

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

# **BMJ Open**

## Ideal cardiovascular health metrics: Are they just cardiovascular protective factors?

| Journal:                      | BMJ Open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manuscript ID                 | bmjopen-2022-061789                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Article Type:                 | Original research                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Date Submitted by the Author: | 08-Feb-2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Complete List of Authors:     | Chen, Weihua; Fujian Medical University Affiliated Longyan First Hospital,<br>Shi, Shanshan; Longyan First Affiliated Hospital of Fujian Medical<br>University; Fujian Medical University<br>Jiang, Yizhou; State Key Laboratory of Cardiovascular Disease, Fuwai<br>Hospital, National Center for Cardiovascular Diseases, Chinese Academy<br>of Medical Sciences and Peking Union Medical College<br>Chen, Kaihong; Fujian Medical University Affiliated Longyan First<br>Hospital, Department of Cardiology<br>Liao, Ying; Longyan First Affiliated Hospital of Fujian Medical University<br>Huang, Rongchong; Capital Medical University<br>Huang, Kun; Tsinghua University, Department of Industrial Engineering |
| Keywords:                     | Cardiology < INTERNAL MEDICINE, GERIATRIC MEDICINE, Adult<br>cardiology < CARDIOLOGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |





I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reziez onz

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

## Ideal cardiovascular health metrics: Are they just cardiovascular protective factors?

Weihua Chen<sup>1,2†</sup>, Shanshan Shi<sup>1,2†</sup>, Yizhou Jiang<sup>3†</sup>, Kaihong Chen<sup>1</sup>, Ying Liao<sup>1</sup>, Rongchong Huang<sup>4\*</sup>, Kun Huang<sup>5\*</sup>

1 Longyan First Affiliated Hospital of Fujian Medical University, Longyan, 364000, China

2 The Third Clinical Medical College, Fujian Medical University, Fuzhou, 350000, China

3 State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical

Sciences and Peking Union Medical College, Beijing 100037, China

4 Beijing Friendship Hospital, Capital Medical University, Beijing 100053, China

5 Center of Statistical Science, Department of Industrial Engineering, Tsinghua University, Beijing 100084, China hon/

+Contributed equally

\* Correspondence:

Kun Huang, PhD

 Center of Statistical Science, Department of Industrial Engineering, Tsinghua University, Beijing 100084, China

Tel: +8618810996968

 **BMJ** Open

E-mail: k-huang18@mails.tsinghua.edu.cn

Rongchong Huang, PhD & MD

Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100053, China

Tel: (+86) 010-80838594

Email: rchuang@ccmu.edu.cn

Word count: 2964

Table number: 4

Figure number: 3

.nip Hospital, Capital M.

## Abstract

**Objective:** The American Heart Association (AHA) proposed the concept of ideal cardiovascular health (CVH) to reduce the risk of cardiovascular mortality. We attempted to broaden the impact of CVH and further contribute to AHA 2030 goals by identifying the relationship between CVH and non-cardiovascular diseases such as sarcopenia.

Design: Cross-sectional survey

Setting: National Health and Nutrition Examination Survey conducted in the USA from 2011 to 2018.

**Participants:** This study included participants with reliable first 24-h dietary recall and  $\geq$  20 years of age and excluded those could not diagnosis sarcopenia or insufficient data to calculate the CVH scores.

Primary and secondary outcome measures: The prevalence of sarcopenia and measured by dual-energy X-ray absorptiometry.

**Results:** This cohort study involving 3,311 adults > 20 years comprised 1,329 females (42.41%). The number of intermediate or ideal and poor CVH participants was 1,719 and 1,592 with mean CVH score of  $9.32 \pm 0.06$  and  $5.43 \pm 0.05$ , respectively. After adjusting for related confounding factors, intermediate or ideal CVH was associated with a risk reduction of sarcopenia than poor CVH (adjusted odds ratio [aOR]: 0.39, 95% CI; 0.22-0.69, P < 0.001) and the risk of sarcopenia was significantly lower for each incremental increase of 1 in CVH metrics (aOR: 0.76, 95% CI: 0.70-0.83, P < 0.001). Moreover, if the number of ideal CVH metrics was > 5, the risk of sarcopenia decreased by up to 85% (aOR: 0.15, 95% CI: 0.06-0.38, P < 0.001).

#### BMJ Open

**Conclusions:** Our findings suggest a relationship between the CVH and the prevalence of sarcopenia in adults. The results of our study can contribute to achieving the 2030 public health goal of achieving CVH for all, which may be supported by efforts to reduce the prevalence of sarcopenia.

Keywords: cardiovascular health metrics, sarcopenia, NHANES

## Strengths and limitations of this study

This study benefited from the large, nationally representative data set and rigorous research methods of the National Health and Nutrition Examination Survey.

This study suggests a relationship between the CVH and the prevalence of non-cardiovascular disease, sarcopenia. The results of our study can help facilitate the 2030 goal of achieving CVH for all because the AHA 2030 goal may be supported by efforts to reduce the prevalence of sarcopenia.

The limitations of this study were that data were derived from cross-sectional studies and that the relationship was not necessarily identified as causal.

Use of self-reported data might result in recall bias.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

#### Introduction

Life expectancy in the United States has been stagnant since 2010 which has been attributed to a lack of progress in cardiovascular disease mortality. [1] Indeed, cardiovascular disease (CVD) remains the primary cause of mortality globally and a huge burden on public health expenditure. [2] Previous investigators have used the Framingham and SCORE risk estimation systems to assess a patient's risk for CVD. [3, 4] These risk scores are primarily derived from the development and establishment of effective primary and secondary prevention interventions for high-risk populations. However, individuals with significantly elevated levels of risk factors are relatively uncommon in the population. Most CVD and stroke events occur in individuals with average or only slightly unfavorable levels of risk factors. Therefore, the concept of cardiovascular health (CVH) was introduced to reduce the risk of cardiovascular mortality in 2010. [5] CVH includes seven metrics, including body mass index (BMI), cigarette smoking, physical activity, dietary intake, total cholesterol level, blood pressure, and fasting glucose level. [5] The beneficial effects of ideal CVH metrics are widely supported by mounts of scientific research. [6] However, a recent study showed that the prevalence of ideal CVH status is low on some metrics, such as dietary pattern. [7] Moreover, a study involving the offspring of Framingham participants showed that the decreasing presence of ideal CVH metrics over the past 20 years has resulted in increasing risks of subclinical diseases, CVDs, and death. [8] Therefore, there is a long way to go regarding the "Strategic Impact Goals for 2030 and Beyond" issued by the American Heart Association (AHA).

Previous studies have suggested that an ideal CVH is negatively associated with age-related diseases. [9] Sarcopenia, marked by the age-

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

#### BMJ Open

related loss of muscle mass, strength, and function, has become a severe medical problem in the current aging society. A meta-analysis indicated that patients with sarcopenia have decreased function, and higher rates of falls and hospitalization. [10] Sarcopenia shares many common pathogenic mechanisms with CVDs, such as hormonal changes, inflammation and oxidative stress. [11] Studies have confirmed that sarcopenia is significantly associated with increased cardiovascular events or mortality, [12] and patients with CVDs are also more likely to develop sarcopenia than age-matched controls. [13]

Although several studies have explored the relationship between cardiovascular risk factors and sarcopenia, [14] it remains unclear whether ideal CVH metrics are beneficial in sarcopenic populations.

This study aimed to determine the relationship between CVH and sarcopenia by using the 2011-2018 National Health and Nutrition 2030 go.. Examination Survey (NHANES) data to contribute to the accomplishment of the AHA 2030 goals.

#### Methods

## Patient and public involvement

We conducted a retrospective analysis of a cohort of US population of the NHANES, a periodic survey performed by National Center for Health Statistics. Informed consent has been obtained from every participant and therefore there was no need for any ethical consent in this study. The NHANES includes extensive demographic data, physical examinations, laboratory tests, health-related questionnaires and lists of prescription

medications. As shown in **Figure 1**, this study included participants with reliable first 24-h dietary recall and  $\geq$  20 years of age during NHANES 2011-2018 (n = 21128). Of these participants, 17817 were excluded based on the following: (i) CVD (myocardial infarction, congestive heart failure, and stroke) and cancer; (ii) insufficient data to calculate the CVH scores; and (iii) no reliable dual-energy X-ray absorptiometry (DXA) and body mass index (BMI) data. Thus, 3311 participants were enrolled in the present study.

#### DXA, appendicular skeletal muscle mass, and the definition of sarcopenia

DXA whole-body scans were performed on participants 8-59 years of age using Hologic Discovery model A densitometers (Hologic, Inc., Bedford, MA, USA). DXA exclusion criteria included pregnancy, weight >300 pounds (136 kg, because of the weight limit of the scanner), height > 6'5'' (DXA table limitations), history of radiographic contrast material (barium) used in the past 7 days, or nuclear medicine studies in the past 3 days. Hologic software (version 8.26: a3\*) was used to administer all scans.

Appendicular skeletal muscle mass was measured using DXA. The sarcopenia index was calculated as follows: sarcopenia index = total appendicular skeletal muscle mass (in kg)/BMI (kg/m<sup>2</sup>).

Sarcopenia was defined as the lowest for sex-specific sarcopenia index cut-off values (0.789 for men and 0.512 for women), based on the National Institutes of Health (FNIH).

#### 

## **CVH metrics**

CVH metrics include four health behaviors (cigarette smoking, physical activity, healthy dietary scores, and BMI) and three health factors (total cholesterol level, blood pressure, and fasting plasma glucose level). [5]. The definitions of ideal, intermediate, and poor CVH metrics for adults are presented in **Table 1**. We used the Healthy Eating Index 2010 (HEI-2010) scores as a proxy of healthy dietary scores, which were calculated using first-day 24-h dietary recall. HEI-2010 scores were based on a 12-component index, with total scores ranging from 0-100, and a higher score indicating a healthier diet: total fruit; whole fruit; total vegetables; grains and beans; whole grains; dairy; total protein foods; seafood and plant protein; fatty acids; refined grains; sodium; and empty calories. Participants with an HEI-2010 score  $\leq$  50 were assigned to poor health, those with a score of 51-80 to intermediate health, and those with a score  $\geq$  81 to ideal health.

| AHA definit  | ons of CVH for each metric    | Total sample<br>(n=3,311) |
|--------------|-------------------------------|---------------------------|
| Smoking st   | atus, n (%)                   |                           |
| Ideal        | Never or quit > 12 months ago | 1212 (40.1)               |
| Intermediate | Former ≤ 12 months            | 202 (7.2)                 |
| Poor         | Current smoking               | 1897 (52.8)               |
| Body mass    | index, n (%)                  | · · · · · ·               |
| Ideal        | < 25 kg/m <sup>2</sup>        | 1025 (30.3)               |
| Intermediate | 25-29.9 kg/m <sup>2</sup>     | 1080 (33.8)               |
| Poor         | $\geq$ 30 kg/m <sup>2</sup>   | 1206 (35.8)               |

| Ideal                         | $\geq$ 150 min/week moderate or $\geq$ 75 min/week vigorous or $\geq$ 150 min/week moderate +                                                                                                                                                                                                                                                                          | 1553 (48.1)                                              |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
|                               | vigorous                                                                                                                                                                                                                                                                                                                                                               |                                                          |
| Intermediate                  | 1-149 min/week moderate or 1-74 min /week vigorous or 1-149 min/week moderate +                                                                                                                                                                                                                                                                                        | 218 (7.4)                                                |
| _                             | vigorous                                                                                                                                                                                                                                                                                                                                                               |                                                          |
| Poor                          | None                                                                                                                                                                                                                                                                                                                                                                   | 1540 (44.5)                                              |
|                               | score *, n (%)                                                                                                                                                                                                                                                                                                                                                         |                                                          |
| Ideal                         | 4-5 components                                                                                                                                                                                                                                                                                                                                                         | 42 (1.7)                                                 |
|                               | 2-3 components                                                                                                                                                                                                                                                                                                                                                         | 1199 (37.9)                                              |
| Poor                          | 0-1 components                                                                                                                                                                                                                                                                                                                                                         | 2070 (60.4)                                              |
| Total choles                  |                                                                                                                                                                                                                                                                                                                                                                        |                                                          |
| Ideal                         | < 200 mg/dL                                                                                                                                                                                                                                                                                                                                                            | 1751 (49.8)                                              |
| Intermediate                  | 200-239 mg/dL or treated to goal                                                                                                                                                                                                                                                                                                                                       | 925 (30.3)                                               |
| Poor                          | ≥ 240 mg/dL                                                                                                                                                                                                                                                                                                                                                            | 635 (20.0)                                               |
| Blood press                   | ure, n (%)                                                                                                                                                                                                                                                                                                                                                             |                                                          |
| Ideal                         | SBP < 120 or DBP < 80 mmHg                                                                                                                                                                                                                                                                                                                                             | 1459 (45.2)                                              |
| Intermediate                  | SBP 120-139 or DBP 80-89 mmHg or treated to goal                                                                                                                                                                                                                                                                                                                       | 1180 (33.6)                                              |
| Poor                          | SBP $\geq$ 140 or DBP $\geq$ 90 mmHg                                                                                                                                                                                                                                                                                                                                   | 744 (21.2)                                               |
| Fasting plas                  | ma glucose, n (%)                                                                                                                                                                                                                                                                                                                                                      |                                                          |
| Ideal                         | < 100 mg/dL                                                                                                                                                                                                                                                                                                                                                            | 2282 (75.8)                                              |
| Intermediate                  | 100-125 mg/dL or treated to goal                                                                                                                                                                                                                                                                                                                                       | 713 (16.7)                                               |
| Poor                          | ≥ 126 mg/dL                                                                                                                                                                                                                                                                                                                                                            | 316 (7.6)                                                |
| Survey; AHA,                  | CVH, cardiovascular health; CVD, cardiovascular disease; NHANES, National Health<br>The American Heart Association; DBP, diastolic blood pressure; SBP, systolic blood press<br>ny diet score includes five components: fruits and vegetables, whole grain, fish, sodium, an                                                                                           | ure.                                                     |
| components i<br>calories. HEI | mall proportion (<0.5%) of U.S. adults meet the ideal healthy diet. HEI-2010 is a continu representing major food groups including fruit and vegetables, whole grains, proteins, dain -2010 score ranges from0 to 100 with a higher score indicates more healthy diet. HEI-2 diet quality in population. We used HEI-2010 as a proxy for AHA's healthy diet score with | ry, oils, sodium, and empty<br>010 has been validated to |
|                               |                                                                                                                                                                                                                                                                                                                                                                        |                                                          |

#### BMJ Open

intermediate diet: 51-80; and poor diet:  $\leq$  50.

To maximize the sample size, we used hemoglobin A1c (HbA1c) values < 5.7%, 5.7%-6.4%, and > 6.5% as a proxy for fasting plasma glucose levels < 100 mg/dL, 100 to < 126 mg/dL, and > 126 mg/dL, respectively, as recommended by the American Diabetes Association. Participants who reported having diabetes or being treated with insulin or an oral medication to lower blood glucose and had an HbA1c concentration between 5.7% and 6.4% were categorized as intermediate health. Similarly, participants who reported taking cholesterol-lowering or antihypertensive medications and were treated to goal were categorized as "intermediate," whereas participants with these conditions who were untreated or who were not treated to goal were categorized as "poor" for that health factor. Use of antihypertensive, cholesterol-lowering, and glucose-lowering medications were self-reported. Total cholesterol and plasma glucose levels were measured with enzymatic methods (https://www.cdc.gov/nchs/nhanes/index.htm). BMI was calculated as the weight in kilograms divided by the height in meters squared. The mean blood pressure was estimated from up to three readings obtained under standard conditions during a single physical examination. For each metric, participants received 0, 1, or 2 points, representing poor, intermediate, or ideal categories, respectively. Participants with overall scores of 0-7, 8-11, or 12-14 points were categorized as having poor, intermediate, or ideal CVH, respectively. Owing to the relatively low number of people with an ideal CVH score in this sample, the intermediate and ideal CVH categories were combined.

#### Statistical analysis

We used the NHANES recommended weights to account for planned oversampling of specific groups. The continuous variables were expressed

as the mean  $\pm$  standard deviation, and the categorical variables were presented as counts (percentages). Baseline characteristics between the two CVH groups were compared using a t-test for continuous variables and a  $\chi^2$  test for categorical variables.

Multiple logistic regression was used to examine the independent influence of CVH on sarcopenia comparing poor CVH versus intermediate or ideal CVH after adjustments for potential confounders, such as age, sex, and race/ethnicity, educational level and alcohol. The odds ratio (OR) and 95% confidence interval (CI) were computed. We explored the relationship between CVH and sarcopenia in different subgroups (age, sex, race/ethnicity, education level and alcohol use). We also separately estimated the association between individual components of the CVH metrics and sarcopenia. When assessing the role of individual components, the age, sex, race/ethnicity, and education level were adjusted. Furthermore, we used multiple logistic regression analysis to assess the effect of a different number of ideal cardiovascular health metrics (ICVHMs) on the incidence of sarcopenia. A two-sided *P*-value < 0.05 indicated significance for all analyses. All data analyses were performed using SAS Release 9.4 (SAS Institute) and Survey package in R software (version 4.0.4; R Foundation for Statistical Computing, Vienna, Austria).

## Results

## **Baseline characteristics**

This study shown that only 1.7% of the participants met the ideal diet criteria. The prevalence of participants meeting the ideal level for the

#### **BMJ** Open

remainder of CVH metrics were cigarette smoking (40.1%), diabetes (75.8%), total cholesterol level (49.8%), blood pressure (45.2%), physical activity (44.5%), and BMI (30.3%) (Table 1).

