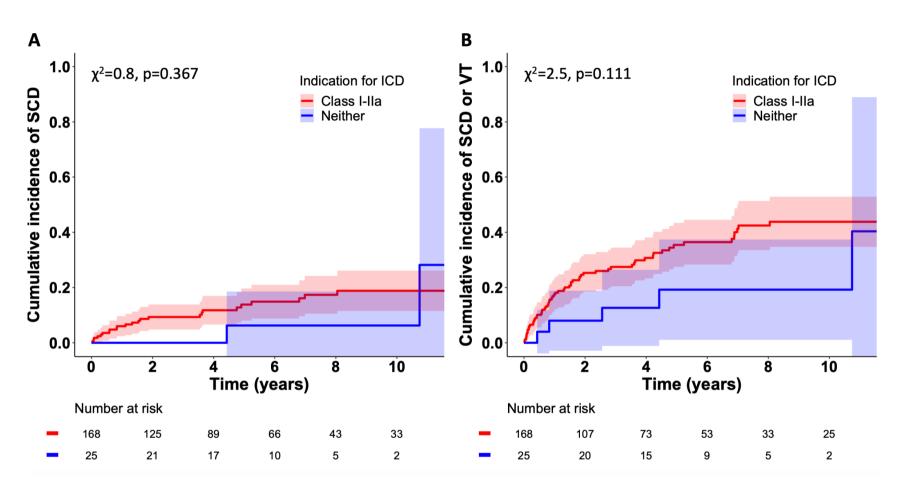
‡ 133 patients underwent CMR

CMR indicates cardiac magnetic resonance; LVEF, left ventricular ejection fraction; NA, not


applicable; PET, positron emission tomography; VT, ventricular tachycardia

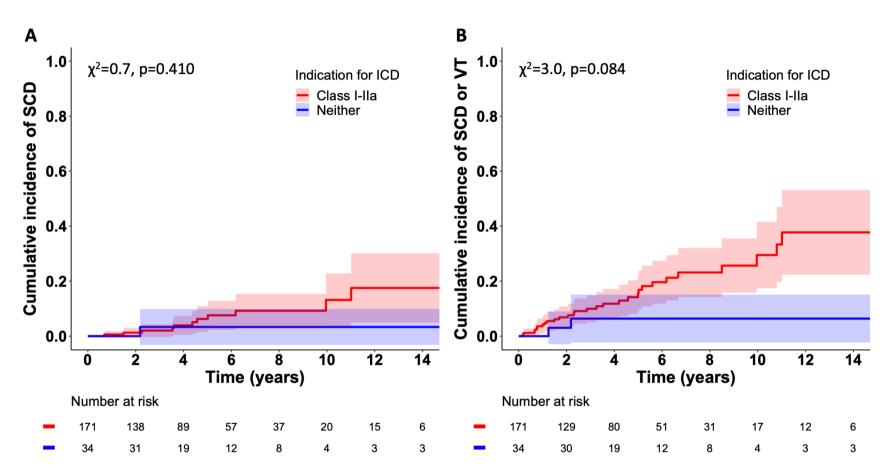
|                                                                               | All patients | Class I-IIa indica<br>by the 2014 HF | р*         |        |  |  |  |  |
|-------------------------------------------------------------------------------|--------------|--------------------------------------|------------|--------|--|--|--|--|
|                                                                               | n=398        | yes, n=339                           | no, n=59   |        |  |  |  |  |
| Immunosuppression                                                             |              |                                      |            |        |  |  |  |  |
| Prednisone                                                                    | 382 (96)     | 327 (97)                             | 55 (93)    | 0.273  |  |  |  |  |
| Azathioprine                                                                  | 150 (38)     | 128 (38)                             | 22 (37)    | 1.000  |  |  |  |  |
| Methotrexate                                                                  | 26 (7)       | 20 (6)                               | 6 (10)     | 0.249  |  |  |  |  |
| Cyclosporin                                                                   | 21 (5)       | 18 (5)                               | 3 (5)      | 1.000  |  |  |  |  |
| Infliximab                                                                    | 14 (4)       | 12 (4)                               | 2 (3)      | 1.000  |  |  |  |  |
| Mycophenolate mofetil                                                         | 36 (9)       | 32 (9)                               | 4 (7)      | 0.629  |  |  |  |  |
| Treatment of heart failure                                                    |              |                                      |            |        |  |  |  |  |
| Beta-adrenergic blockers                                                      | 376/398 (95) | 325/339 (96)                         | 51/59 (86) | 0.009  |  |  |  |  |
| ACEI or ARB                                                                   | 274/398 (64) | 236/339 (70)                         | 38/59 (64) | 0.448  |  |  |  |  |
| Spironolactone                                                                | 117/377 (31) | 106/322 (33)                         | 11/55 (20) | 0.059  |  |  |  |  |
| LV assist device                                                              | 3 (1)        | 3 (1)                                | 0          | 1.000  |  |  |  |  |
| Transplantation                                                               | 25 (6)       | 23 (7)                               | 2 (3)      | 0.558  |  |  |  |  |
| Treatment of arrhythmias                                                      |              |                                      |            |        |  |  |  |  |
| Antiarrhythmic drugs                                                          | 100/398 (25) | 87/339 (26)                          | 13/59 (22) | 0.628  |  |  |  |  |
| VT ablation                                                                   | 18 (5)       | 17 (5)                               | 1 (2)      | 0.493  |  |  |  |  |
| Implantable intracardiac devices                                              |              | <u> </u>                             | I          |        |  |  |  |  |
| Cardioverter-defibrillator with or without cardiac resynchronization capacity |              |                                      |            |        |  |  |  |  |
| at diagnosis                                                                  | 202 (51)     | 185 (55)                             | 17 (29)    | <0.001 |  |  |  |  |
| during follow-up                                                              | 92 (23)      | 79 (23)                              | 13 (22)    | 1.000  |  |  |  |  |
| Pacemaker only                                                                | 64 (16)      | 62 (18)                              | 2 (3)      | 0.002  |  |  |  |  |