This cohort study involved 3311 adults > 20 years of age, comprising 1329 females (weighted proportion, 42.4%) and 1982 males (weighted, 47.6%), with a weighted mean (SE) age of  $40.0 \pm 0.4$  years. 1477 (weighted, 66.6%) were of non-Hispanic white ancestry, 753 (weighted, 15.7%) of Hispanic ancestry, and 618 (weighted, 9.6%) of non-Hispanic Black ancestry. The study population characteristics are listed in Table 2 by CVH metrics. The number of intermediate or ideal and CVH participants was 1719 and 1592, with mean CVH metrics of  $9.3 \pm 0.1$  and  $5.4 \pm 0.1$ , respectively. The differences of CVH metrics were significant for age, race/ethnicity, and education (P < 0.001). The prevalence of sarcopenia in participants with poor CVH metrics was 9.9%, more than two times as participants with intermediate or ideal CVH 18/10/24 metrics (3.6%).

| Characteristics       | Total<br>(n=3311) | Intermediate or Ideal CVH (n=1719) | Poor CVH<br>(n=1592) | P value |
|-----------------------|-------------------|------------------------------------|----------------------|---------|
| Age, mean (SE), years | 40.0 (0.4)        | 37.3 (0.5)                         | 42.9 (0.4)           | < 0.001 |
| Female, n (%)         | 1329 (42.4)       | 614 (41.5)                         | 715 (43.5)           | 0.382   |
| Race/ethnicity, n (%) |                   |                                    | ζ, γ                 |         |
| Hispanic              | 753 (15.7)        | 362 (15.3)                         | 391(16.0)            |         |
| Non-Hispanic Black    | 618 (9.6)         | 232 (7.2)                          | 386 (12.4)           | < 0.001 |
| Non-Hispanic White    | 1477 (66.6)       | 760 (69.8)                         | 717 (63.0)           |         |

Table 2 Baseline characteristics of the study population

| Other                               | 463 (8.1)   | 238 (7.7)   | 225 (8.6)   |         |
|-------------------------------------|-------------|-------------|-------------|---------|
| Heavy use of alcohol, n (%) *       |             |             |             |         |
| < 12                                | 2558 (96.4) | 1273 (97.4) | 1285 (95.1) | 0.000   |
| ≥ 12                                | 103 (3.6)   | 40 (2.6)    | 63 ( 4.9)   | 0.062   |
| Education levels, n (%)             |             |             |             |         |
| < 12                                | 1645 (44.9) | 735 (41.8)  | 910 (48.3)  |         |
| 12                                  | 1135 (35.7) | 543 (35.5)  | 592(36.0)   | 0.005   |
| > 12                                | 530(19.4)   | 313 (22.7)  | 217 (15.8)  |         |
| Scores of CVH metrics, mean<br>(SE) | 7.49 (0.1)  | 9.32 (0.1)  | 5.43 (0.1)  | < 0.001 |
| Sarcopenia, n (%)                   |             |             |             |         |
| Yes                                 | 247 (6.6)   | 67 (3.6)    | 180 (9.9)   | < 0.001 |
| No                                  | 3064 (94.4) | 1525 (96.4) | 1539 (90.1) | < 0.001 |
| Abbreviation: CVH, cardiovascula    | ar health.  |             |             |         |
| * Data missing > 5%                 |             |             |             |         |

## Association between CVH metrics and sarcopenia

After adjusting for age, sex, race/ethnicity, education level, and alcohol use, intermediate or ideal CVH was associated with a risk reduction of sarcopenia than poor CVH (adjusted odds ratio [aOR]: 0.39, 95% CI; 0.22-0.69, P < 0.001; Table 3). In the fully adjusted model, the risk of sarcopenia was significantly lower for each incremental increase of 1 in CVH metrics (aOR: 0.76, 95% CI: 0.70-0.83, P < 0.001). Further stratified and interaction analyses were performed for age, sex, race/ethnicity, and education level. The association between intermediate or ideal CVH and sarcopenia was not significant in female and lower education level subgroups. Further, the effect of different ages was explored in the female subgroup. In the female participants < 45 years of age, intermediate or ideal CVH scores remained an independent protective factor for

BMJ Open

sarcopenia (aOR: 0.14, 95% CI: 0.05-0.40, P < 0.001; **Table S1**). Among subgroups of non-Hispanic Black and other ancestry, the risk of sarcopenia decreased by 75% in participants with intermediate or ideal CVH than in participants with poor CVH (aOR: 0.25, 95% CI: 0.07-0.88, P = 0.038; aOR: 0.24, 95%CI: 0.09-0.66, P = 0.008; Table 3).

Table 3. The association between CVH metrics and Sarcopenia by selected subgroups

| Variable                  | No. (%)  | Intermediate or Ideal CVH<br>OR (95%CI) * | P value      | P for interaction  |
|---------------------------|----------|-------------------------------------------|--------------|--------------------|
| Continuous                |          | Cr h                                      |              |                    |
| CVH (per 1 score)         | 247/3311 | 0.76 (0.70-0.83)                          | <0.001       | -                  |
| Categories <sup>+</sup>   |          |                                           |              |                    |
| Poor CVH                  | 180/1719 | 1[Ref]                                    | 61           | -                  |
| Intermediate or Ideal CVH | 67/1592  | 0.39 (0.22-0.69)                          | <0.001       | <u> </u>           |
| Subgroup                  |          |                                           |              |                    |
| Age                       |          |                                           |              |                    |
| <45                       | 112/2024 | 0.35 (0.20-0.64)                          | <0.001       | 0.959              |
| 45-59                     | 135/1287 | 0.40 (0.16-1.04)                          | 0.067        | 0.858              |
| Sex                       |          |                                           |              |                    |
| Male                      | 158/1982 | 0.43 (0.23-0.82)                          | 0.014        | 0.539              |
|                           |          | 14                                        |              |                    |
|                           | For p    | peer review only - http://bmjopen.bmj.c   | om/site/abou | t/guidelines.xhtml |

| Female             | 00/4000  | 0.00 (0.07.4.00) | 0.447 |       |
|--------------------|----------|------------------|-------|-------|
| Female             | 89/1329  | 0.30 (0.07-1.32) | 0.117 |       |
| Race               |          |                  |       |       |
| Hispanic           | 126/753  | 0.42 (0.23-0.77) | 0.007 |       |
| Non-Hispanic Black | 17/618   | 0.25 (0.07-0.88) | 0.038 | 0.605 |
| Non-Hispanic White | 80/1477  | 0.40 (0.15-1.06) | 0.071 | 0.695 |
| Other              | 24/463   | 0.24 (0.09-0.66) | 0.008 |       |
| Education levels   |          |                  |       |       |
| <12                | 158/1645 | 0.55 (0.27-1.11) | 0.101 |       |
| 12                 | 70/1135  | 0.31 (0.11-0.93) | 0.041 | 0.093 |
| >12                | 19/530   | 0.11 (0.03-0.50) | 0.006 |       |

Abbreviations: CVH, cardiovascular health; OR, odds ratio.

 \* Analyses were adjusted for age, sex, race/ethnicity and education level.

<sup>+</sup> Poor CVH: CVH metrics scores 0-7; Intermediate or Ideal CVH: CVH metrics scores 8-14.

## Association between number of ICVHMs and sarcopenia

32% of participants with sarcopenia had only 1 ICVHM and 3% had 5 ideal ICVHMs. In participants without sarcopenia, up to 59% had  $\geq$  3 ICVHMs (**Figure 2**). Logistic regression of the ICVHM number and the risk of sarcopenia revealed that the higher the number of ICVHMs, the lower the risk of sarcopenia. When participants had 3 ideal CVH metrics, the risk of sarcopenia decreased by 50% compared to participants with non-ideal CVH metrics (aOR: 0.47, 95% CI: 0.27-0.81, *P* = 0.010). If the number of ICVHMs was  $\geq$  5, the risk of sarcopenia decreased by up to

BMJ Open

## 85% (aOR: 0.15, 95% CI: 0.06-0.38, *P* < 0.001; **Figure 3**).

## Association between different individual CVH components and sarcopenia

In the subgroup analysis of the seven individual CVH components, participants defined as intermediate or poor CVH had a higher risk of sarcopenia risk than those with ideal CVH in all CVH metric subgroups except for the subgroup with cigarette smoking status. Especially in the BMI and healthy diet score subgroups, the risk of sarcopenia decreased > 90% (BMI: [aOR: 0.07, 95% CI: 0.03-0.15, P < 0.001]; healthy diet score: [aOR: 0.05, 95% CI: 0.01-0.41, P = 0.007]). Similar trends between increasing levels of CVH components for BMI, healthy diet scores, fasting plasma glucose levels, Physical activity, and blood pressure, and a decreasing risk of sarcopenia (all *P for trend* < 0.05; **Table 4**).

| Table 4. Adjusted preval | ence ratios (95% C | I) of Sarcopenia by | individual compo | nent of CVH Me     |
|--------------------------|--------------------|---------------------|------------------|--------------------|
| Variable                 | OR *               | 95%CI               | <i>P</i> value   | <i>P</i> for trend |
| Smoking status           |                    |                     | (                |                    |
| Poor                     | 1[Ref]             | 1[Ref]              | NA               |                    |
| Intermediate             | 0.75               | 0.30-1.88           | 0.538            | 0.832              |
| Ideal                    | 1.06               | 0.66-1.70           | 0.815            |                    |
| Body mass index          |                    |                     |                  |                    |
| Poor                     | 1[Ref]             | 1[Ref]              | NA               |                    |
| Intermediate             | 0.28               | 0.19-0.42           | <0.001           | <0.001             |
| Ideal                    | 0.07               | 0.03-0.15           | <0.001           |                    |
| Healthy diet score       |                    |                     |                  |                    |

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

| Poor                   | 1[Ref] | 1[Ref]    | NA     |        |
|------------------------|--------|-----------|--------|--------|
| Intermediate           | 0.69   | 0.45-1.06 | 0.010  | 0.043  |
| Ideal                  | 0.05   | 0.01-0.41 | 0.007  |        |
| Total cholesterol      |        |           |        |        |
| Poor                   | 1[Ref] | 1[Ref]    | NA     |        |
| Intermediate           | 1.11   | 0.70-1.78 | 0.656  | 0.601  |
| Ideal                  | 0.91   | 0.58-1.43 | 0.671  |        |
| Fasting plasma glucose |        |           |        |        |
| Poor                   | 1[Ref] | 1[Ref]    | NA     |        |
| Intermediate           | 1.22   | 0.70-2.24 | 0.514  | <0.001 |
| Ideal                  | 0.49   | 0.29-0.81 | 0.008  |        |
| Physical activity      |        |           |        |        |
| Poor                   | 1[Ref] | 1[Ref]    | NA     |        |
| Intermediate           | 0.68   | 0.28-1.62 | 0.383  | 0.036  |
| Ideal                  | 0.68   | 0.48-0.97 | 0.037  |        |
| Blood pressure         |        |           |        |        |
| Poor                   | 1[Ref] | 1[Ref]    | NA     |        |
| Intermediate           | 0.68   | 0.43-1.08 | 0.110  | <0.001 |
| Ideal                  | 0.37   | 0.25-0.56 | <0.001 |        |

**Abbreviations:** CVH, cardiovascular health; OR, odds ratio.

\* Analyses were adjusted for age, sex, race/ethnicity and education level.

## Discussion

 This study used nationwide, population-based, cross-sectional data to demonstrate a significant association between CVH and sarcopenia and

#### BMJ Open

showed a significantly 60% decreased adjusted risk of sarcopenia in subjects with better CVH metrics. For each unit increase in the metrics of CVH, the risk of CVDs decreased by 24%. Furthermore, higher intermediate or ideal CVH metrics were associated with a lower prevalence of sarcopenia.

Our study yielded several interesting findings. First, the CVH metrics were not only associated with CVDs, but also non-CVDs, including sarcopenia. This result agreed with Han et al., [15] who also reported that sarcopenia was independently associated with cardiovascular risk factors, including diabetes and hypertension. And these risk factors were shown to be associated with the prevalence of sarcopenia defined by the recommended algorithm of the Asian Working Group in the Chinese elderly. [14] However, these results may only be applicable in patient with high-risk cardiovascular risk factors. In order to explore the association between sarcopenia and the common individual with average or only slightly unfavorable levels of risk factors, we chose CVH and elaborated on the detail and found that higher intermediate or ideal CVH metrics were associated with a lower prevalence of sarcopenia, as defined by the recommended algorithm of the FNIH in American adults. This finding suggests that the level of CVH influences the incidence of sarcopenia and emphasizes the greater importance of CVH for health care and medical conditions. A previous study showed that the presence of more desirable CVH indicators was associated with a significant reduction in CVD morbidity and mortality [16]. Our study broadens the application value of the CVH metrics; specifically, the higher the number of intermediate or ideal CVH metrics, the lower the incidence of sarcopenia. It showed that only a small percentage of American adults met the ideal criteria for 6 or 7 ideal health metrics. This result is disappointing, but perhaps not surprising. Furthermore, this result challenges clinical and public health professionals to keep steering the health metrics in the desired direction. In the meantime, additional research is warranted in the future to explore CVH and non-cardiovascular fields to increase public awareness of CVH and promote achievement of AHA 2030 goals.

Second, we further observed the effects of CVH metrics on sarcopenia in different subgroups. We have reported that CVH influences the incidence of sarcopenia not only in the elderly population, [14] but in the younger population. In addition, we demonstrated similar results in the ethnicity subgroups. Surprisingly, it appeared that poor CVH metrics in females did not affect the prevalence of sarcopenia. However, we found that the effect of CVH metrics was even stronger in young and middle-aged females than in males. Sex differences in antioxidant status may have contributed to this phenomenon. Earlier studies demonstrated significant sex-dependent differences in GPx (selenoproteins, such as GPx-1 and GPx-3) activity, [17] while postmenopausal females have relatively high levels of systemic oxidative stress. [18] This finding suggests that younger female may have higher levels of antioxidant enzymes and poor CVH metrics may significantly disrupt the antioxidant levels, and thus make the individual more susceptible to sarcopenia.

Third, we attempted to determine the effect of each indicator in CVH alone on sarcopenia in this study. Our study showed that reduced fasting plasma glucose levels were associated with a decreased risk of sarcopenia. This was consistent with the results of previous studies. [19] This finding may be attributed to the fact that higher blood glucose levels accelerate the loss of muscle mass and strength. [20] In addition, ideal blood pressure was the second significant feature associated with sarcopenia. Han P et al. [14] also found that hypertension is an independent risk factor for sarcopenia. Although the mechanism underlying sarcopenia and hypertension is currently unknown, recent studies have concluded

Page 21 of 32

#### BMJ Open

that inflammatory factors during aging could impair blood flow by damaging the microvascular endothelium, [21] which exerted a detrimental effect on the body of the elderly. Additional studies are needed to elucidate the causal relationship between hypertension and sarcopenia. Healthy eating is significantly associated with sarcopenia. The Papaioannou study [22] highlighted the beneficial link between healthy eating and sarcopenia risk. There are several possible mechanisms to explain the beneficial effects of a healthy diet on skeletal muscle. First, a healthy diet rich in fruits and vegetables prevents metabolic acidosis and reduces protein hydrolysis and amino acid catabolism, thus reducing the risk of sarcopenia. [23] In addition, unfavorable dietary patterns, including foods rich in saturated fats, may be detrimental to the maintenance of muscle health, [24] while a fiber-rich diet reduces the risk of sarcopenia. [25] Some studies, however, suggest that a lower BMI indicates the presence of sarcopenia and malnutrition and is associated with higher mortality in the older population. [26] Conversely, obese patients may have a survival benefit. [27] However, our study still found that being overweight or obese can significantly increase the risk of sarcopenia. The poor prediction of physical activity in the present study was unexpected, in contrast to previous studies [28] that suggested only ideal physical activity does appear to be associated with the onset of sarcopenia. This finding might be due to the population in our study cohort included only young and middle-aged adults. Physical activity may be crucial for the occurrence of sarcopenia in the elderly population.

Our study has several limitations. First and foremost, cigarette smoking, physical activity, and diet were self-reported, and subjected to misclassification and recall bias, which can lead to an over- or under-estimated association between CVH and sarcopenia. Moreover, as noted above, for practical reasons, we were not fully compliant with all of the AHA 2020 health indicators. Finally, our study was cross-sectional, so

BMJ Open

### Conclusion

In conclusion, our findings suggested a relationship between CVH indicators and the prevalence of sarcopenia among US adults. Our analysis confirms that CVH extends beyond protection against cardiovascular disease. More research is needed to clarify the association between CVH and other non-CVDs. The results of our study can help facilitate the 2030 goal of achieving CVH for all because the AHA 2030 goal may be supported by efforts to reduce the prevalence of sarcopenia. revia

## **Contributorship statement**

The authors' contributions were as follows; WHC: participated in formulating the research question, design of analyses, interpretation of the data, drafting the manuscript, revising the manuscript, and the approval of the final version; SSS: participated in the design of analyses, data analysis, revising the manuscript, and approval of the final version; YZJ: drafting the manuscript, revising the manuscript, and the approval of the final version; YL: interpretation of the data and the approval of the final version; KHC: participated in formulating the research question, design of analyses, revising the manuscript, and the approval of the final version; RCH: participated in formulating the research question, design of analyses, data analysis, interpretation of the data, and the approval of the final version; KH: participated in formulating the research question,

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 **BMJ** Open

design of analyses, data analysis, interpretation of the data, and the approval of the final version; and all authors: read and approved the final version of the manuscript and are responsible for all aspects of the manuscript.

## **Competing interests**

WHC, SSS, YZJ, YL, KHC, RCH and KH report no conflicts of interest.

## Funding

This study was supported by grants from the Summit Talent Plan, Beijing Hospital Management Center (plan no: DFL20190101) (Beijing,

China), and the Natural Science Foundation of Fujian Provincial Science and Technology Department (2018J01405). n on

Data sharing statement

None

## Acknowledgements

Additional Contributions: The authors thank all the participants and staff of the NHANES for their valuable contributions.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

## **References:**

 1 Mehta NK, Abrams LR, Myrskylä M. US life expectancy stalls due to cardiovascular disease, not drug deaths. *Proceedings of the National Academy of Sciences of the United States of America* 2020;**117**:6998-7000.

2 Mozaffarian D, Benjamin EJ, Go AS, et al. Heart Disease and Stroke Statistics-2016 Update: A Report From the American Heart Association. *Circulation* 2016;**133**:e38-360.

3 D'Agostino RB, Sr., Grundy S, Sullivan LM, et al. Validation of the Framingham coronary heart disease prediction scores: results of a multiple ethnic groups investigation. *Jama* 2001;**286**:180-7.

4 Conroy RM, Pyörälä K, Fitzgerald AP, et al. Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. *European heart journal* 2003;**24**:987-1003.

5 Lloyd-Jones DM, Hong Y, Labarthe D, et al. Defining and setting national goals for cardiovascular health promotion and disease reduction: the American Heart Association's strategic Impact Goal through 2020 and beyond. *Circulation* 2010;**121**:586-613.

6 Ommerborn MJ, Blackshear CT, Hickson DA, et al. Ideal Cardiovascular Health and Incident Cardiovascular Events: The Jackson Heart Study. *American journal of preventive medicine* 2016;**51**:502-6.

7 Peng Y, Cao S, Yao Z, et al. Prevalence of the cardiovascular health status in adults: A systematic review and meta-analysis. *Nutrition, metabolism, and cardiovascular diseases : NMCD* 2018;**28**:1197-207.

8 Enserro DM, Vasan RS, Xanthakis V. Twenty-Year Trends in the American Heart Association Cardiovascular Health Score and Impact on Subclinical and Clinical Cardiovascular Disease: The Framingham Offspring Study. *Journal of the American Heart Association* 2018;**7**.

9 Samieri C, Perier MC, Gaye B, et al. Association of Cardiovascular Health Level in Older Age With Cognitive Decline and Incident Dementia. *Jama* 

 BMJ Open

| 201       | 18; <b>320</b> :657-64.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10        | Beaudart C, Zaaria M, Pasleau F, et al. Health Outcomes of Sarcopenia: A Systematic Review and Meta-Analysis. PloS one 2017;12:e016954                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 11        | Curcio F, Testa G, Liguori I, et al. Sarcopenia and Heart Failure. Nutrients 2020;12.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 12        | Han P, Chen X, Yu X, et al. The Predictive Value of Sarcopenia and Its Individual Criteria for Cardiovascular and All-Cause Mortality in Suburb-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Old       | ler Chinese. <i>The journal of nutrition, health &amp; aging</i> 2020; <b>24</b> :765-71.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 13<br>200 | Fülster S, Tacke M, Sandek A, et al. Muscle wasting in patients with chronic heart failure: results from the studies investigating co-morbidities gravating heart failure (SICA-HF). <i>European heart journal</i> 2013; <b>34</b> :512-9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|           | Han P, Yu H, Ma Y, et al. The increased risk of sarcopenia in patients with cardiovascular risk factors in Suburb-Dwelling older Chinese using the sarcopenia in patients with cardiovascular risk factors in Suburb-Dwelling older Chinese using the sarcopenia in patients with cardiovascular risk factors in Suburb-Dwelling older Chinese using the sarcopenia in patients with cardiovascular risk factors in Suburb-Dwelling older Chinese using the sarcopenia in patients with cardiovascular risk factors in Suburb-Dwelling older Chinese using the sarcopenia in patients with cardiovascular risk factors in Suburb-Dwelling older Chinese using the sarcopenia in patients with cardiovascular risk factors in Suburb-Dwelling older Chinese using the sarcopenia in patients with cardiovascular risk factors in Suburb-Dwelling older Chinese using the sarcopenia in patients with cardiovascular risk factors in Suburb-Dwelling older Chinese using the sarcopenia in patients with cardiovascular risk factors in Suburb-Dwelling older Chinese using the sarcopenia in patients with cardiovascular risk factors in Suburb-Dwelling older Chinese using the sarcopenia in patients with cardiovascular risk factors in Suburb-Dwelling older Chinese using the sarcopenia in patients with cardiovascular risk factors in Suburb-Dwelling older Chinese using the sarcopenia in patients with cardiovascular risk factors in Suburb-Dwelling older Chinese using the sarcopenia in patients with cardiovascular risk factors in Suburb-Dwelling older Chinese using |
|           | inition. <i>Scientific reports</i> 2017; <b>7</b> :9592.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 15        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| joui      | rnal of gastroenterology 2020;115:584-95.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 16        | Ford ES, Greenlund KJ, Hong Y. Ideal cardiovascular health and mortality from all causes and diseases of the circulatory system among adults                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Uni       | ited States. <i>Circulation</i> 2012; <b>125</b> :987-95.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 17        | Rush JW, Sandiford SD. Plasma glutathione peroxidase in healthy young adults: influence of gender and physical activity. Clinical biochemistry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 200       | 03; <b>36</b> :345-51.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|           | Bourgonje MF, Bourgonje AR, Abdulle AE, et al. Systemic Oxidative Stress, Aging and the Risk of Cardiovascular Events in the General Femal pulation. <i>Frontiers in cardiovascular medicine</i> 2021;8:630543.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 19        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Sar       | rcopenia Definition. The journals of gerontology Series A, Biological sciences and medical sciences 2016;71:529-35.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 20        | Morley JE, Malmstrom TK, Rodriguez-Mañas L, et al. Frailty, sarcopenia and diabetes. Journal of the American Medical Directors Association                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 201       | 14; <b>15</b> :853-9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 21        | Han K, Park YM, Kwon HS, et al. Sarcopenia as a determinant of blood pressure in older Koreans: findings from the Korea National Health and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Exa       | amination Surveys (KNHANES) 2008-2010. <i>PloS one</i> 2014; <b>9</b> :e86902.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|           | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

22 Papaioannou KG, Nilsson A, Nilsson LM, et al. Healthy Eating Is Associated with Sarcopenia Risk in Physically Active Older Adults. *Nutrients* 2021;13.

23 Kim J, Lee Y, Kye S, et al. Association of vegetables and fruits consumption with sarcopenia in older adults: the Fourth Korea National Health and

Nutrition Examination Survey. *Age and ageing* 2015;**44**:96-102.

 24 Montiel-Rojas D, Santoro A, Nilsson A, et al. Beneficial Role of Replacing Dietary Saturated Fatty Acids with Polyunsaturated Fatty Acids in the Prevention of Sarcopenia: Findings from the NU-AGE Cohort. *Nutrients* 2020;**12**.

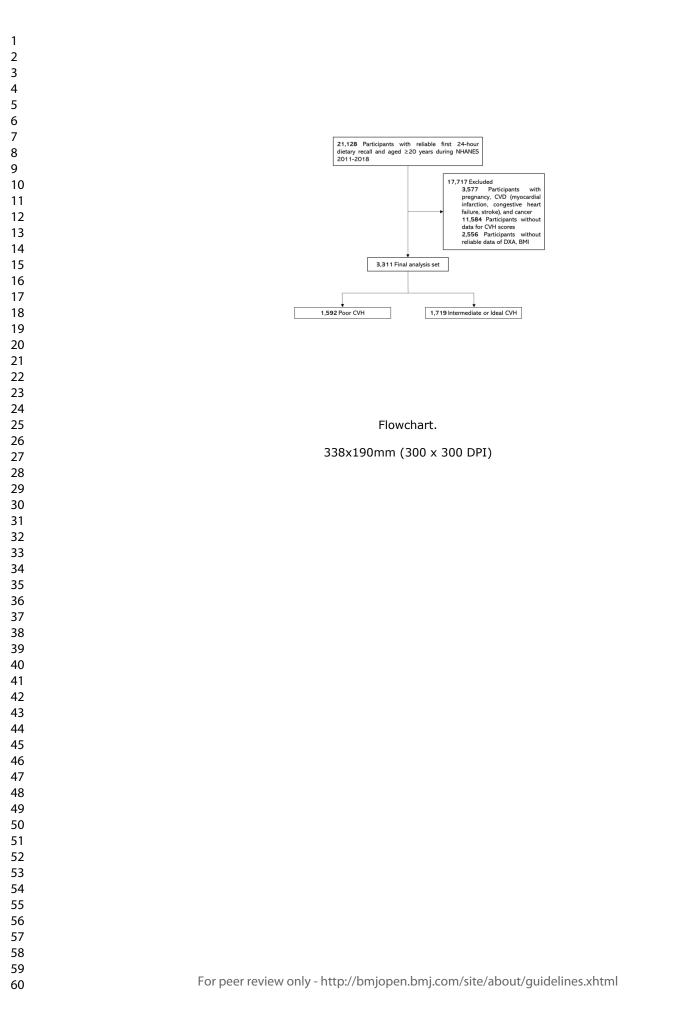
25 Montiel-Rojas D, Nilsson A, Santoro A, et al. Dietary Fibre May Mitigate Sarcopenia Risk: Findings from the NU-AGE Cohort of Older European Adults. *Nutrients* 2020;**12**.

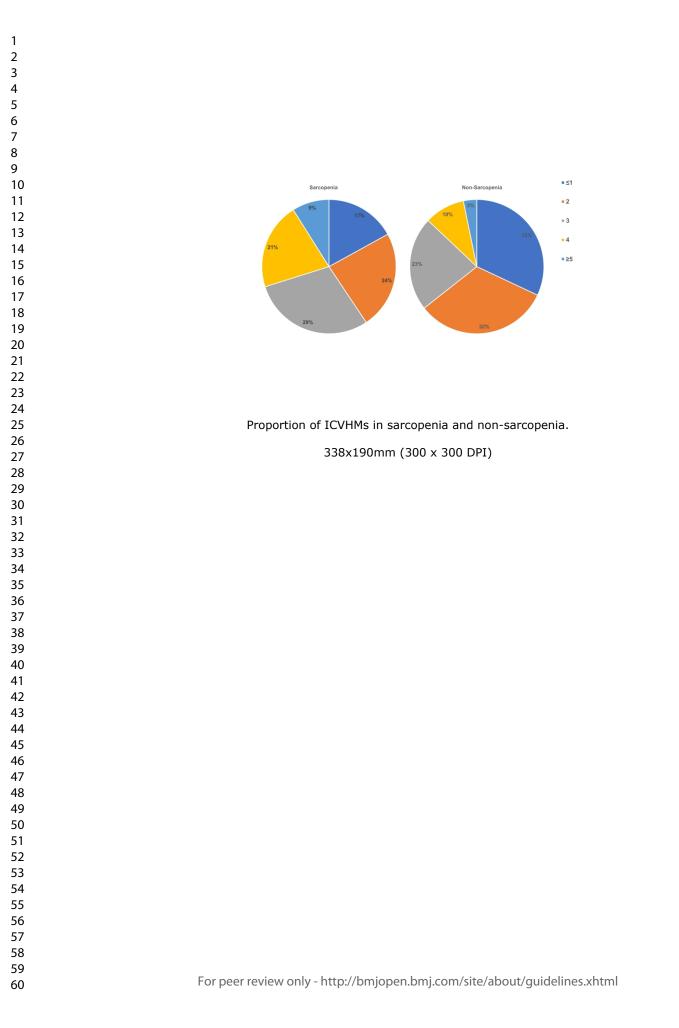
26 Global BMIMC, Di Angelantonio E, Bhupathiraju Sh N, et al. Body-mass index and all-cause mortality: individual-participant-data meta-analysis of 239 prospective studies in four continents. *Lancet (London, England)* 2016;**388**:776-86.

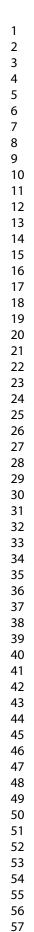
27 Amundson DE, Djurkovic S, Matwiyoff GN. The obesity paradox. *Critical care clinics* 2010;**26**:583-96.

28 Bosaeus I, Rothenberg E. Nutrition and physical activity for the prevention and treatment of age-related sarcopenia. *The Proceedings of the Nutrition Society* 2016;**75**:174-80.

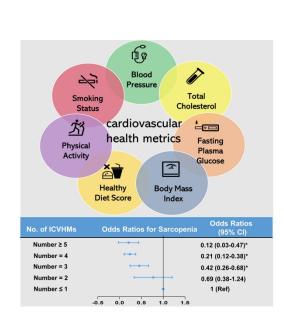
BMJ Open


26


For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml


by age, sex, race/ethnicity, education, and alcohol use.

Lien Only


| Figure Legend                                               |
|-------------------------------------------------------------|
| Title to Figure 1                                           |
| Flowchart.                                                  |
| Title to Figure 2                                           |
| Proportion of ICVHMs in sarcopenia and non-sarcopenia.      |
| Title to Figure 3                                           |
| Association between number of ICVHMs and sarcopenia         |
| Legend to Figure 3                                          |
| Abbreviation: ICVHMs, Ideal cardiovascular health metrics.  |
| Model: Adjusted by age, sex, race/ethnicity, education, and |
| * <i>P</i> < 0.05.                                          |
|                                                             |
|                                                             |
|                                                             |
|                                                             |
|                                                             |
|                                                             |
| For peer review only - http://b                             |
|                                                             |
|                                                             |







60



Association between number of ICVHMs and sarcopenia

338x190mm (300 x 300 DPI)

 BMJ Open

| Characteristics —            | CVH leve                      | ls, OR (95%CI) *             |         | <i>P</i> for interaction |  |
|------------------------------|-------------------------------|------------------------------|---------|--------------------------|--|
|                              | Poor CVH                      | Intermediate or Ideal<br>CVH | P value |                          |  |
| Male                         |                               |                              |         |                          |  |
| < 45                         | 1[Ref]                        | 0.46 (0.24-0.88)             | 0.022   | 0 705                    |  |
| 45 - 59                      | 1[Ref]                        | 0.35 (0.12-1.06)9            | 0.069   | 0.725                    |  |
| Female                       |                               |                              |         |                          |  |
| < 45                         | 1[Ref]                        | 0.14 (0.05-0.40)             | < 0.001 | 0.173                    |  |
| 45 - 59                      | 1[Ref]                        | 0.57 (0.10-3.29)             | 0.534   |                          |  |
| 15 - 59<br>bbreviations: CVH | 1[Ref]<br>, cardiovascular he |                              | 0.534   | 0.173                    |  |
|                              |                               |                              |         |                          |  |

| 1        |
|----------|
| 2        |
| 3        |
| 4        |
| 5        |
| 6        |
| 7        |
| 8        |
| 9        |
| )<br>10  |
|          |
| 11       |
| 12       |
| 13       |
| 14       |
| 15       |
| 16       |
| 17       |
| 18       |
| 19       |
| 20       |
| 21       |
| 22       |
| 23       |
| 24       |
| 25       |
| 26       |
| 27       |
| 28       |
| 20<br>29 |
| 29<br>30 |
|          |
| 31       |
| 32       |
| 33       |
| 34       |
| 35       |
| 36       |
| 37       |
| 38       |
| 39       |
| 40       |
| 41       |
| 42       |
| 43       |
| 44       |
| 45       |
| 46       |
| 40<br>47 |
| 47<br>48 |
| 48<br>49 |
|          |
| 50       |
| 51       |
| 52       |
| 53       |
| 54       |
| 55       |
| 56       |
| 57       |
| 58       |
| 59       |
| 60       |

| STROBE Statement—Checklist of items that should be included in reports of <i>cross-sectional studies</i> |
|----------------------------------------------------------------------------------------------------------|
|----------------------------------------------------------------------------------------------------------|

|                        | Item<br>No | Recommendation                                                                                                                   | Page<br>No  |
|------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------|-------------|
| Title and abstract     | 1          | (a) Indicate the study's design with a commonly used term in the title or                                                        | 3           |
|                        |            | the abstract                                                                                                                     |             |
|                        |            | (b) Provide in the abstract an informative and balanced summary of what                                                          | 3           |
|                        |            | was done and what was found                                                                                                      |             |
| Introduction           |            |                                                                                                                                  | •           |
| Background/rationale   | 2          | Explain the scientific background and rationale for the investigation                                                            | 5-6         |
|                        |            | being reported                                                                                                                   |             |
| Objectives             | 3          | State specific objectives, including any prespecified hypotheses                                                                 | 6           |
| Methods                |            |                                                                                                                                  |             |
| Study design           | 4          | Present key elements of study design early in the paper                                                                          | 6-9         |
| Setting                | 5          | Describe the setting, locations, and relevant dates, including periods of                                                        | 6-7         |
| 0                      |            | recruitment, exposure, follow-up, and data collection                                                                            |             |
| Participants           | 6          | (a) Give the eligibility criteria, and the sources and methods of selection                                                      | 7           |
| 1                      |            | of participants                                                                                                                  |             |
| Variables              | 7          | Clearly define all outcomes, exposures, predictors, potential                                                                    | 7-9         |
|                        |            | confounders, and effect modifiers. Give diagnostic criteria, if applicable                                                       |             |
| Data sources/          | 8*         | For each variable of interest, give sources of data and details of methods                                                       | 7-8         |
| measurement            | -          | of assessment (measurement). Describe comparability of assessment                                                                |             |
|                        |            | methods if there is more than one group                                                                                          |             |
| Bias                   | 9          | Describe any efforts to address potential sources of bias                                                                        | NA          |
| Study size             | 10         | Explain how the study size was arrived at                                                                                        | 7           |
| Quantitative variables | 11         | Explain how quantitative variables were handled in the analyses. If                                                              | 10          |
|                        |            | applicable, describe which groupings were chosen and why                                                                         | 10          |
| Statistical methods    | 12         | ( <i>a</i> ) Describe all statistical methods, including those used to control for                                               | 10-11       |
| ~                      |            | confounding                                                                                                                      |             |
|                        |            | (b) Describe any methods used to examine subgroups and interactions                                                              | 11          |
|                        |            | (c) Explain how missing data were addressed                                                                                      | NA          |
|                        |            | (d) If applicable, describe analytical methods taking account of sampling                                                        | NA          |
|                        |            | strategy                                                                                                                         | 1.11        |
|                        |            | ( <u>e</u> ) Describe any sensitivity analyses                                                                                   | 6           |
|                        |            |                                                                                                                                  | 0           |
| Results                | 13*        | (a) Report numbers of individuals at each stage of study—eg numbers                                                              | 10-11       |
| Participants           | 13.        |                                                                                                                                  | 10-11       |
|                        |            | potentially eligible, examined for eligibility, confirmed eligible, included<br>in the study, completing follow up, and analyzed |             |
|                        |            | in the study, completing follow-up, and analysed                                                                                 | Eime        |
|                        |            | (b) Give reasons for non-participation at each stage                                                                             | Figure<br>1 |
|                        |            | (c) Consider use of a flow diagram                                                                                               | Figure      |
|                        |            | <b>~</b>                                                                                                                         | 1           |
| Descriptive data       | 14*        | (a) Give characteristics of study participants (eg demographic, clinical,                                                        | 10-11       |
|                        | -          | social) and information on exposures and potential confounders                                                                   | Table       |
|                        |            |                                                                                                                                  | 2           |
|                        |            | (b) Indicate number of participants with missing data for each variable                                                          | NA          |
|                        |            | of interest                                                                                                                      |             |

| Outcome data      | 15* | Report numbers of outcome events or summary measures                                                                                                                                                                  | Table |
|-------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Main results      | 16  | ( <i>a</i> ) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included | 11-12 |
|                   |     | ( <i>b</i> ) Report category boundaries when continuous variables were categorized                                                                                                                                    | 9     |
|                   |     | ( <i>c</i> ) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period                                                                                             | NA    |
| Other analyses    | 17  | Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses                                                                                                                        | 12-1  |
| Discussion        |     |                                                                                                                                                                                                                       |       |
| Key results       | 18  | Summarise key results with reference to study objectives                                                                                                                                                              | 13    |
| Limitations       | 19  | Discuss limitations of the study, taking into account sources of potential<br>bias or imprecision. Discuss both direction and magnitude of any<br>potential bias                                                      | 16    |
| Interpretation    | 20  | Give a cautious overall interpretation of results considering objectives,<br>limitations, multiplicity of analyses, results from similar studies, and<br>other relevant evidence                                      | 17    |
| Generalisability  | 21  | Discuss the generalisability (external validity) of the study results                                                                                                                                                 | NA    |
| Other information |     |                                                                                                                                                                                                                       |       |
| Funding           | 22  | Give the source of funding and the role of the funders for the present<br>study and, if applicable, for the original study on which the present<br>article is based                                                   | 17    |

\*Give information separately for exposed and unexposed groups.

**Note:** An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

# **BMJ Open**

## Ideal cardiovascular health metrics: Are they just cardiovascular protective factors?

| Journal:                             | BMJ Open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manuscript ID                        | bmjopen-2022-061789.R1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Article Type:                        | Original research                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Date Submitted by the Author:        | 09-Jun-2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Complete List of Authors:            | Chen, Weihua; Fujian Medical University Affiliated Longyan First Hospital,<br>Shi, Shanshan; Longyan First Affiliated Hospital of Fujian Medical<br>University; Fujian Medical University<br>Jiang, Yizhou; State Key Laboratory of Cardiovascular Disease, Fuwai<br>Hospital, National Center for Cardiovascular Diseases, Chinese Academy<br>of Medical Sciences and Peking Union Medical College<br>Chen, Kaihong; Fujian Medical University Affiliated Longyan First<br>Hospital, Department of Cardiology<br>Liao, Ying; Longyan First Affiliated Hospital of Fujian Medical University<br>Huang, Rongchong; Capital Medical University<br>Huang, Kun; Tsinghua University, Department of Industrial Engineering |
| <b>Primary Subject<br/>Heading</b> : | Public health                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Secondary Subject Heading:           | Cardiovascular medicine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Keywords:                            | Cardiology < INTERNAL MEDICINE, Adult cardiology < CARDIOLOGY,<br>Public health < INFECTIOUS DISEASES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