Data are numbers (%) of cases


\* P-values for group comparison conducted using Fisher's exact test.

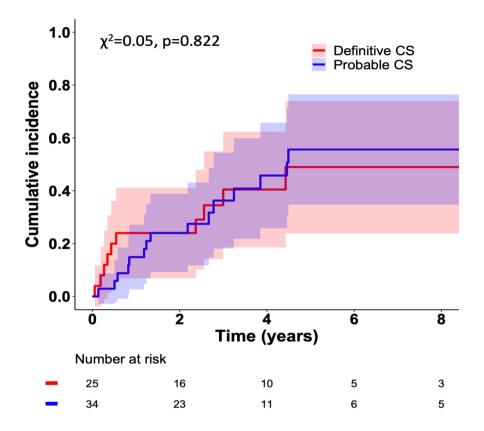
ACEI indicates angiotensin-converting enzyme inhibitor; ARB, angiotensin II receptor blocker; LV, left ventricular; VT, ventricular tachycardia.




# Figure S1. Cumulative incidence of sudden cardiac death (SCD) and the composite of SCD or sustained ventricular tachycardia (VT) stratified by indications for an implantable cardioverter-defibrillator (ICD) by the 2014 Heart Rhythm Society's guideline<sup>10</sup>

Incidences, with shaded 95% confidence intervals, of SCD (panel **A**) and the composite of SCD or sustained VT (panel **B**) in 398 patients with cardiac sarcoidosis stratified by indications for an ICD by the 2014 Heart Rhythm Society's guideline.<sup>10</sup> The graphs were constructed by cause-specific cumulative incidence analysis<sup>18</sup> with transplantations and deaths from heart failure or non-cardiac causes analyzed as competing events; comparisons were made using the Gray test<sup>19</sup>. The cumulative incidence functions in patients with class IIa indications and patients with no indications are not statistically significantly different for either SCD ( $\chi^2$  =0.008, p=0.931) or the composite of SCD and sustained VT ( $\chi^2$  =1.318, p=0.251).