SCHOLARONE<sup>™</sup> Manuscripts



I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

terez oni

| 1  | Ideal cardiovascular health metrics: Are they just cardiovascular protective factors?                                                     |  |  |  |
|----|-------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 2  | Weihua Chen <sup>1,2†</sup> , Shanshan Shi <sup>1,2†</sup> , Yizhou Jiang³†, Kaihong Chen¹, Ying Liao¹, Rongchong Huang⁴*, Kun Huang⁵*    |  |  |  |
| 3  |                                                                                                                                           |  |  |  |
| 4  | 1 Longyan First Affiliated Hospital of Fujian Medical University, Longyan, 364000, China                                                  |  |  |  |
| 5  | 2 The Third Clinical Medical College, Fujian Medical University, Fuzhou, 350000, China                                                    |  |  |  |
| 6  | 3 State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical |  |  |  |
| 7  | Sciences and Peking Union Medical College, Beijing 100037, China                                                                          |  |  |  |
| 8  | 4 Beijing Friendship Hospital, Capital Medical University, Beijing 100053, China                                                          |  |  |  |
| 9  |                                                                                                                                           |  |  |  |
| 10 |                                                                                                                                           |  |  |  |
| 11 | †Contributed equally * Correspondence:                                                                                                    |  |  |  |
| 12 | * Correspondence:                                                                                                                         |  |  |  |
| 13 | Kun Huang, PhD                                                                                                                            |  |  |  |
| 14 | Center of Statistical Science, Department of Industrial Engineering, Tsinghua University, Beijing 100084, China                           |  |  |  |
| 15 | Tel: +8618810996968                                                                                                                       |  |  |  |
|    | 1                                                                                                                                         |  |  |  |
|    | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                                                 |  |  |  |

| 1        |    |                                                                                                                                                                                                                               |
|----------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2<br>3   |    |                                                                                                                                                                                                                               |
| 3        |    |                                                                                                                                                                                                                               |
| 4<br>5   | 16 | E-mail: <u>k-huang18@mails.tsinghua.edu.cn</u>                                                                                                                                                                                |
| 6        |    |                                                                                                                                                                                                                               |
| 7        | 17 |                                                                                                                                                                                                                               |
| 8        |    |                                                                                                                                                                                                                               |
| 9        | 18 | Rongchong Huang, PhD & MD                                                                                                                                                                                                     |
| 10<br>11 |    |                                                                                                                                                                                                                               |
| 12       | 19 | Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100053, China                                                                                                                      |
| 13       |    | Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100053, China<br>Tel: (+86) 010-80838594<br>Email: rchuang@ccmu.edu.cn<br>Word count : 4287<br>Table number: 4<br>Figure number: 3 |
| 14       | 20 | Tel: (+86) 010-80838594                                                                                                                                                                                                       |
| 15<br>16 |    |                                                                                                                                                                                                                               |
| 16<br>17 | 21 | Email: <u>rchuang@ccmu.edu.cn</u>                                                                                                                                                                                             |
| 18       | 00 |                                                                                                                                                                                                                               |
| 19       | 22 |                                                                                                                                                                                                                               |
| 20       |    |                                                                                                                                                                                                                               |
| 21<br>22 | 23 | Word count : 4287                                                                                                                                                                                                             |
| 23       |    |                                                                                                                                                                                                                               |
| 24       | 24 | Table number: 4                                                                                                                                                                                                               |
| 25       | 27 |                                                                                                                                                                                                                               |
| 26<br>27 | 25 | Figure number: 3                                                                                                                                                                                                              |
| 27       |    |                                                                                                                                                                                                                               |
| 29       | 26 |                                                                                                                                                                                                                               |
| 30       |    |                                                                                                                                                                                                                               |
| 31       | 27 |                                                                                                                                                                                                                               |
| 32<br>33 |    |                                                                                                                                                                                                                               |
| 34       | 28 |                                                                                                                                                                                                                               |
| 35       |    |                                                                                                                                                                                                                               |
| 36       | 29 |                                                                                                                                                                                                                               |
| 37<br>38 | ~~ |                                                                                                                                                                                                                               |
| 30<br>39 | 30 |                                                                                                                                                                                                                               |
| 40       |    | 2                                                                                                                                                                                                                             |
| 41       |    | _                                                                                                                                                                                                                             |
| 42<br>42 |    |                                                                                                                                                                                                                               |
| 43<br>44 |    | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                                                                                                                                     |
| 45       |    |                                                                                                                                                                                                                               |
| 46       |    |                                                                                                                                                                                                                               |

| 2                                      |  |
|----------------------------------------|--|
| 3                                      |  |
| 4                                      |  |
| 5                                      |  |
| 6                                      |  |
| 0                                      |  |
| /                                      |  |
| 8                                      |  |
| 9                                      |  |
| 10                                     |  |
| 11                                     |  |
| 12                                     |  |
| 13                                     |  |
| 14                                     |  |
| 15                                     |  |
| 16                                     |  |
| 17                                     |  |
| 12<br>13<br>14<br>15<br>16<br>17<br>18 |  |
| 19<br>20                               |  |
| 20                                     |  |
| 20                                     |  |
| 21                                     |  |
| 22<br>23                               |  |
| 23                                     |  |
| 24                                     |  |
| 25                                     |  |
| 26                                     |  |
| 27                                     |  |
| 28                                     |  |
| 29                                     |  |
| 30                                     |  |
| 31                                     |  |
| 32                                     |  |
| 33                                     |  |
| 34                                     |  |
| 35                                     |  |
| 36                                     |  |
| 36<br>37                               |  |
| 38                                     |  |
| 39                                     |  |
| 39<br>40                               |  |
| 40<br>41                               |  |
| 41<br>42                               |  |
|                                        |  |
| 43                                     |  |
| 44                                     |  |
| 45                                     |  |

1

# 31 Abstract

32

- Objective: The American Heart Association (AHA) proposed the concept of ideal cardiovascular health (CVH) to reduce the risk of
- cardiovascular mortality. We attempted to broaden the impact of CVH and further contribute to AHA 2030 goals by identifying the relationship
   between CVH and non-cardiovascular diseases such as sarcopenia.
- **35 Design:** Cross-sectional survey
- 36 Setting: National Health and Nutrition Examination Survey conducted in the USA from 2011 to 2018.
- 37 **Participants:** This study included participants with reliable first 24-h dietary recall and  $\geq 20$  years of age and excluded those who could not
- 38 diagnose sarcopenia or insufficient data to calculate the CVH scores.
- 39 **Primary and secondary outcome measures:** The prevalence of sarcopenia as measured by dual-energy X-ray absorptiometry.

40 **Results:** This cohort study involving 3,311 adults > 20 years comprised 1,329 females (42.41%). The number of intermediate or ideal and poor 41 CVH participants was 1,719 and 1,592 with mean CVH score of  $9.32 \pm 0.06$  and  $5.43 \pm 0.05$ , respectively. After adjusting for related 42 confounding factors, intermediate or ideal CVH was associated with an odds reduction of sarcopenia than poor CVH (adjusted odds ratio [aOR]: 43 0.39, 95% CI; 0.22-0.69, P < 0.001) and the odds of sarcopenia was significantly lower for each incremental increase of 1 in CVH metrics (aOR: 44 0.76, 95% CI: 0.70-0.83, P < 0.001). Moreover, if the number of ideal CVH metrics was > 5, the odds of sarcopenia decreased by up to 85% 45 (aOR: 0.15, 95% CI: 0.06-0.38, P < 0.001).

| 1                                      |    |                                                                                                                                                 |  |  |  |  |  |
|----------------------------------------|----|-------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 2                                      |    |                                                                                                                                                 |  |  |  |  |  |
| 3                                      |    |                                                                                                                                                 |  |  |  |  |  |
| 4<br>5                                 | 46 | Conclusions: Our findings suggest a relationship between the CVH and the prevalence of sarcopenia in adults. The results of our study can       |  |  |  |  |  |
| 6<br>7<br>8                            | 47 | contribute to achieving the 2030 public health goal of achieving CVH for all, which may be supported by efforts to reduce the prevalence of     |  |  |  |  |  |
| 9<br>10                                | 48 | sarcopenia.                                                                                                                                     |  |  |  |  |  |
| 11<br>12                               | 49 | Keywords: cardiovascular health metrics, sarcopenia, NHANES                                                                                     |  |  |  |  |  |
| 13<br>14<br>15                         | 50 |                                                                                                                                                 |  |  |  |  |  |
| 16<br>17                               | 51 | Strengths and limitations of this study                                                                                                         |  |  |  |  |  |
| 18<br>19                               | 52 | This study benefited from the large, nationally representative data set and rigorous research methods of the National Health and Nutrition      |  |  |  |  |  |
| 20<br>21<br>22<br>23<br>24<br>25<br>26 | 53 | Examination Survey.                                                                                                                             |  |  |  |  |  |
|                                        | 54 | This study suggests a relationship between the CVH and the prevalence of non-cardiovascular disease, sarcopenia. The results of our study       |  |  |  |  |  |
|                                        | 55 | can help facilitate the 2030 goal of achieving CVH for all because the AHA 2030 goal may be supported by efforts to reduce the prevalence of    |  |  |  |  |  |
| 27<br>28<br>29                         | 56 | sarcopenia.                                                                                                                                     |  |  |  |  |  |
| 29<br>30<br>31                         | 57 | The limitations of this study were that data were derived from cross-sectional studies and that the relationship was not necessarily identified |  |  |  |  |  |
| 32<br>33                               | 58 | as causal.                                                                                                                                      |  |  |  |  |  |
| 34<br>35<br>26                         | 59 | Use of self-reported data might result in recall bias.                                                                                          |  |  |  |  |  |
| 36<br>37<br>38                         | 60 |                                                                                                                                                 |  |  |  |  |  |
| 39                                     |    |                                                                                                                                                 |  |  |  |  |  |
| 40                                     |    | Λ                                                                                                                                               |  |  |  |  |  |
| 41                                     |    | 7                                                                                                                                               |  |  |  |  |  |
| 42                                     |    |                                                                                                                                                 |  |  |  |  |  |
| 43                                     |    | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                                                       |  |  |  |  |  |
| 44                                     |    |                                                                                                                                                 |  |  |  |  |  |
| 45                                     |    |                                                                                                                                                 |  |  |  |  |  |
| 46                                     |    |                                                                                                                                                 |  |  |  |  |  |

### 61 Introduction

Life expectancy in the United States has been stagnant since 2010 which has been attributed to a lack of progress in cardiovascular disease mortality. (1) Indeed, cardiovascular disease (CVD) remains the primary cause of mortality globally and a huge burden on public health expenditure. (2) Previous investigators have used the Framingham and SCORE risk estimation systems to assess a patient's risk for CVD. (3,4) These risk scores are primarily derived from the development and establishment of effective primary and secondary prevention interventions for high-risk populations. However, individuals with significantly elevated levels of risk factors are relatively uncommon in the population. Most CVD and stroke events occur in individuals with average or only slightly unfavorable levels of risk factors. Therefore, the concept of cardiovascular health (CVH) was introduced to reduce the risk of cardiovascular mortality in 2010. (5) CVH includes seven metrics, including body mass index (BMI), cigarette smoking, physical activity, dietary intake, total cholesterol level, blood pressure, and fasting glucose level. (5) The beneficial effects of ideal CVH metrics are widely supported by mounts of scientific research. (6) However, a recent study showed that the prevalence of ideal CVH status is low on some metrics, such as dietary pattern. (7) Moreover, a study involving the offspring of Framingham participants showed that the decreasing presence of ideal CVH metrics over the past 20 years has resulted in increasing risks of subclinical diseases, CVDs, and death. (8) Therefore, there is a long way to go regarding the "Strategic Impact Goals for 2030 and Beyond" issued by the American Heart Association (AHA). 

Previous studies have suggested that an ideal CVH is negatively associated with age-related diseases. (9) Sarcopenia, marked by the age-

### BMJ Open

| 2                                            |  |
|----------------------------------------------|--|
| 3                                            |  |
| 4                                            |  |
| 5                                            |  |
| 6                                            |  |
| 7                                            |  |
| ,<br>8                                       |  |
| ٥                                            |  |
| 6<br>7<br>8<br>9<br>10                       |  |
| 10                                           |  |
| 11                                           |  |
| 12                                           |  |
| 12<br>13<br>14<br>15                         |  |
| 14                                           |  |
| 15                                           |  |
| 16<br>17                                     |  |
| 17                                           |  |
| 18<br>19                                     |  |
| 19                                           |  |
| 20                                           |  |
| 21                                           |  |
| 20<br>21<br>22<br>23<br>24<br>25<br>26<br>27 |  |
| 23                                           |  |
| 24                                           |  |
| 25                                           |  |
| 26                                           |  |
| 27                                           |  |
| 28                                           |  |
| 28<br>29                                     |  |
| 30                                           |  |
| 31                                           |  |
| 32                                           |  |
| 33                                           |  |
| 31<br>32<br>33<br>34<br>35                   |  |
| 35                                           |  |
| 36                                           |  |
| 36<br>37                                     |  |
| 38                                           |  |
| 39                                           |  |
| 40                                           |  |
| 41                                           |  |
| 42                                           |  |
| 43                                           |  |
| 44                                           |  |
| 45                                           |  |

46

| 76 | related loss of muscle mass, strength, and function, has become a severe medical problem in the current aging society. A meta-analysis indicated |  |  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 77 | that patients with sarcopenia have decreased function, and higher rates of falls and hospitalization. (10) Sarcopenia shares many common         |  |  |
| 78 | pathogenic mechanisms with CVDs, such as hormonal changes, inflammation and oxidative stress. (11) Studies have confirmed that sarcopenia        |  |  |
| 79 | is significantly associated with increased cardiovascular events or mortality, (12) and patients with CVDs are also more likely to develop       |  |  |
| 80 | sarcopenia than age-matched controls. (13)                                                                                                       |  |  |
| 81 | Although several studies have explored the relationship between cardiovascular risk factors and sarcopenia, (14) it remains unclear whether      |  |  |
| 82 | ideal CVH metrics are beneficial in sarcopenic populations.                                                                                      |  |  |
| 83 | This study aimed to determine the relationship between CVH and sarcopenia by using the 2011-2018 National Health and Nutrition                   |  |  |
| 84 | Examination Survey (NHANES) data to contribute to the accomplishment of the AHA 2030 goals.                                                      |  |  |
| 85 |                                                                                                                                                  |  |  |
| 86 | Methods                                                                                                                                          |  |  |
| 87 | Patient and public involvement                                                                                                                   |  |  |
| 88 | NHANES is a nationally representative health survey designed and administered by the National Center for Health Statistics (NCHS) at the         |  |  |
| 89 | Centers for Disease Control and Prevention (CDC). The NHANES was designed to represent the civilian non-institutionalized United States          |  |  |
| 90 | population using a complex multistage probability sampling methodology. We conducted a retrospective analysis of a cohort of US population       |  |  |
|    | 6                                                                                                                                                |  |  |
|    |                                                                                                                                                  |  |  |

| 91                       | of the NHANES from 2011 to 2018. The NHANES includes extensive demographic data, physical examinations, laboratory tests, health-related                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 92                       | questionnaires and lists of prescription medications, which were measured at the start of the study. Further details on the data collection                                                                                                                                                                                                                                                                                                                                                                               |
| 93                       | procedure and analytical guidelines are publicly available on the NHANES website. (15) As shown in Figure 1, this study included participants                                                                                                                                                                                                                                                                                                                                                                             |
| 94                       | with reliable first 24-h dietary recall and $\geq$ 20 years of age during NHANES 2011-2018 (n = 21128). Of these participants, 17817 were excluded                                                                                                                                                                                                                                                                                                                                                                        |
| 95                       | based on the following: (i) CVD (myocardial infarction, congestive heart failure, and stroke) and cancer; (ii) insufficient data to calculate the                                                                                                                                                                                                                                                                                                                                                                         |
| 96                       | CVH scores; and (iii) no reliable dual-energy X-ray absorptiometry (DXA) and body mass index (BMI) data. Thus, 3311 participants were                                                                                                                                                                                                                                                                                                                                                                                     |
| 97                       | enrolled in the present study.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 98                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 99                       | DXA, appendicular skeletal muscle mass, and the definition of sarcopenia                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 99<br>100                | DXA, appendicular skeletal muscle mass, and the definition of sarcopenia<br>DXA whole-body scans were performed on participants 8-59 years of age using Hologic Discovery model A densitometers (Hologic, Inc.,                                                                                                                                                                                                                                                                                                           |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 100                      | DXA whole-body scans were performed on participants 8-59 years of age using Hologic Discovery model A densitometers (Hologic, Inc.,                                                                                                                                                                                                                                                                                                                                                                                       |
| 100<br>101               | DXA whole-body scans were performed on participants 8-59 years of age using Hologic Discovery model A densitometers (Hologic, Inc., Bedford, MA, USA). DXA exclusion criteria included pregnancy, weight >300 pounds (136 kg, because of the weight limit of the scanner),                                                                                                                                                                                                                                                |
| 100<br>101<br>102        | DXA whole-body scans were performed on participants 8-59 years of age using Hologic Discovery model A densitometers (Hologic, Inc., Bedford, MA, USA). DXA exclusion criteria included pregnancy, weight >300 pounds (136 kg, because of the weight limit of the scanner), height > $6^{5}$ " (DXA table limitations), history of radiographic contrast material (barium) used in the past 7 days, or nuclear medicine studies in                                                                                         |
| 100<br>101<br>102<br>103 | DXA whole-body scans were performed on participants 8-59 years of age using Hologic Discovery model A densitometers (Hologic, Inc., Bedford, MA, USA). DXA exclusion criteria included pregnancy, weight >300 pounds (136 kg, because of the weight limit of the scanner), height > $6^{5}$ " (DXA table limitations), history of radiographic contrast material (barium) used in the past 7 days, or nuclear medicine studies in the past 3 days. Hologic software (version 8.26: a3*) was used to administer all scans. |

BMJ Open

Sarcopenia was defined as the lowest for sex-specific sarcopenia index cut-off values (0.789 for men and 0.512 for women), based on the National Institutes of Health (FNIH). **CVH metrics** CVH metrics include four health behaviors (cigarette smoking, physical activity, healthy dietary scores, and BMI) and three health factors (total cholesterol level, blood pressure, and fasting plasma glucose level). (5) The definitions of ideal, intermediate, and poor CVH metrics for adults are presented in Table 1. We used the Healthy Eating Index 2010 (HEI-2010) scores as a proxy of healthy dietary scores, which were calculated using first-day 24-h dietary recall. HEI-2010 scores were based on a 12-component index, with total scores ranging from 0-100, and a higher score indicating a healthier diet: total fruit; whole fruit; total vegetables; grains and beans; whole grains; dairy; total protein foods; seafood and plant protein; fatty acids; refined grains; sodium; and empty calories. Participants with an HEI-2010 score < 50 were assigned to poor health, those with a score of 51-80 to intermediate health, and those with a score  $\geq 81$  to ideal health. Table 1. Distribution of ideal, intermediate and poor CVH<sup>†</sup> for each metric for adults free of CVD, NHANES 2011-2018 **Total sample** AHA definitions of CVH for each metric (n=3311) Smoking status, n (%) Never or guit > 12 months ago Ideal 1212 (40.1) For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml 

| Intermediate  | Former ≤ 12 months                                                                                                                                                                                                                                                                                                                                           | 202 (7.2)              |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Poor          | Current smoking                                                                                                                                                                                                                                                                                                                                              | 1897 (52.8)            |
| Body mass in  |                                                                                                                                                                                                                                                                                                                                                              |                        |
| Ideal         | < 25 kg/m <sup>2</sup>                                                                                                                                                                                                                                                                                                                                       | 1025 (30.3)            |
| Intermediate  | 25-29.9 kg/m <sup>2</sup>                                                                                                                                                                                                                                                                                                                                    | 1080 (33.8)            |
| Poor          | ≥ 30 kg/m <sup>2</sup>                                                                                                                                                                                                                                                                                                                                       | 1206 (35.8)            |
| Physical acti | vity, n (%)                                                                                                                                                                                                                                                                                                                                                  |                        |
| Ideal         | $\geq$ 150 min/week moderate or $\geq$ 75 min/week vigorous or $\geq$ 150 min/week moderate + vigorous                                                                                                                                                                                                                                                       | 1553 (48.1)            |
| Intermediate  | 1-149 min/week moderate or 1-74 min /week vigorous or 1-149 min/week moderate +<br>vigorous<br>None<br>score *, n (%)<br>4-5 components<br>2-3 components<br>0-1 components<br>errol, n (%)<br>< 200 mg/dL<br>200-239 mg/dL or treated to goal<br>≥ 240 mg/dL<br>ure, n (%)<br>SBP < 120 or DBP < 80 mmHg<br>SBP 120-139 or DBP < 80 mmHg or treated to goal | 218 (7.4)              |
| Poor          | None                                                                                                                                                                                                                                                                                                                                                         | 1540 (44.5)            |
| Healthy diet  | score *, n (%)                                                                                                                                                                                                                                                                                                                                               |                        |
| Ideal         | 4-5 components                                                                                                                                                                                                                                                                                                                                               | 42 (1.7)               |
| Intermediate  | 2-3 components                                                                                                                                                                                                                                                                                                                                               | 1199 (37.9)            |
| Poor          | 0-1 components                                                                                                                                                                                                                                                                                                                                               | 2070 (60.4)            |
| Total cholest | erol, n (%)                                                                                                                                                                                                                                                                                                                                                  |                        |
| Ideal         | < 200 mg/dL                                                                                                                                                                                                                                                                                                                                                  | 1751 (49.8)            |
|               | 200-239 mg/dL or treated to goal                                                                                                                                                                                                                                                                                                                             | 925 (30.3)             |
| Poor          | ≥ 240 mg/dL                                                                                                                                                                                                                                                                                                                                                  | 635 (20.0)             |
| Blood pressu  | Jre, n (%)                                                                                                                                                                                                                                                                                                                                                   |                        |
| ldeal         | SBP < 120 or DBP < 80 mmHg                                                                                                                                                                                                                                                                                                                                   | 1459 (45.2)            |
|               | SBP 120-139 or DBP 80-89 mmHg or treated to goal                                                                                                                                                                                                                                                                                                             | 1180 (33.6)            |
| Poor          | SBP $\geq$ 140 or DBP $\geq$ 90 mmHg                                                                                                                                                                                                                                                                                                                         | 744 (21.2)             |
| •••           | na glucose, n (%)                                                                                                                                                                                                                                                                                                                                            |                        |
| Ideal         | < 100 mg/dL                                                                                                                                                                                                                                                                                                                                                  | 2282 (75.8)            |
|               | 100-125 mg/dL or treated to goal                                                                                                                                                                                                                                                                                                                             | 713 (16.7)             |
| Poor          | ≥ 126 mg/dL                                                                                                                                                                                                                                                                                                                                                  | 316 (7.6)              |
| Abbreviation  | : CVH, cardiovascular health; CVD, cardiovascular disease; NHANES, National Health                                                                                                                                                                                                                                                                           | and Nutrition Examinat |
|               | 9                                                                                                                                                                                                                                                                                                                                                            |                        |
|               | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                                                                                                                                                                                                                                                                    |                        |

 BMJ Open

| Survey; AHA, The American Heart Association; DBP, diastolic blood pressure; SBP, systolic blood pressure.<br>† CVH is defined from AHA in 2010. (5)                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| beverage, and a very small proportion (<0.5%) of U.S. adults meet the ideal healthy diet. HEI-2010 is a continuous score consisting                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| empty calories. HEI-2010 score ranges from0 to 100 with a higher score indicates more healthy diet. HEI-2010 has been validated to represent the diet quality in population. We used HEI-2010 as a proxy for AHA's healthy diet score with ideal diet: HEI-2010 ≥ 81; |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| intermediate diet: 51-80; and poor diet: ≤ 50.                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Although the AHA relies on fasting glucose to determine hyperglycemia, we use hemoglobin A1c (HbA1c) concentrations for two reasons.                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| First, recent recommendations from the American Diabetes Association allow the use of HbA1c to diagnose diabetes. Second, a significant                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| percentage of NHANES participants who took the test did not fast. Therefore, we used HbA1c values $< 5.7\%$ , $5.7\%$ - $6.4\%$ , and $\ge 6.5\%$ as a                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| proxy for fasting plasma glucose levels < 100 mg/dL, 100 to < 126 mg/dL, and $\geq$ 126 mg/dL. Participants who reported having diabetes or                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| being treated with insulin or an oral medication to lower blood glucose and had an HbA1c concentration between 5.7% and 6.4% were                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| categorized as intermediate health. Similarly, participants who reported taking cholesterol-lowering or antihypertensive medications and were                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| treated to goal were categorized as "intermediate," whereas participants with these conditions who were untreated or who were not treated to                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| goal were categorized as "poor" for that health factor. Use of antihypertensive, cholesterol-lowering, and glucose-lowering medications were                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| self-reported. Total cholesterol and plasma glucose levels were measured with enzymatic methods                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (https://www.cdc.gov/nchs/nhanes/index.htm). BMI was calculated as the weight in kilograms divided by the height in meters squared. The                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                       | † CVH is defined from AHA in 2010. (5)<br>* AHA's healthy diet score includes five components: fruits and vegetables, whole grain, fish, sodium, and sugar-sweeten<br>beverage, and a very small proportion (<0.5%) of U.S. adults meet the ideal healthy diet. HEI-2010 is a continuous score consisting<br>of 12 components representing major food groups including fruit and vegetables, whole grains, proteins, dairy, oils, sodium, and<br>empty calories. HEI-2010 score ranges from 0 to 100 with a higher score indicates more healthy diet. HEI-2010 has been validated<br>to represent the diet quality in population. We used HEI-2010 as a proxy for AHA's healthy diet score with ideal diet: HEI-2010 ≥ 81;<br>intermediate diet: 51-80; and poor diet: ≤ 50.<br>Although the AHA relies on fasting glucose to determine hyperglycemia, we use hemoglobin A1c (HbA1c) concentrations for two reasons.<br>First, recent recommendations from the American Diabetes Association allow the use of HbA1c to diagnose diabetes. Second, a significant<br>percentage of NHANES participants who took the test did not fast. Therefore, we used HbA1c values < 5.7%, 5.7%, 6.4%, and ≥ 6.5% as a<br>proxy for fasting plasma glucose levels < 100 mg/dL, 100 to < 126 mg/dL, and ≥ 126 mg/dL. Participants who reported having diabetes or<br>being treated with insulin or an oral medication to lower blood glucose and had an HbA1c concentration between 5.7% and 6.4% were<br>categorized as intermediate health. Similarly, participants who reported taking cholesterol-lowering or antihypertensive medications and were<br>treated to goal were categorized as "intermediate," whereas participants with these conditions who were untreated or who were not treated to<br>goal were categorized as "poor" for that health factor. Use of antihypertensive, cholesterol-lowering, and glucose-lowering medications were<br>self-reported. Total cholesterol and plasma glucose levels were measured with enzymatic methods |

mean blood pressure was estimated from up to three readings obtained under standard conditions during a single physical examination. For each metric, participants received 0, 1, or 2 points, representing poor, intermediate, or ideal categories, respectively. Participants with overall scores of 0-7, 8-11, or 12-14 points were categorized as having poor, intermediate, or ideal CVH, respectively. Owing to the relatively low number of people with an ideal CVH score in this sample, the intermediate and ideal CVH categories were combined. **Statistical analysis** We used the NHANES recommended weights to account for planned oversampling of specific groups. The continuous variables were expressed as the mean ± standard error, and the categorical variables were presented as counts (percentages). Baseline characteristics between the two CVH groups were compared using a t-test for continuous variables and a  $\chi^2$  test for categorical variables. Multiple logistic regression was used to examine the independent influence of CVH on sarcopenia comparing poor CVH versus intermediate or ideal CVH after adjustments for potential confounders, such as age, sex, and race/ethnicity, educational level and alcohol. The odds ratio (OR) and 95% confidence interval (CI) were computed. We explored the relationship between CVH and sarcopenia in different subgroups (age, sex, race/ethnicity, education level and alcohol use). We also separately estimated the association between individual components of the CVH metrics and sarcopenia. When assessing the role of individual components, the age, sex, race/ethnicity, and education level were adjusted. Furthermore, we used multiple logistic regression analysis to assess the effect of a different number of ideal cardiovascular health metrics For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

| 1<br>2<br>3    |     |                                                                                                                                                       |
|----------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4<br>5         | 154 | (ICVHMs) on the incidence of sarcopenia. A two-sided <i>P</i> -value < 0.05 indicated significance for all analyses. All data analyses were performed |
| 6<br>7<br>8    | 155 | using SAS Release 9.4 (SAS Institute) and Survey package in R software (version 4.0.4; R Foundation for Statistical Computing, Vienna,                |
| 8<br>9<br>10   | 156 | Austria).                                                                                                                                             |
| 11<br>12<br>13 | 157 |                                                                                                                                                       |
| 14<br>15<br>16 | 158 | Results                                                                                                                                               |
| 17<br>18       | 159 | Baseline characteristics                                                                                                                              |
| 19<br>20       | 160 | This study shown that only 1.7% of the participants met the ideal diet criteria. The frequency in the present sample of participants meeting the      |
| 21<br>22<br>23 | 161 | ideal level for the remainder of CVH metrics were cigarette smoking (weighted proportion, 40.1%), diabetes (weighted, 75.8%), total cholesterol       |
| 23<br>24<br>25 | 162 | level (weighted, 49.8%), blood pressure (weighted, 45.2%), physical activity (weighted, 44.5%), and BMI (weighted, 30.3%) (Table 1).                  |
| 26<br>27       | 163 | This cohort study involved 3311 adults $\geq$ 20 years of age, comprising 1329 females (weighte, 42.4%) and 1982 males (weighted, 47.6%),             |
| 28<br>29       | 164 | with a weighted mean (SE) age of 40.0 ± 0.4 years. 1477 (weighted, 66.6%) were of non-Hispanic white ancestry, 753 (weighted, 15.7%) of               |
| 30<br>31<br>32 | 165 | Hispanic ancestry, and 618 (weighted, 9.6%) of non-Hispanic Black ancestry. The study population characteristics are listed in Table 2 by CVH         |
| 33<br>34       | 166 | metrics. The number of intermediate or ideal and CVH participants was 1719 and 1592, with mean CVH metrics of $9.3 \pm 0.1$ and $5.4 \pm 0.1$ ,       |
| 35<br>36       | 167 | respectively. The differences of CVH metrics were significant for age, race/ethnicity, and education ( $P < 0.001$ ). The frequency in the present    |
| 37<br>38       | 168 | sample of sarcopenia in participants with poor CVH metrics was 9.9%, more than two times as participants with intermediate or ideal CVH               |
| 39<br>40<br>41 |     | 12                                                                                                                                                    |
| 42<br>43<br>44 |     | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                                                             |

metrics (3.6%). Moreover, we analyzed the characteristics of this study population by sarcopenic status. Sarcopenia was identified in 32.1% of 89 females based on the sarcopenia criteria and the Hispanic more like to develop sarcopenia (36.5%) compared with other races/ethnicities. Heavy use of alcohol did not show significant differences between both groups (P = 0.821). Furthermore, the patient with sarcopenia had poor education level, BMI risk, healthy diet score risk, blood pressure risk, fasting plasma glucose risk, and overall CVH metrics. And more detailed analyses are presented in **Table S1**.

### **Table 2. Baseline characteristics of the study population**

| Characteristics               | Total<br>(n=3311) | Intermediate or Ideal CVH (n=1719) | Poor CVH<br>(n=1592) | P value |
|-------------------------------|-------------------|------------------------------------|----------------------|---------|
| Age, mean (SE), years         | 40.0 (0.4)        | 37.3 (0.5)                         | 42.9 (0.4)           | < 0.001 |
| Female, n (%)                 | 1329 (42.4)       | 614 (41.5)                         | 715 (43.5)           | 0.382   |
| Race/ethnicity, n (%)         |                   |                                    |                      |         |
| Hispanic                      | 753 (15.7)        | 362 (15.3)                         | 391(16.0)            |         |
| Non-Hispanic Black            | 618 (9.6)         | 232 (7.2)                          | 386 (12.4)           | < 0.001 |
| Non-Hispanic White            | 1477 (66.6)       | 760 (69.8)                         | 717 (63.0)           | < 0.001 |
| Other                         | 463 (8.1)         | 238 (7.7)                          | 225 (8.6)            |         |
| Heavy use of alcohol, n (%) * |                   |                                    |                      |         |
| < 12                          | 2558 (96.4)       | 1273 (97.4)                        | 1285 (95.1)          |         |
| ≥ 12                          | 103 (3.6)         | 40 (2.6)                           | 63 ( 4.9)            | 0.062   |
| Education levels, n (%)       |                   |                                    |                      |         |
| < 12                          | 1645 (44.9)       | 735 (41.8)                         | 910 (48.3)           | 0.005   |
| 12                            | 1135 (35.7)       | 543 (35.5)                         | 592(36.0)            | 0.005   |

| 1<br>2         |            |                                                                                                                                                   |                             |                                  |                  |         |  |  |
|----------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------|------------------|---------|--|--|
| 3              |            |                                                                                                                                                   |                             |                                  |                  |         |  |  |
| 4<br>5         |            | > 12                                                                                                                                              | 530(19.4)                   | 313 (22.7)                       | 217 (15.8)       |         |  |  |
| 6<br>7         |            | Scores of CVH metrics, mean<br>(SE)                                                                                                               | 7.49 (0.1)                  | 9.32 (0.1)                       | 5.43 (0.1)       | < 0.001 |  |  |
| 8              |            | (SE)<br>Sarcopenia, n (%)                                                                                                                         |                             |                                  |                  |         |  |  |
| 9<br>10        |            | Yes                                                                                                                                               | 247 (6.6)                   | 67 (3.6)                         | 180 (9.9)        | < 0.001 |  |  |
| 11<br>12       | 176        | No<br>Abbreviation: CVH, cardiovascula                                                                                                            | 3064 (94.4)                 | 1525 (96.4)                      | 1539 (90.1)      |         |  |  |
| 13             | 177        | * Data missing > 5%                                                                                                                               | 04                          |                                  |                  |         |  |  |
| 14<br>15       | 178<br>179 |                                                                                                                                                   |                             |                                  |                  |         |  |  |
| 16<br>17       | 180        | Association between CVH metrics a                                                                                                                 | nd sarcopenia               |                                  |                  |         |  |  |
| 18<br>19       | 181        | The intermediate or ideal CVH was associated with an odds reduction of sarcopenia than poor CVH (odds ratio [aOR]: 0.34 0.21-0.54, $P <$          |                             |                                  |                  |         |  |  |
| 20<br>21<br>22 | 182        | 0.001; Table 3). After adjusting for age, sex, race/ethnicity, education level, and alcohol use, intermediate or ideal CVH was associated with an |                             |                                  |                  |         |  |  |
| 23<br>24       | 183        | odds reduction of sarcopenia than poor CVH (adjusted odds ratio [aOR]: 0.39, 95% CI; 0.22-0.69, P < 0.001). In the fully adjusted model, the      |                             |                                  |                  |         |  |  |
| 25<br>26       | 184        | odds of sarcopenia was significantly lower for each incremental increase of 1 in CVH metrics (aOR: 0.76, 95% CI: 0.70-0.83, $P < 0.001$ ).        |                             |                                  |                  |         |  |  |
| 27<br>28<br>29 | 185        | Further stratified and interaction analyses were performed for age, sex, race/ethnicity, and education level. Notably, the age group showed       |                             |                                  |                  |         |  |  |
| 30<br>31       | 186        | stronger association in the subgroup aged $< 45$ years (aOR: 0.35, 95% CI: 0.20-0.64, $P < 0.001$ ). And the association between intermediate or  |                             |                                  |                  |         |  |  |
| 32<br>33       | 187        | ideal CVH and sarcopenia was not significant in female and lower education level subgroups. Further, the effect of different ages was explored    |                             |                                  |                  |         |  |  |
| 34<br>35<br>36 | 188        | in the female subgroup. In the female participants < 45 years of age, intermediate or ideal CVH scores remained an independent protective factor  |                             |                                  |                  |         |  |  |
| 37<br>38       | 189        | for sarcopenia (aOR: 0.14, 95% CI: 0.05-0.40, $P < 0.001$ ; Table S2). Among subgroups of non-Hispanic Black and other ancestry, the odds of      |                             |                                  |                  |         |  |  |
| 39<br>40<br>14 |            |                                                                                                                                                   |                             |                                  |                  |         |  |  |
| 41<br>42       |            |                                                                                                                                                   |                             |                                  |                  |         |  |  |
| 43<br>44       |            |                                                                                                                                                   | For peer review only - http | o://bmjopen.bmj.com/site/about/g | guidelines.xhtml |         |  |  |
| 45             |            |                                                                                                                                                   |                             |                                  |                  |         |  |  |
| 46             |            |                                                                                                                                                   |                             |                                  |                  |         |  |  |

| P = 0.038; aOR: 0.24, 9      | 95%CI: 0.09-0.60 | 6, $P = 0.008$ ; Table 3).                   | For all of sub | groups, there was no sigr                    | nificant intera | action (all P for inte   |
|------------------------------|------------------|----------------------------------------------|----------------|----------------------------------------------|-----------------|--------------------------|
| 0.05).                       |                  |                                              |                |                                              |                 |                          |
|                              |                  |                                              |                |                                              |                 |                          |
| Table 3. The associa         | ation between    | CVH metrics and Sa                           | rcopenia by    | selected subgroups                           |                 |                          |
| Variable                     | No. (%)          | Intermediate or<br>Ideal CVH<br>OR (95%CI) † | P value        | Intermediate or<br>Ideal CVH<br>OR (95%CI) * | <i>P</i> value  | <i>P</i> for interactior |
| Continuous                   |                  |                                              |                |                                              |                 |                          |
| CVH (per 1 score)            | 247/3311         | 0.75 (0.70-0.81)                             | <0.001         | 0.76 (0.70-0.83)                             | <0.001          | -                        |
| Categories <sup>†</sup>      |                  |                                              |                |                                              |                 |                          |
| Poor CVH                     | 180/1719         | 1[Ref]                                       | -              | 1[Ref]                                       | -               | -                        |
| Intermediate or<br>Ideal CVH | 67/1592          | 0.34 (0.21-0.54)                             | <0.001         | 0.39 (0.22-0.69)                             | <0.001          | -                        |
| Subgroup<br>Age              |                  |                                              |                |                                              |                 |                          |
| <45                          | 112/2024         | 0.40 (0.24-0.67)                             | <0.001         | 0.35 (0.20-0.64)                             | <0.001          | 0.858                    |
|                              |                  |                                              | 15             |                                              |                 |                          |

 BMJ Open

| 45-59                 | 135/1287           | 0.33 (0.15-0.75)     | 0.009  | 0.40 (0.16-1.04) | 0.067 |      |
|-----------------------|--------------------|----------------------|--------|------------------|-------|------|
| Sex                   |                    |                      |        |                  |       |      |
| Male                  | 158/1982           | 0.37 (0.22-0.63)     | <0.001 | 0.43 (0.23-0.82) | 0.014 |      |
| Female                | 89/1329            | 0.26 (0.08-0.84)     | 0.025  | 0.30 (0.07-1.32) | 0.117 | 0.53 |
| Race                  |                    |                      |        |                  |       |      |
| Hispanic              | 126/753            | 0.38 (0.23-0.63)     | <0.001 | 0.42 (0.23-0.77) | 0.007 |      |
| Non-Hispanic<br>Black | 17/618             | 0.16 (0.04-0.73)     | 0.019  | 0.25 (0.07-0.88) | 0.038 | 0.69 |
| Non-Hispanic<br>White | 80/1477            | 0.30 (0.14-0.67)     | 0.004  | 0.40 (0.15-1.06) | 0.071 | 0.09 |
| Other                 | 24/463             | 0.35 (0.12-0.99)     | 0.047  | 0.24 (0.09-0.66) | 0.008 |      |
| Education levels      |                    |                      |        |                  |       |      |
| <12                   | 158/1645           | 0.51 (0.28-0.91)     | 0.024  | 0.55 (0.27-1.11) | 0.101 |      |
| 12                    | 70/1135            | 0.35 (0.14-0.88)     | 0.026  | 0.31 (0.11-0.93) | 0.041 | 0.09 |
| >12                   | 19/530             | 0.24 (0.06-0.94)     | 0.040  | 0.11 (0.03-0.50) | 0.006 |      |
| Abbreviations: CVH    | , cardiovascular l | nealth; OR, odds rat | io.    |                  |       |      |

32% of participants with sarcopenia had only 1 ICVHM and 3% had 5 ideal ICVHMs. In participants without sarcopenia, up to 59% had  $\geq$  3

ICVHMs (Figure 2). Logistic regression of the ICVHM number and the odds of sarcopenia revealed that the higher the number of ICVHMs, the

lower the odds of sarcopenia. When participants had 3 ideal CVH metrics, the odds of sarcopenia decreased by 50% compared to participants

with non-ideal CVH metrics (aOR: 0.47, 95% CI: 0.27-0.81, P = 0.010). If the number of ICVHMs was  $\geq 5$ , the odds of sarcopenia decreased by

In the subgroup analysis of the seven individual CVH components, participants defined as intermediate or poor CVH had a higher odds of

sarcopenia odds than those with ideal CVH in all CVH metric subgroups except for the subgroup with cigarette smoking status. Especially in the

BMI and healthy diet score subgroups, the odds of sarcopenia decreased > 90% (BMI: [aOR: 0.07, 95% CI: 0.03-0.15, P < 0.001]; healthy diet

score: [aOR: 0.05, 95% CI: 0.01-0.41, P = 0.007]). Similar trends were observed between increasing levels of CVH components for BMI,

healthy diet scores, fasting plasma glucose levels, physical activity, and blood pressure, and a decreasing odds of sarcopenia (all P for trend <

17

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

| 1<br>2<br>3    |     |
|----------------|-----|
| 4<br>5         | 196 |
| 6<br>7         | 197 |
| 8<br>9         | 198 |
| 10             | 199 |
| 11<br>12<br>13 | 200 |
| 14<br>15       | 201 |
| 16<br>17       | 202 |
| 18<br>19       | 203 |
| 20<br>21<br>22 | 204 |
| 23<br>24       | 205 |
| 25<br>26       |     |
| 27             | 206 |
| 28<br>29<br>30 | 207 |
| 30<br>31<br>32 | 208 |
| 33<br>34       | 209 |
| 35<br>36       | 210 |
| 37<br>38       | 211 |
| 39<br>40       |     |
| 41<br>42       |     |
| 43             |     |
| 44<br>45       |     |

46

+ Unadjusted model.