## Figure S2. Cumulative incidence of sudden cardiac death (SCD) and the composite of SCD or sustained ventricular tachycardia (VT) in patients with definite cardiac sarcoidosis (CS) stratified by class I-IIa indications for an implantable cardioverter-defibrillator (ICD) by the 2014 Heart Rhythm Society's guideline<sup>10</sup>

Incidences, with shaded 95% confidence intervals, of SCD (panel **A**) and the composite of SCD or sustained VT (panel **B**) in 193 patients with definite CS stratified by class I-IIa indications for an ICD by the 2014 Heart Rhythm Society's guideline.<sup>10</sup> The graphs were constructed by cause-specific cumulative incidence analysis<sup>18</sup> with transplantations and deaths from heart failure or non-cardiac causes analyzed as competing events; comparisons were made using the Gray test<sup>19</sup>.



# Figure S3. Cumulative incidence of sudden cardiac death (SCD) and the composite of SCD or sustained ventricular tachycardia (VT) in patients with probable cardiac sarcoidosis (CS) diagnosed and stratified by class I-IIa indications for an implantable cardioverter-defibrillator (ICD) by the 2014 Heart Rhythm Society's guideline<sup>10</sup>

Incidences, with shaded 95% confidence intervals, of sudden cardiac death (SCD) (panel **A**) and the composite of SCD or sustained VT (panel **B**) in 205 patients with probable CS diagnosed and stratified by class I-IIa indications for an implantable cardioverter-defibrillator (ICD) by the 2014 Heart Rhythm Society's guideline.<sup>10</sup> The graphs were constructed by cause-specific cumulative incidence analysis<sup>18</sup> with transplantations and deaths from heart failure or non-cardiac causes analyzed as competing events; comparisons were made using the Gray test<sup>19</sup>.



# Figure S4. Emergence of implantable cardioverter-defibrillator (ICD) indications in patients with definite and probable cardiac sarcoidosis (CS) and absent ICD indications by the 2014 Heart Rhythm Society's guideline<sup>10</sup> at presentation of CS

Cumulative incidence of the composite of fatal or aborted sudden cardiac death, sustained ventricular tachycardia, and emergence of class I-IIa indications for an ICD in patients with definite and probable cardiac sarcoidosis and absent ICD indications by the 2014 Heart Rhythm Society's guideline<sup>10</sup> at the start of follow-up. The shaded areas represent 95% confidence intervals.

#### SUPPLEMENTAL LITERATURE REVIEW

### Quantity of Myocardial Late Gadolinium Enhancement as Predictor of Life-Threatening Ventricular Arrhythmias in Cardiac Sarcoidosis.

Our search of the literature (PubMed, MEDLINE) revealed 23 original articles from outside our country focusing on cardiac sarcoidosis (CS) and the predictive role of late gadolinium enhancement (LGE) on cardiac magnetic resonance imaging (CMR). We found no prognostic studies pertinent to CS and the extent of perfusion defects in single-photon emission computed tomography scans. Eight CMR works<sup>20-22, 24, 25, 29, 39, 40</sup> reported data on the predictive power of the extent of LGE quantified as percentage of the left ventricular (LV) mass. The key details of these studies are summarized in Table S3. Most of them involved patients with systemic sarcoidosis and merely suspected cardiac involvement, <sup>20-22,29</sup> while 2 studies involved mixed populations of some proven with many suspected CS cases,<sup>24,25</sup> and just 2 works<sup>39,40</sup> included patients with clinically and/or histologically confirmed CS only. All except 1 study<sup>29</sup> were retrospective and used composite endpoints including a variety of cardiac events. There was also variation in the methods to define LGE and to quantify its mass. All works applied ROC analysis and Youden index with equal weight on sensitivity and specificity to identify the LGE mass threshold best discriminating between patients with and without future events. However, only 3 studies<sup>21,25,40</sup> used the method (time-dependent ROC analysis) designed specifically for assessment of time-to-event data. The reported LGE mass threshold ranged from 3.0% to 28.0%. There were 4 studies<sup>24,25,29,40</sup> in which life-threatening arrhythmias predominated as events and which hence are particularly relevant to the risk of sudden cardiac death in CS. In these works, the LGE mass threshold varied from 5.7% to 8.0%<sup>24,25,29,40</sup> with a mean, weighted by the size of each study, of 6.4%. With respect to the individual studies, our work has most analogy with the study by Crawford et al.<sup>40</sup> which involved only CS patients, used a method identical to ours to quantify myocardial LGE, and analyzed only life-threatening arrhythmic events using the time-dependent ROC method. The LGE mass cut-off in that work, 6.0 %, was close to the above weighted mean and was taken as the literature-based threshold for our analyses.