\* Analyses were adjusted for age, sex, race/ethnicity and education level.

Association between number of ICVHMs and sarcopenia

up to 85% (aOR: 0.15, 95% CI: 0.06-0.38, *P* < 0.001; Figure 3).

Association between different individual CVH components and sarcopenia

Poor CVH: CVH metrics scores 0-7; Intermediate or Ideal CVH: CVH metrics scores 8-14.

0.05; **Table 4**).

| Variable               | OR *   | 95%CI     | P value | P for tren |
|------------------------|--------|-----------|---------|------------|
| Smoking status         |        |           |         |            |
| Poor                   | 1[Ref] | 1[Ref]    | NA      |            |
| Intermediate           | 0.75   | 0.30-1.88 | 0.538   | 0.832      |
| Ideal                  | 1.06   | 0.66-1.70 | 0.815   |            |
| Body mass index        |        |           |         |            |
| Poor                   | 1[Ref] | 1[Ref]    | NA      |            |
| Intermediate           | 0.28   | 0.19-0.42 | <0.001  | <0.001     |
| Ideal                  | 0.07   | 0.03-0.15 | <0.001  |            |
| Healthy diet score     |        |           |         |            |
| Poor                   | 1[Ref] | 1[Ref]    | NA      |            |
| Intermediate           | 0.69   | 0.45-1.06 | 0.010   | 0.043      |
| Ideal                  | 0.05   | 0.01-0.41 | 0.007   |            |
| Total cholesterol      |        |           |         |            |
| Poor                   | 1[Ref] | 1[Ref]    | NA      |            |
| Intermediate           | 1.11   | 0.70-1.78 | 0.656   | 0.601      |
| Ideal                  | 0.91   | 0.58-1.43 | 0.671   |            |
| Fasting plasma glucose |        |           |         |            |
| Poor                   | 1[Ref] | 1[Ref]    | NA      |            |
| Intermediate           | 1.22   | 0.70-2.24 | 0.514   | <0.001     |
| Ideal                  | 0.49   | 0.29-0.81 | 0.008   |            |

| 1<br>2   |     |                                                                                                                                                |                            |                         |                      |                            |                            |  |  |  |
|----------|-----|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------|----------------------|----------------------------|----------------------------|--|--|--|
| 3<br>4   |     |                                                                                                                                                |                            |                         |                      |                            |                            |  |  |  |
| 4<br>5   |     | Physical activity                                                                                                                              |                            |                         |                      |                            |                            |  |  |  |
| 6        |     | Poor                                                                                                                                           | 1[Ref]                     | 1[Ref]                  | NA                   |                            |                            |  |  |  |
| 7        |     | Intermediate                                                                                                                                   | 0.68                       | 0.28-1.62               | 0.383                | 0.036                      |                            |  |  |  |
| 8<br>9   |     | Ideal                                                                                                                                          | 0.68                       | 0.48-0.97               | 0.037                |                            |                            |  |  |  |
| 10       |     | Blood pressure                                                                                                                                 |                            |                         |                      |                            |                            |  |  |  |
| 11       |     | Poor                                                                                                                                           | 1[Ref]                     | 1[Ref]                  | NA                   |                            |                            |  |  |  |
| 12       |     | Intermediate                                                                                                                                   | 0.68                       | 0.43-1.08               | 0.110                | <0.001                     |                            |  |  |  |
| 13<br>14 |     | Ideal                                                                                                                                          | 0.37                       | 0.25-0.56               | <0.001               |                            |                            |  |  |  |
| 15       | 215 | Abbreviations: CVH, c                                                                                                                          | ardiovascular health; OR   | , odds ratio.           |                      |                            |                            |  |  |  |
| 16       | 216 | * Analyses were adjuste                                                                                                                        | d for age, sex, race/ethn  | icity and education     | level.               |                            |                            |  |  |  |
| 17<br>18 | 217 |                                                                                                                                                |                            |                         |                      |                            |                            |  |  |  |
| 19       |     |                                                                                                                                                |                            |                         |                      |                            |                            |  |  |  |
| 20       | 218 | Discussion                                                                                                                                     |                            |                         |                      |                            |                            |  |  |  |
| 21<br>22 | 040 | This study used actionwi                                                                                                                       | to manufaction hazad anage | anotional data to da    | antento o signif     | and according hatered      | . CVIII and concerning and |  |  |  |
| 23       | 219 | This study used nationwide, population-based, cross-sectional data to demonstrate a significant association between CVH and sarcopenia and     |                            |                         |                      |                            |                            |  |  |  |
| 24<br>25 | 220 | showed a significantly 60% decreased adjusted risk of sarcopenia in subjects with better CVH metrics. For each unit increase in the metrics of |                            |                         |                      |                            |                            |  |  |  |
| 26<br>27 | 221 | CVH, the risk of CVDs decreased by 24%. Furthermore, higher intermediate or ideal CVH metrics were associated with a lower prevalence of       |                            |                         |                      |                            |                            |  |  |  |
| 28<br>29 | 222 | sarcopenia.                                                                                                                                    |                            |                         |                      |                            |                            |  |  |  |
| 30       |     | sureopeniu.                                                                                                                                    |                            |                         |                      |                            |                            |  |  |  |
| 31<br>32 | 223 | Our study yielded several interesting findings. First, the CVH metrics were not only associated with CVDs, but also non-CVDs, including        |                            |                         |                      |                            |                            |  |  |  |
| 33<br>34 | 224 | sarcopenia. This result agreed with Han et al., (16) who also reported that sarcopenia was independently associated with cardiovascular risk   |                            |                         |                      |                            |                            |  |  |  |
| 35<br>36 | 225 | factors, including diabetes                                                                                                                    | and hypertension. And the  | ese risk factors were   | shown to be assoc    | ciated with the prevalence | e of sarcopenia defined by |  |  |  |
| 37<br>38 |     |                                                                                                                                                |                            |                         |                      |                            |                            |  |  |  |
| 39       |     |                                                                                                                                                |                            |                         |                      |                            |                            |  |  |  |
| 40<br>41 |     |                                                                                                                                                |                            | 19                      |                      |                            |                            |  |  |  |
| 41       |     |                                                                                                                                                |                            |                         |                      |                            |                            |  |  |  |
| 43       |     |                                                                                                                                                | For peer review            | only - http://bmjopen.b | mi.com/site/about/gu | idelines.xhtml             |                            |  |  |  |
| 44       |     |                                                                                                                                                | i oi peci i eview          |                         | ,,, axoad ya         |                            |                            |  |  |  |
| 45       |     |                                                                                                                                                |                            |                         |                      |                            |                            |  |  |  |

Page 21 of 37

### BMJ Open

| 4<br>5         | 226 | the recommended algorithm of the Asian Working Group in the Chinese elderly. (14) However, these results may only be applicable in patient             |
|----------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7<br>2         | 227 | with high-risk cardiovascular risk factors. In order to explore the association between sarcopenia and the common individual with average or           |
| )<br>0         | 228 | only slightly unfavorable levels of risk factors, we chose CVH and elaborated on the detail and found that higher intermediate or ideal CVH            |
| 1<br>2         | 229 | metrics were associated with a lower prevalence of sarcopenia, as defined by the recommended algorithm of the FNIH in American adults. This            |
| 3<br>4<br>5    | 230 | finding suggests that the level of CVH influences the incidence of sarcopenia and emphasizes the greater importance of CVH for health care and         |
| 6<br>7         | 231 | medical conditions. A previous study showed that the presence of more desirable CVH indicators was associated with a significant reduction in          |
| 8<br>9         | 232 | CVD morbidity and mortality (17). Our study broadens the application value of the CVH metrics; specifically, the higher the number of                  |
| 20<br>21       | 233 | intermediate or ideal CVH metrics, the lower the incidence of sarcopenia. It showed that only a small percentage of American adults met the            |
| 22<br>23<br>24 | 234 | ideal criteria for 6 or 7 ideal health metrics. This result is disappointing, but perhaps not surprising. Furthermore, this result challenges clinical |
| 25<br>26       | 235 | and public health professionals to keep steering the health metrics in the desired direction. In the meantime, additional research is warranted in     |
| 27<br>28       | 236 | the future to explore CVH and non-cardiovascular fields to increase public awareness of CVH and promote achievement of AHA 2030 goals.                 |
| 29<br>80<br>81 | 237 | Second, we further observed the effects of CVH metrics on sarcopenia in different subgroups. We have reported that CVH influences the                  |
| 82<br>83       | 238 | incidence of sarcopenia not only in the elderly population, (14) but in the younger population. In addition, we demonstrated similar results in the    |
| 84<br>85       | 239 | ethnicity subgroups. Surprisingly, it appeared that poor CVH metrics in females did not affect the prevalence of sarcopenia. However, we found         |
| 86<br>87<br>88 | 240 | that the effect of CVH metrics was even stronger in young and middle-aged females than in males. Sex differences in antioxidant status may             |
| 89<br>10       |     | 20                                                                                                                                                     |
| 1              |     |                                                                                                                                                        |

have contributed to this phenomenon. Earlier studies demonstrated significant sex-dependent differences in GPx (selenoproteins, such as GPx-1
and GPx-3) activity, (18) while postmenopausal females have relatively high levels of systemic oxidative stress. (19) This finding suggests that
younger female may have higher levels of antioxidant enzymes and poor CVH metrics may significantly disrupt the antioxidant levels, and thus
make the individual more susceptible to sarcopenia.

Third, we attempted to determine the effect of each indicator in CVH alone on sarcopenia in this study. Our study showed that reduced fasting plasma glucose levels were associated with a decreased risk of sarcopenia. This was consistent with the results of previous studies. (20) This finding may be attributed to the fact that higher blood glucose levels accelerate the loss of muscle mass and strength. (21) In addition, ideal blood pressure was the second significant feature associated with sarcopenia. Han P et al. (14) also found that hypertension is an independent risk factor for sarcopenia. Although the mechanism underlying sarcopenia and hypertension is currently unknown, recent studies have concluded that inflammatory factors during aging could impair blood flow by damaging the microvascular endothelium, (22) which exerted a detrimental effect on the body of the elderly. Additional studies are needed to elucidate the causal relationship between hypertension and sarcopenia. Healthy eating is significantly associated with sarcopenia. The Papaioannou study (23) highlighted the beneficial link between healthy eating and sarcopenia risk. There are several possible mechanisms to explain the beneficial effects of a healthy diet on skeletal muscle. First, a healthy diet rich in fruits and vegetables prevents metabolic acidosis and reduces protein hydrolysis and amino acid catabolism, thus reducing the risk of sarcopenia. (24) In addition, unfavorable dietary patterns, including foods rich in saturated fats, may be detrimental to the maintenance of muscle 

Page 23 of 37

| 1                                                                                                                                                                                                          |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| י<br>ר                                                                                                                                                                                                     |  |
| 2                                                                                                                                                                                                          |  |
| 3                                                                                                                                                                                                          |  |
| 4                                                                                                                                                                                                          |  |
| 5                                                                                                                                                                                                          |  |
| 6                                                                                                                                                                                                          |  |
| -                                                                                                                                                                                                          |  |
| /                                                                                                                                                                                                          |  |
| 8                                                                                                                                                                                                          |  |
| 9                                                                                                                                                                                                          |  |
| 10                                                                                                                                                                                                         |  |
| 11                                                                                                                                                                                                         |  |
| 11                                                                                                                                                                                                         |  |
| 12                                                                                                                                                                                                         |  |
| 13                                                                                                                                                                                                         |  |
| 14                                                                                                                                                                                                         |  |
| 15                                                                                                                                                                                                         |  |
| 10                                                                                                                                                                                                         |  |
| 16                                                                                                                                                                                                         |  |
| 17                                                                                                                                                                                                         |  |
| 18                                                                                                                                                                                                         |  |
| 19                                                                                                                                                                                                         |  |
| 20                                                                                                                                                                                                         |  |
| 20                                                                                                                                                                                                         |  |
| $\begin{array}{c} 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ \end{array}$ |  |
| 22                                                                                                                                                                                                         |  |
| 23                                                                                                                                                                                                         |  |
| 24                                                                                                                                                                                                         |  |
| 24                                                                                                                                                                                                         |  |
| 25                                                                                                                                                                                                         |  |
| 26                                                                                                                                                                                                         |  |
| 27                                                                                                                                                                                                         |  |
| 28                                                                                                                                                                                                         |  |
| 20                                                                                                                                                                                                         |  |
| 29                                                                                                                                                                                                         |  |
| 30                                                                                                                                                                                                         |  |
| 31                                                                                                                                                                                                         |  |
| 32                                                                                                                                                                                                         |  |
| 33                                                                                                                                                                                                         |  |
| 21                                                                                                                                                                                                         |  |
| 24                                                                                                                                                                                                         |  |
| 35                                                                                                                                                                                                         |  |
| 36                                                                                                                                                                                                         |  |
| 37                                                                                                                                                                                                         |  |
| 38                                                                                                                                                                                                         |  |
|                                                                                                                                                                                                            |  |
| 39                                                                                                                                                                                                         |  |
| 40                                                                                                                                                                                                         |  |
| 41                                                                                                                                                                                                         |  |
| 42                                                                                                                                                                                                         |  |
| 43                                                                                                                                                                                                         |  |
|                                                                                                                                                                                                            |  |
| 44                                                                                                                                                                                                         |  |
| 45                                                                                                                                                                                                         |  |
| 46                                                                                                                                                                                                         |  |

| 4              |     |                                                                                                                                                     |
|----------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| 5<br>6         | 256 | health, (25) while a fiber-rich diet reduces the risk of sarcopenia. (26) Some studies, however, suggest that a lower BMI indicates the presence of |
| 7<br>8         | 257 | sarcopenia and malnutrition and is associated with higher mortality in the older population. (27) Conversely, obese patients may have a survival    |
| 9<br>10        | 258 | benefit. (28) However, our study still found that being overweight or obese can significantly increase the risk of sarcopenia. The poor prediction  |
| 11<br>12       | 259 | of physical activity in the present study was unexpected, in contrast to previous studies (29) that suggested only ideal physical activity does     |
| 13<br>14<br>15 | 260 | appear to be associated with the onset of sarcopenia. This finding might be due to the population in our study cohort included only young and       |
| 15<br>16<br>17 | 261 | middle-aged adults. Physical activity may be crucial for the occurrence of sarcopenia in the elderly population.                                    |
| 18<br>19       | 262 | Our study has several limitations. First and foremost, cigarette smoking, physical activity, and diet were self-reported, and subjected to          |
| 20<br>21       | 263 | misclassification and recall bias, which can lead to an over- or under-estimated association between CVH and sarcopenia. Second, as noted           |
| 22<br>23<br>24 | 264 | above, for practical reasons, we were not fully compliant with all of the AHA 2020 health indicators. Moreover, our study was cross-sectional,      |
| 25<br>26       | 265 | so the association between CVH and sarcopenia cannot be interpreted as a direct cause-and-effect relationship. Finally, 84 percent of initial       |
| 27<br>28       | 266 | cohort has been excluded in this study, which will increase the variance of the odds ratio estimates. This can be improved when the larger dataset  |
| 29<br>30       | 267 | is available in the future.                                                                                                                         |
| 31<br>32<br>33 | 268 |                                                                                                                                                     |
| 34<br>35       | 269 | Conclusion                                                                                                                                          |
| 36<br>37<br>38 | 270 | In conclusion, our findings suggested a relationship between CVH indicators and the prevalence of sarcopenia among US adults. Our analysis          |
| 39             |     |                                                                                                                                                     |
| 40<br>41       |     | 22                                                                                                                                                  |
| 42             |     |                                                                                                                                                     |
| 43<br>44       |     | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                                                           |
| 44<br>45       |     |                                                                                                                                                     |

confirms that CVH extends beyond protection against cardiovascular disease. More research is needed to clarify the association between CVH and other non-CVDs. The results of our study can help facilitate the 2030 goal of achieving CVH for all because the AHA 2030 goal may be supported by efforts to reduce the prevalence of sarcopenia. 

#### **Contributorship statement**

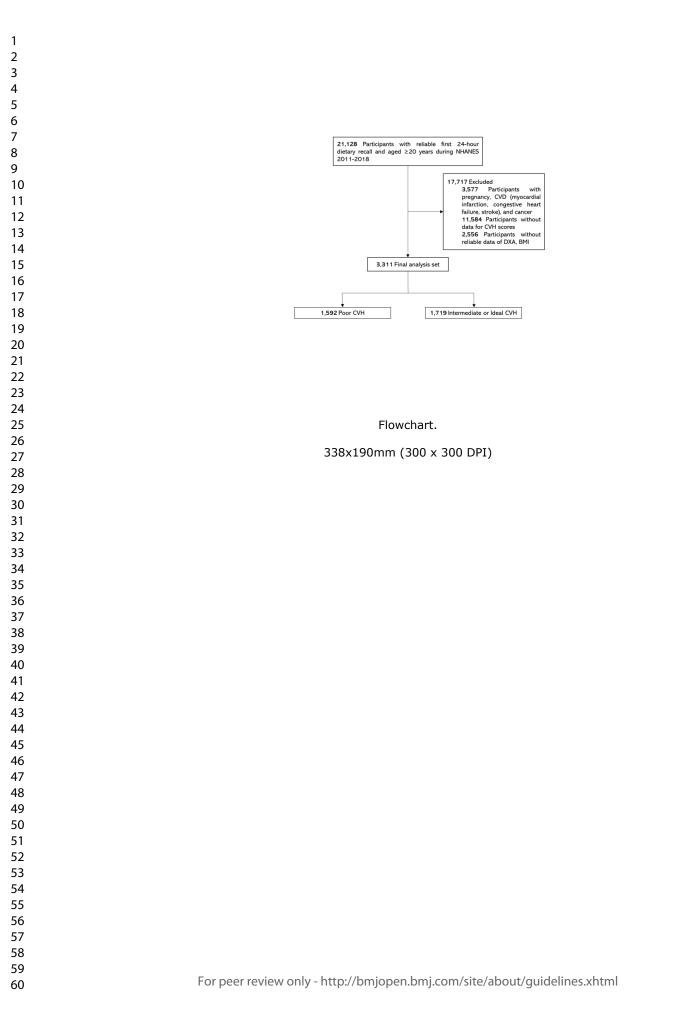
The authors' contributions were as follows; WHC: participated in formulating the research question, design of analyses, interpretation of the data, drafting the manuscript, revising the manuscript, and the approval of the final version; SSS: participated in the design of analyses, data analysis, revising the manuscript, and approval of the final version; YZJ: drafting the manuscript, revising the manuscript, and the approval of the final version; YL: interpretation of the data and the approval of the final version; KHC: participated in formulating the research question, design of analyses, revising the manuscript, and the approval of the final version; RCH: participated in formulating the research question, design of analyses, data analysis, interpretation of the data, and the approval of the final version; KH: participated in formulating the research question, design of analyses, data analysis, interpretation of the data, and the approval of the final version; and all authors: read and approved the final version of the manuscript and are responsible for all aspects of the manuscript. 