| 1 <sup>st</sup> author, year<br>design             | Ν        | Dg of study                      | Mean   | LGE     | LGE+ F-U | F-U, y | , y Events of the composite                                         |      | ROC analysis of LGE mass (%) |      |      |  |
|----------------------------------------------------|----------|----------------------------------|--------|---------|----------|--------|---------------------------------------------------------------------|------|------------------------------|------|------|--|
|                                                    |          | subjects                         | age, y | method  |          |        | endpoint                                                            | AUC  | threshold                    | PPV  | NPV  |  |
| lse 2014, <sup>39</sup><br>retrospective           | 43       | CS (JMHW)                        | 59     | ≥ 5 SD* | 100%     | 3.3†   | 11 HF hosp, 6 cardiac deaths, 6 VAs                                 | 0.77 | 21.9%                        | 0.62 | 0.86 |  |
| Crawford 2014, <sup>40</sup><br>retrospective      | 51       | CS (JMHW)<br>LVEF > 35%          | 51     | FWHM    | 63%      | 4.0†   | 14 VAs (sustained VT or VF)                                         | 0.79 | 6.0%                         | 0.58 | 0.91 |  |
| Agoston-Coldea<br>2016, <sup>20</sup> retrospectiv | 56<br>/e | Suspect CS                       | 52     | ≥ 5 SD* | NR       | 2.7‡   | 10 HF hosp, 4 AVB, 2 VAs (1 fatal)                                  | 0.94 | 28.0%                        | 0.92 | 0.95 |  |
| Yasuda 2016, <sup>24</sup><br>retrospective        | 81       | 35 CS (JMHW)<br>46 suspect CS    | 63     | ≥ 6 SD* | 95%      | 1.8‡   | 39 VAs, including non-sustained VTs<br>(25 incident, 14 historical) | 0.76 | 5.1 g/m²<br><b>≈7.6%</b>     | NR   | NR   |  |
| Murtagh 2016, <sup>21</sup><br>retrospective       | 205      | Suspect CS<br>LVEF > 50%         | 56     | ≥ 5 SD* | 20%      | 3.0†   | 8 deaths, 4 sustained VTs                                           | 0.79 | 5.7%                         | NR   | NR   |  |
| Smedema 2018, <sup>29</sup><br>prospective         | 84       | Suspect CS                       | 53     | ≥ 2 SD* | 32%      | 4.7‡   | 7 VAs, 1 sudden death, 1 AVB, 1 HF hosp                             | 0.77 | 8.0%                         | 0.39 | 0.95 |  |
| Kazmirczak 2019, <sup>25</sup><br>retrospective    | 290      | 8 CS (biopsy+)<br>282 suspect CS | 53     | > 5 SD* | 30 %     | 3.0‡   | 1 sudden death, 17 VAs                                              | NR   | 5.7%                         | NR   | NR   |  |
| Flamee 2020, <sup>22</sup><br>retrospective        | 114      | Suspect CS                       | 48     | > 5 SD* | NR       | 3.1‡   | 24 HF hosp, 9 deaths, 1 VA                                          | NR   | 3.0%                         | NR   | NR   |  |

Table S3. Summary of CMRI studies assessing the quantity of myocardial LGE as a predictor of serious cardiac events in patients with diagnosed or suspected CS

AUC indicates area under curve; AVB, atrioventricular block; CS, cardiac sarcoidosis; CMRI, cardiac magnetic resonance imaging; F-U, follow-up; FWHM, full width-half maximum; HF hosp, heart failure hospitalizations; JMHW, Japanese Ministry of Health and Welfare criteria for CS; LGE, late gadolinium enhancement; LVEF, left ventricular ejection fraction; N, number of subjects; NPV, negative predictive value; NR, not reported; PPV, positive predictive value; ROC, receiver operating characteristic; SD, standard deviation; VA, ventricular arrhythmia.

\* LGE was defined using a threshold of the given number of SDs above the signal intensity of remote normal myocardium

† mean

‡ median