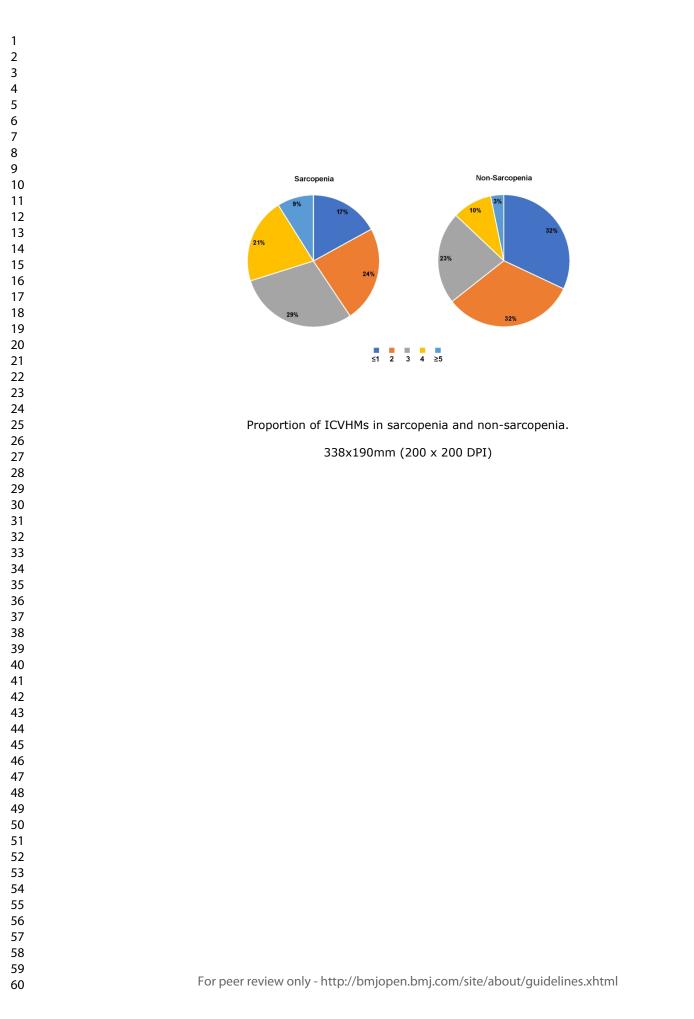
**Competing interests** 

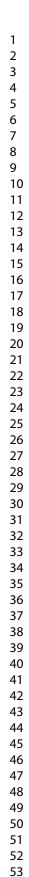
| 1                          |     |                                                                                                                                                                                                                                                                                           |
|----------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1<br>2                     |     |                                                                                                                                                                                                                                                                                           |
| 3<br>4                     |     |                                                                                                                                                                                                                                                                                           |
| 5<br>6                     | 286 | WHC, SSS, YZJ, YL, KHC, RCH and KH report no conflicts of interest.                                                                                                                                                                                                                       |
| 6<br>7                     | 287 |                                                                                                                                                                                                                                                                                           |
| 8                          | 201 |                                                                                                                                                                                                                                                                                           |
| 9<br>10<br>11<br>12<br>13  | 288 | Funding                                                                                                                                                                                                                                                                                   |
|                            | 289 | This study was supported by grants from the Summit Talent Plan, Beijing Hospital Management Center (plan no: DFL20190101) (Beijing,                                                                                                                                                       |
| 14<br>15                   | 290 | China), and the Natural Science Foundation of Fujian Provincial Science and Technology Department (2018J01405).  Data sharing statement None  Acknowledgements Additional Contributions: The authors thank all the participants and staff of the NHANES for their valuable contributions. |
| 16<br>17<br>18             | 291 |                                                                                                                                                                                                                                                                                           |
| 19<br>20<br>21<br>22<br>23 | 202 | Data shaving statement                                                                                                                                                                                                                                                                    |
|                            | 292 | Data sharing statement                                                                                                                                                                                                                                                                    |
|                            | 293 | None                                                                                                                                                                                                                                                                                      |
| 24<br>25                   | 294 |                                                                                                                                                                                                                                                                                           |
| 26<br>27<br>28             | 295 | Acknowledgements                                                                                                                                                                                                                                                                          |
| 29<br>30                   | 296 | Additional Contributions: The authors thank all the participants and staff of the NHANES for their valuable contributions.                                                                                                                                                                |
| 31<br>32                   | 297 |                                                                                                                                                                                                                                                                                           |
| 33<br>34                   | 298 |                                                                                                                                                                                                                                                                                           |
| 35                         |     |                                                                                                                                                                                                                                                                                           |
| 36<br>37                   | 299 |                                                                                                                                                                                                                                                                                           |
| 38                         | 300 |                                                                                                                                                                                                                                                                                           |
| 39<br>40                   |     | 24                                                                                                                                                                                                                                                                                        |
| 41<br>42                   |     |                                                                                                                                                                                                                                                                                           |
| 43                         |     | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                                                                                                                                                                                                 |
| 44<br>45                   |     |                                                                                                                                                                                                                                                                                           |
| 46                         |     |                                                                                                                                                                                                                                                                                           |

| 1<br>2       |            |       |                                                                                                                                                                          |
|--------------|------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2<br>3       |            |       |                                                                                                                                                                          |
| 4<br>5       | 301        |       |                                                                                                                                                                          |
| 6<br>7<br>8  | 302        |       |                                                                                                                                                                          |
| 8<br>9<br>10 | 303        |       |                                                                                                                                                                          |
| 11<br>12     | 304        | Refer | ences:                                                                                                                                                                   |
| 13<br>14     | 205        | 1     | Nebte NK, Abrama I.D. Murakulä M. US life avportancy stella due to cardiovece ular disease, not drug deathe. Dressedings of the National Academy                         |
| 15           | 305<br>306 | 1.    | Mehta NK, Abrams LR, Myrskylä M. US life expectancy stalls due to cardiovascular disease, not drug deaths. Proceedings of the National Academy                           |
| 16<br>17     | 300<br>307 | 0     | of Sciences of the United States of America 2020;117:6998-7000.                                                                                                          |
| 18           | 307<br>308 | 2.    | Mozaffarian D, Benjamin EJ, Go AS et al. Heart Disease and Stroke Statistics-2016 Update: A Report From the American Heart Association.<br>Circulation 2016;133:e38-360. |
| 19<br>20     | 309        | 3.    | D'Agostino RB, Sr., Grundy S, Sullivan LM, Wilson P. Validation of the Framingham coronary heart disease prediction scores: results of a multiple                        |
| 20           | 309<br>310 | 5.    | ethnic groups investigation. Jama 2001;286:180-7.                                                                                                                        |
| 22           | 311        | 4.    | Conroy RM, Pyörälä K, Fitzgerald AP et al. Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. European heart                      |
| 23<br>24     | 312        | 4.    | journal 2003;24:987-1003.                                                                                                                                                |
| 25<br>26     | 313        | 5.    | Lloyd-Jones DM, Hong Y, Labarthe D et al. Defining and setting national goals for cardiovascular health promotion and disease reduction: the                             |
| 20<br>27     | 314        | •     | American Heart Association's strategic Impact Goal through 2020 and beyond. Circulation 2010;121:586-613.                                                                |
| 28           | 315        | 6.    | Ommerborn MJ, Blackshear CT, Hickson DA et al. Ideal Cardiovascular Health and Incident Cardiovascular Events: The Jackson Heart Study.                                  |
| 29<br>30     | 316        | 0.    | American journal of preventive medicine 2016;51:502-6.                                                                                                                   |
| 31<br>32     | 317        | 7.    | Peng Y, Cao S, Yao Z, Wang Z. Prevalence of the cardiovascular health status in adults: A systematic review and meta-analysis. Nutrition,                                |
| 33           | 318        |       | metabolism, and cardiovascular diseases : NMCD 2018;28:1197-1207.                                                                                                        |
| 34<br>25     | 319        | 8.    | Enserro DM, Vasan RS, Xanthakis V. Twenty-Year Trends in the American Heart Association Cardiovascular Health Score and Impact on Subclinical                            |
| 35<br>36     | 320        |       | and Clinical Cardiovascular Disease: The Framingham Offspring Study. Journal of the American Heart Association 2018;7.                                                   |
| 37<br>38     | 321        | 9.    | Samieri C, Perier MC, Gaye B et al. Association of Cardiovascular Health Level in Older Age With Cognitive Decline and Incident Dementia. Jama                           |
| 39           |            |       |                                                                                                                                                                          |
| 40<br>41     |            |       | 25                                                                                                                                                                       |
| 41<br>42     |            |       |                                                                                                                                                                          |
| 43           |            |       | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                                                                                |
| 44<br>45     |            |       |                                                                                                                                                                          |
| 46           |            |       |                                                                                                                                                                          |

| 1<br>2   |     |        |                                                                                                                                                        |
|----------|-----|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3        |     |        |                                                                                                                                                        |
| 4<br>5   | 322 |        | 2018;320:657-664.                                                                                                                                      |
| 6        | 323 | 10.    | Beaudart C, Zaaria M, Pasleau F, Reginster JY, Bruyère O. Health Outcomes of Sarcopenia: A Systematic Review and Meta-Analysis. PloS one               |
| 7<br>8   | 324 |        | 2017;12:e0169548.                                                                                                                                      |
| 9        | 325 | 11.    | Curcio F, Testa G, Liguori I et al. Sarcopenia and Heart Failure. Nutrients 2020;12.                                                                   |
| 10<br>11 | 326 | 12.    | Han P, Chen X, Yu X et al. The Predictive Value of Sarcopenia and Its Individual Criteria for Cardiovascular and All-Cause Mortality in Suburb-        |
| 12       | 327 |        | dwelling Older Chinese. The journal of nutrition, health & aging 2020;24:765-771.                                                                      |
| 13<br>14 | 328 | 13.    | Fülster S, Tacke M, Sandek A et al. Muscle wasting in patients with chronic heart failure: results from the studies investigating co-morbidities       |
| 15       | 329 |        | aggravating heart failure (SICA-HF). European heart journal 2013;34:512-9.                                                                             |
| 16<br>17 | 330 | 14.    | Han P, Yu H, Ma Y et al. The increased risk of sarcopenia in patients with cardiovascular risk factors in Suburb-Dwelling older Chinese using the      |
| 18       | 331 |        | AWGS definition. Scientific reports 2017;7:9592.                                                                                                       |
| 19<br>20 | 332 | [datas | et] 15. Centers for disease control and prevention, National center for health statistics. about the National health and nutrition examination survey. |
| 21       | 333 |        | Available:https://www.cdc.gov/nchs/nhanes/about_nhanes.htm                                                                                             |
| 22<br>23 | 334 | 16.    | Han E, Lee YH, Kim YD et al. Nonalcoholic Fatty Liver Disease and Sarcopenia Are Independently Associated With Cardiovascular Risk. The                |
| 24       | 335 |        | American journal of gastroenterology 2020;115:584-595.                                                                                                 |
| 25<br>26 | 336 | 17.    | Ford ES, Greenlund KJ, Hong Y. Ideal cardiovascular health and mortality from all causes and diseases of the circulatory system among adults in the    |
| 27       | 337 |        | United States. Circulation 2012;125:987-95.                                                                                                            |
| 28<br>29 | 338 | 18.    | Rush JW, Sandiford SD. Plasma glutathione peroxidase in healthy young adults: influence of gender and physical activity. Clinical biochemistry         |
| 30       | 339 |        | 2003;36:345-51.                                                                                                                                        |
| 31<br>32 | 340 | 19.    | Bourgonje MF, Bourgonje AR, Abdulle AE et al. Systemic Oxidative Stress, Aging and the Risk of Cardiovascular Events in the General Female             |
| 33       | 341 |        | Population. Frontiers in cardiovascular medicine 2021;8:630543.                                                                                        |
| 34<br>35 | 342 | 20.    | Han P, Kang L, Guo Q et al. Prevalence and Factors Associated With Sarcopenia in Suburb-dwelling Older Chinese Using the Asian Working Group           |
| 36       | 343 |        | for Sarcopenia Definition. The journals of gerontology Series A, Biological sciences and medical sciences 2016;71:529-35.                              |
| 37<br>38 | 344 | 21.    | Morley JE, Malmstrom TK, Rodriguez-Mañas L, Sinclair AJ. Frailty, sarcopenia and diabetes. Journal of the American Medical Directors Association       |
| 39       |     |        |                                                                                                                                                        |
| 40<br>41 |     |        | 26                                                                                                                                                     |
| 42       |     |        |                                                                                                                                                        |
| 43<br>44 |     |        | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                                                              |
| 45       |     |        |                                                                                                                                                        |
| 46       |     |        |                                                                                                                                                        |


| 1<br>2   |     |     |                                                                                                                                                       |
|----------|-----|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3        |     |     |                                                                                                                                                       |
| 4<br>5   | 345 |     | 2014;15:853-9.                                                                                                                                        |
| 6        | 346 | 22. | Han K, Park YM, Kwon HS et al. Sarcopenia as a determinant of blood pressure in older Koreans: findings from the Korea National Health and            |
| 7<br>8   | 347 |     | Nutrition Examination Surveys (KNHANES) 2008-2010. PloS one 2014;9:e86902.                                                                            |
| 9        | 348 | 23. | Papaioannou KG, Nilsson A, Nilsson LM, Kadi F. Healthy Eating Is Associated with Sarcopenia Risk in Physically Active Older Adults. Nutrients         |
| 10<br>11 | 349 | -   | 2021;13.                                                                                                                                              |
| 12       | 350 | 24. | Kim J, Lee Y, Kye S, Chung YS, Kim KM. Association of vegetables and fruits consumption with sarcopenia in older adults: the Fourth Korea National    |
| 13<br>14 | 351 |     | Health and Nutrition Examination Survey. Age and ageing 2015;44:96-102.                                                                               |
| 14       | 352 | 25. | Montiel-Rojas D, Santoro A, Nilsson A et al. Beneficial Role of Replacing Dietary Saturated Fatty Acids with Polyunsaturated Fatty Acids in the       |
| 16       | 353 |     | Prevention of Sarcopenia: Findings from the NU-AGE Cohort. Nutrients 2020;12.                                                                         |
| 17<br>18 | 354 | 26. | Montiel-Rojas D, Nilsson A, Santoro A et al. Dietary Fibre May Mitigate Sarcopenia Risk: Findings from the NU-AGE Cohort of Older European Adults.    |
| 19       | 355 |     | Nutrients 2020;12.                                                                                                                                    |
| 20<br>21 | 356 | 27. | Global BMIMC, Di Angelantonio E, Bhupathiraju Sh N et al. Body-mass index and all-cause mortality: individual-participant-data meta-analysis of 239   |
| 22       | 357 |     | prospective studies in four continents. Lancet (London, England) 2016;388:776-86.                                                                     |
| 23<br>24 | 358 | 28. | Amundson DE, Djurkovic S, Matwiyoff GN. The obesity paradox. Critical care clinics 2010;26:583-96.                                                    |
| 25       | 359 | 29. | Bosaeus I, Rothenberg E. Nutrition and physical activity for the prevention and treatment of age-related sarcopenia. The Proceedings of the Nutrition |
| 26<br>27 | 360 |     |                                                                                                                                                       |
| 28       |     |     | Society 2016;75:174-80.                                                                                                                               |
| 29<br>30 |     |     |                                                                                                                                                       |
| 31       |     |     |                                                                                                                                                       |
| 32<br>33 |     |     |                                                                                                                                                       |
| 34       |     |     |                                                                                                                                                       |
| 35       |     |     |                                                                                                                                                       |
| 36<br>37 |     |     |                                                                                                                                                       |
| 38       |     |     |                                                                                                                                                       |
| 39       |     |     |                                                                                                                                                       |
| 40       |     |     | 27                                                                                                                                                    |
| 41<br>42 |     |     |                                                                                                                                                       |
| 43       |     |     | For poor review only http://bmienen.hmi.com/site/about/guidelines.yhtml                                                                               |
| 44       |     |     | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                                                             |
| 45       |     |     |                                                                                                                                                       |


46


For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

ilien only

| 1<br>2         |                                                                          |
|----------------|--------------------------------------------------------------------------|
| 3<br>4         | Figure Legend                                                            |
| 5<br>6         |                                                                          |
| 7<br>8         | Title to Figure 1                                                        |
| 9<br>10        | Flowchart.                                                               |
| 11<br>12       | Title to Figure 2                                                        |
| 13<br>14<br>15 | Proportion of ICVHMs in sarcopenia and non-sarcopenia.                   |
| 16<br>17       | Title to Figure 3                                                        |
| 18<br>19       | Association between number of ICVHMs and sarcopenia.                     |
| 20<br>21<br>22 | Legend to Figure 3                                                       |
| 23<br>24       | Abbreviation: ICVHMs, Ideal cardiovascular health metrics.               |
| 25<br>26       | Model: Adjusted by age, sex, race/ethnicity, education, and alcohol use. |
| 27<br>28       | * <i>P</i> < 0.05.                                                       |
| 29<br>30       |                                                                          |
| 31<br>32       |                                                                          |
| 33             |                                                                          |
| 34<br>35       |                                                                          |
| 36             |                                                                          |
| 37<br>38       |                                                                          |
| 30<br>39       |                                                                          |
| 40             | 28                                                                       |
| 41             |                                                                          |
| 42<br>43       |                                                                          |
| 43             | For peer review only - http://bmjopen.bmj.com                            |
| 45             |                                                                          |







60

| Physic<br>Activi         | cal  |          |          | 5 Fa<br>Pl<br>Glu<br>Mass | isting<br>asma<br>ucose       |
|--------------------------|------|----------|----------|---------------------------|-------------------------------|
| No. of ICVHMs            | Odds | Ratios f | or Sarco | penia                     | Odds Ratios<br>(95% CI)       |
| Number ≥ 5               |      |          |          |                           | 0.15 (0.06-0.38) *            |
| Number = 4               |      |          |          |                           | 0.20 (0.11-0.35) *            |
| Number = 3<br>Number = 2 |      |          |          |                           | 0.47 (0.27-0.81)*             |
| Number = 2               |      |          | +        |                           | 0.57 (0.36-0.89) *<br>1 (Ref) |

Association between number of ICVHMs and sarcopenia.

338x190mm (200 x 200 DPI)

 BMJ Open

| Characteristics             | Non-sarcopenic | Sarcopenic | p-value |  |
|-----------------------------|----------------|------------|---------|--|
|                             | (n=3064)       | (n=247)    | p-value |  |
| Age, mean (SE), years       | 39.7 (0.4)     | 43.8 (1.2) | 0.002   |  |
| Female, n (%)               | 1240 (43.1)    | 89 (32.1)  | 0.023   |  |
| Race/ethnicity, n (%)       |                |            |         |  |
| Hispanic                    | 627 (14.2)     | 126 (36.5) |         |  |
| Non-Hispanic Black          | 601 (10.0)     | 17 (4.4)   | < 0.001 |  |
| Non-Hispanic White          | 1387(67.8)     | 80 (50.3)  | < 0.001 |  |
| Other                       | 439 (8.1)      | 24 (8.8)   |         |  |
| Heavy use of alcohol, n (%) |                |            |         |  |
| <12                         | 2389 (99.0)    | 169 (99.1) | 0.821   |  |
| ≥12                         | 92 (1.0)       | 11 (0.9)   | 0.021   |  |
| Education level, n (%)      |                |            |         |  |
| Less Than High School       | 1487 (43.9)    | 158 (57.6) |         |  |
| High School Diploma         | 1065 (35.8)    | 70 (34.7)  | 0.005   |  |
| More Than High School       | 511 (20.3)     | 19 (7.6)   |         |  |
| Smoking risk, n (%)         |                |            |         |  |
| Ideal                       | 1094 (39.78)   | 118 (44.3) |         |  |
| Intermediate                | 190 (7.3)      | 12 (4.9)   | 0.507   |  |
| Poor                        | 1780 (52.9)    | 117 (50.8) |         |  |
| Body mass index risk, n (%) |                |            |         |  |
| ldeal                       | 1011 (32.2)    | 14 (4.4)   |         |  |
| Intermediate                | 1022 (34.6)    | 58 (23.6)  | < 0.001 |  |
| Poor                        | 1031 (33.3)    | 175 (72.0) |         |  |

| Ideal                         | 1435 (48.5) | 105 (42.7) |         |
|-------------------------------|-------------|------------|---------|
| Intermediate                  | 207 (7.5)   | 11 (5.5)   | 0.227   |
| Poor                          | 1422 (44.0) | 131 (51.8) |         |
| Healthy diet score risk, n (9 | %)          |            |         |
| Ideal                         | 41 (1.8)    | 1 (0.0)    |         |
| Intermediate                  | 1119 (38.3) | 80 (31.0)  | 0.010   |
| Poor                          | 1904 (59.8) | 166 (69.0) |         |
| Total cholesterol risk, n (%  |             |            |         |
| Ideal                         | 1651 (50.5) | 100 (39.6) |         |
| Intermediate                  | 845 (29.9)  | 80 (35.8)  | 0.096   |
| Poor                          | 568 (19.6)  | 67 (24.6)  |         |
| Blood pressure risk, n (%)    | . ,         |            |         |
| Ideal                         | 1387 (46.6) | 72 (25.7)  |         |
| Intermediate                  | 1016 (33.3) | 92 (37.6)  | < 0.001 |
| Poor                          | 661 (20.1)  | 83 (36.8)  |         |
| Fasting plasma glucose ris    | sk,         |            |         |
| n (%)                         |             |            |         |
| Ideal                         | 2167 (77.3) | 115 (53.0) |         |
| Intermediate                  | 628 (15.6)  | 85 (32.4)  | < 0.001 |
| Poor                          | 269 (7.1)   | 47 (14.6)  |         |
| Scores of seven healthy       | 70(04)      |            | 10.004  |
| metrics, mean (SE)            | 7.6 (0.1)   | 5.9 (0.2)  | < 0.001 |
| Overall CVH metrics, n (%)    |             |            |         |
| Poor                          | 1539 (45.5) | 180 (71.2) | < 0.004 |
| Intermediate or Ideal         | 1525 (54.5) | 67 (28.8)  | < 0.001 |

Abbreviations: CVH, cardiovascular health.

 BMJ Open

Poor CVH: CVH metrics scores 0-7; Intermediate or Ideal CVH: CVH metrics scores 8-14.

For peer review only

|                 | CVH leve                              | els, OR (95%Cl) * |         |                          |  |
|-----------------|---------------------------------------|-------------------|---------|--------------------------|--|
| Characteristics | Poor CVH Intermediate or Ideal<br>CVH |                   | P value | <i>P</i> for interaction |  |
| Male            |                                       |                   |         |                          |  |
| < 45            | 1[Ref]                                | 0.46 (0.24-0.88)  | 0.022   | 0 705                    |  |
| 45 - 59         | 1[Ref]                                | 0.35 (0.12-1.06)  | 0.069   | 0.725                    |  |
| Female          |                                       |                   |         |                          |  |
| < 45            | 1[Ref]                                | 0.14 (0.05-0.40)  | < 0.001 | 0.173                    |  |
| 45 - 59         | 1[Ref]                                | 0.57 (0.10-3.29)  | 0.534   |                          |  |

Abbreviations: CVH, cardiovascular health; OR, odds ratio.

\* Analyses were adjusted for race/ethnicity, education level and alcohol use.

|                        | Item<br>No | Recommendation                                                                                                                                | Page<br>No |
|------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Title and abstract     | 1          | ( <i>a</i> ) Indicate the study's design with a commonly used term in the title or the abstract                                               | 3          |
|                        |            | ( <i>b</i> ) Provide in the abstract an informative and balanced summary of what was done and what was found                                  | 3          |
| Introduction           |            |                                                                                                                                               |            |
| Background/rationale   | 2          | Explain the scientific background and rationale for the investigation being reported                                                          | 5-6        |
| Objectives             | 3          | State specific objectives, including any prespecified hypotheses                                                                              | 6          |
| Methods                |            |                                                                                                                                               |            |
| Study design           | 4          | Present key elements of study design early in the paper                                                                                       | 6-9        |
| Setting                | 5          | Describe the setting, locations, and relevant dates, including periods of                                                                     | 6-7        |
| Setting                | 3          |                                                                                                                                               | 0-7        |
| Participants           | 6          | recruitment, exposure, follow-up, and data collection<br>( <i>a</i> ) Give the eligibility criteria, and the sources and methods of selection | 7          |
| Participants           | U          | of participants                                                                                                                               | '          |
| Variables              | 7          | Clearly define all outcomes, exposures, predictors, potential                                                                                 | 7-9        |
| variables              | /          | confounders, and effect modifiers. Give diagnostic criteria, if applicable                                                                    | /-9        |
| Dete server /          | 0*         |                                                                                                                                               | 7.0        |
| Data sources/          | 8*         | For each variable of interest, give sources of data and details of methods                                                                    | 7-8        |
| measurement            |            | of assessment (measurement). Describe comparability of assessment                                                                             |            |
| D.                     |            | methods if there is more than one group                                                                                                       | 214        |
| Bias                   | 9          | Describe any efforts to address potential sources of bias                                                                                     | NA         |
| Study size             | 10         | Explain how the study size was arrived at                                                                                                     | 7          |
| Quantitative variables | 11         | Explain how quantitative variables were handled in the analyses. If                                                                           | 10         |
|                        | 10         | applicable, describe which groupings were chosen and why                                                                                      | 10.11      |
| Statistical methods    | 12         | (a) Describe all statistical methods, including those used to control for                                                                     | 10-11      |
|                        |            | confounding                                                                                                                                   |            |
|                        |            | (b) Describe any methods used to examine subgroups and interactions                                                                           | 11         |
|                        |            | (c) Explain how missing data were addressed                                                                                                   | NA         |
|                        |            | (d) If applicable, describe analytical methods taking account of sampling                                                                     | NA         |
|                        |            | strategy                                                                                                                                      |            |
|                        |            | (e) Describe any sensitivity analyses                                                                                                         | 6          |
| Results                |            |                                                                                                                                               |            |
| Participants           | 13*        | (a) Report numbers of individuals at each stage of study-eg numbers                                                                           | 10-1       |
|                        |            | potentially eligible, examined for eligibility, confirmed eligible, included                                                                  |            |
|                        |            | in the study, completing follow-up, and analysed                                                                                              |            |
|                        |            | (b) Give reasons for non-participation at each stage                                                                                          | Figur<br>1 |
|                        |            | (c) Consider use of a flow diagram                                                                                                            | Figur<br>1 |
| Descriptive data       | 14*        | (a) Give characteristics of study participants (eg demographic, clinical,                                                                     | 10-11      |
| -                      |            | social) and information on exposures and potential confounders                                                                                | Table      |
|                        |            | (b) Indicate number of participants with missing data for each variable of interest                                                           | NA         |

| Outcome data      | 15* | Report numbers of outcome events or summary measures                       | Table |
|-------------------|-----|----------------------------------------------------------------------------|-------|
|                   |     |                                                                            | 3     |
| Main results      | 16  | (a) Give unadjusted estimates and, if applicable, confounder-adjusted      | 11-12 |
|                   |     | estimates and their precision (eg, 95% confidence interval). Make clear    |       |
|                   |     | which confounders were adjusted for and why they were included             |       |
|                   |     | (b) Report category boundaries when continuous variables were              | 9     |
|                   |     | categorized                                                                |       |
|                   |     | (c) If relevant, consider translating estimates of relative risk into      | NA    |
|                   |     | absolute risk for a meaningful time period                                 |       |
| Other analyses    | 17  | Report other analyses done-eg analyses of subgroups and interactions,      | 12-1  |
|                   |     | and sensitivity analyses                                                   |       |
| Discussion        |     |                                                                            |       |
| Key results       | 18  | Summarise key results with reference to study objectives                   | 13    |
| Limitations       | 19  | Discuss limitations of the study, taking into account sources of potential | 16    |
|                   |     | bias or imprecision. Discuss both direction and magnitude of any           |       |
|                   |     | potential bias                                                             |       |
| Interpretation    | 20  | Give a cautious overall interpretation of results considering objectives,  | 17    |
|                   |     | limitations, multiplicity of analyses, results from similar studies, and   |       |
|                   |     | other relevant evidence                                                    |       |
| Generalisability  | 21  | Discuss the generalisability (external validity) of the study results      | NA    |
| Other information |     |                                                                            |       |
| Funding           | 22  | Give the source of funding and the role of the funders for the present     | 17    |
|                   |     | study and, if applicable, for the original study on which the present      |       |
|                   |     | article is based                                                           |       |

\*Give information separately for exposed and unexposed groups.

**Note:** An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

# **BMJ Open**

### Association of sarcopenia with ideal cardiovascular health metrics among US adults: a cross-sectional study of NHANES data from 2011 to 2018

| Journal:                             | BMJ Open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manuscript ID                        | bmjopen-2022-061789.R2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Article Type:                        | Original research                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Date Submitted by the Author:        | 24-Aug-2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Complete List of Authors:            | Chen, Weihua; Fujian Medical University Affiliated Longyan First Hospital,<br>Shi, Shanshan; Longyan First Affiliated Hospital of Fujian Medical<br>University; Fujian Medical University<br>Jiang, Yizhou; State Key Laboratory of Cardiovascular Disease, Fuwai<br>Hospital, National Center for Cardiovascular Diseases, Chinese Academy<br>of Medical Sciences and Peking Union Medical College<br>Chen, Kaihong; Fujian Medical University Affiliated Longyan First<br>Hospital, Department of Cardiology<br>Liao, Ying; Longyan First Affiliated Hospital of Fujian Medical University<br>Huang, Rongchong; Capital Medical University<br>Huang, Kun; Tsinghua University, Department of Industrial Engineering |
| <b>Primary Subject<br/>Heading</b> : | Public health                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Secondary Subject Heading:           | Cardiovascular medicine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Keywords:                            | Cardiology < INTERNAL MEDICINE, Adult cardiology < CARDIOLOGY,<br>Public health < INFECTIOUS DISEASES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

SCHOLARONE<sup>™</sup> Manuscripts



I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

terez on

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

| 1  | Association of sarcopenia with ideal cardiovascular health metrics among US adults: a cross-sectional study of NHANES                                                                                  |  |  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 2  | data from 2011 to 2018.                                                                                                                                                                                |  |  |
| 3  | Weihua Chen <sup>1,2†</sup> , Shanshan Shi <sup>1,2†</sup> , Yizhou Jiang <sup>3†</sup> , Kaihong Chen <sup>1</sup> , Ying Liao <sup>1</sup> , Rongchong Huang <sup>4*</sup> , Kun Huang <sup>5*</sup> |  |  |
| 4  |                                                                                                                                                                                                        |  |  |
| 5  | 1 Longyan First Affiliated Hospital of Fujian Medical University, Longyan, 364000, China                                                                                                               |  |  |
| 6  | 2 The Third Clinical Medical College, Fujian Medical University, Fuzhou, 350000, China                                                                                                                 |  |  |
| 7  | 3 State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy                                                                         |  |  |
| 8  | of Medical Sciences and Peking Union Medical College, Beijing 100037, China                                                                                                                            |  |  |
| 9  | 4 Beijing Friendship Hospital, Capital Medical University, Beijing 100053, China                                                                                                                       |  |  |
| 10 | 5 Center of Statistical Science, Department of Industrial Engineering, Tsinghua University, Beijing 100084, China                                                                                      |  |  |
| 11 | †Contributed equally                                                                                                                                                                                   |  |  |
| 12 | †Contributed equally                                                                                                                                                                                   |  |  |
| 13 | * Correspondence:                                                                                                                                                                                      |  |  |
| 14 | Kun Huang, PhD                                                                                                                                                                                         |  |  |
| 15 | Center of Statistical Science, Department of Industrial Engineering, Tsinghua University, Beijing 100084, China                                                                                        |  |  |
|    | 1                                                                                                                                                                                                      |  |  |
|    | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                                                                                                              |  |  |

| 1<br>2<br>3    |    |                                                                                                                                                                                                                                       |
|----------------|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4<br>5         | 16 | Tel: +8618810996968                                                                                                                                                                                                                   |
| 6<br>7<br>8    | 17 | E-mail: k-huang18@mails.tsinghua.edu.cn                                                                                                                                                                                               |
| 8<br>9<br>10   | 18 |                                                                                                                                                                                                                                       |
| 11<br>12       | 19 | Rongchong Huang, PhD & MD                                                                                                                                                                                                             |
| 13<br>14<br>15 | 20 | Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100053, China                                                                                                                              |
| 16<br>17       | 21 | Tel: (+86) 010-80838594                                                                                                                                                                                                               |
| 18<br>19       | 22 | Email: <u>rchuang@ccmu.edu.cn</u>                                                                                                                                                                                                     |
| 20<br>21<br>22 | 23 |                                                                                                                                                                                                                                       |
| 23<br>24       | 24 | Word count : 4,281                                                                                                                                                                                                                    |
| 25<br>26<br>27 | 25 | Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100053, China<br>Tel: (+86) 010-80838594<br>Email: <u>rchuang@ccmu.edu.cn</u><br>Word count : 4,281<br>Table number: 4<br>Figure number: 1 |
| 28<br>29<br>30 | 26 | Figure number: 1                                                                                                                                                                                                                      |
| 30<br>31<br>32 | 27 |                                                                                                                                                                                                                                       |
| 33<br>34       | 28 |                                                                                                                                                                                                                                       |
| 35<br>36<br>37 | 29 |                                                                                                                                                                                                                                       |
| 37<br>38<br>39 | 30 |                                                                                                                                                                                                                                       |
| 40<br>41       |    | 2                                                                                                                                                                                                                                     |
| 42<br>43<br>44 |    | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                                                                                                                                             |
| 45<br>46       |    |                                                                                                                                                                                                                                       |

| 2        |  |
|----------|--|
| 3        |  |
| 4        |  |
| 5        |  |
| 6        |  |
| 7        |  |
| /        |  |
| 8        |  |
| 9        |  |
| 10       |  |
| 11<br>12 |  |
| 12       |  |
| 13       |  |
| 14       |  |
| 15       |  |
| 16       |  |
| 17       |  |
| 17       |  |
| 18<br>19 |  |
| 19       |  |
| 20       |  |
| 21       |  |
| 22<br>23 |  |
| 23       |  |
| 24       |  |
| 25       |  |
| 26       |  |
| 27       |  |
| 28       |  |
| 29       |  |
| 30       |  |
| 31       |  |
| 32       |  |
|          |  |
| 33<br>34 |  |
|          |  |
| 35       |  |
| 36       |  |
| 37       |  |
| 38       |  |
| 39       |  |
| 40       |  |
| 41<br>42 |  |
| 42       |  |
| 43       |  |
| 44       |  |
| 15       |  |

1

## Abstract

- 32 **Objective:** The American Heart Association (AHA) proposed the concept of ideal cardiovascular health (CVH) to reduce the risk of
- cardiovascular mortality. We attempted to broaden the impact of CVH and further contribute to AHA 2030 goals by identifying the
   relationship between CVH and non-cardiovascular diseases such as sarcopenia.
- 35 **Design:** Cross-sectional survey
- 36 **Setting:** National Health and Nutrition Examination Survey conducted in the USA from 2011 to 2018.
- Participants: This study included participants with reliable first 24-h dietary recall and  $\geq$  20 years of age and excluded those who could not diagnose sarcopenia or insufficient data to calculate the CVH scores.
- 39 **Primary and secondary outcome measures:** The prevalence of sarcopenia as measured by dual-energy X-ray absorptiometry.
- 40 **Results:** This cohort study involving 9,326 adults  $\geq$  20 years comprised 4,733 females (50.0%). The number of intermediate or ideal
- 41 and poor CVH participants was 5,654 and 3,672 with mean CVH score of 9.70 ± 0.03 and 5.66 ± 0.04, respectively. After adjusting
- 42 for related confounding factors, intermediate or ideal CVH was associated with an odds reduction of sarcopenia than poor CVH
- 43 (adjusted odds ratio [aOR]: 0.36, 95% CI; 0.26-0.50, P < 0.001) and the odds of sarcopenia was significantly lower for each
- 44 incremental increase of 1 in CVH metrics (aOR: 0.75, 95% CI: 0.71-0.79, P < 0.001). Moreover, if the number of ideal CVH metrics
- 45 was > 5, the odds of sarcopenia decreased by up to 84% (aOR: 0.16, 95% CI: 0.08-0.30).

| 1<br>2         |    |                                                                                                                                      |
|----------------|----|--------------------------------------------------------------------------------------------------------------------------------------|
| 3              |    |                                                                                                                                      |
| 4<br>5<br>6    | 46 | Conclusions: Our findings suggest a relationship between the CVH and the prevalence of sarcopenia in adults. The results of our      |
| 7<br>8         | 47 | study can contribute to achieving the 2030 public health goal of achieving CVH for all, which may be supported by efforts to reduce  |
| 9<br>10        | 48 | the prevalence of sarcopenia.                                                                                                        |
| 11<br>12       | 49 | Keywords: cardiovascular health metrics, sarcopenia, NHANES                                                                          |
| 13<br>14<br>15 | 50 |                                                                                                                                      |
| 16<br>17       | 51 | Strengths and limitations of this study                                                                                              |
| 18<br>19       | 52 | The main strength of this study is the large sample representative of the adult population of US.                                    |
| 20<br>21<br>22 | 53 | Use of a validated survey instrument and standardized data collection methods allows for comparison with other studies.              |
| 22<br>23<br>24 | 54 | The limitations of this study were that data were derived from cross-sectional studies and that the relationship was not necessarily |
| 25<br>26       | 55 | identified as causal.                                                                                                                |
| 27<br>28       | 56 | Use of self-reported data might result in recall bias.                                                                               |
| 29<br>30<br>31 | 57 | A half of initial cohort has been excluded in this study, which will increase the variance of the odds ratio estimates.              |
| 32<br>33       | 58 |                                                                                                                                      |
| 34<br>35       | 59 |                                                                                                                                      |
| 36<br>37       | 60 |                                                                                                                                      |
| 38<br>39       |    |                                                                                                                                      |
| 40<br>41       |    | 4                                                                                                                                    |
| 42<br>43       |    | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                                            |
| 44<br>45       |    |                                                                                                                                      |
| 46             |    |                                                                                                                                      |

## 61 Introduction

Life expectancy in the United States has been stagnant since 2010 which has been attributed to a lack of progress in cardiovascular disease mortality. (1) Indeed, cardiovascular disease (CVD) remains the primary cause of mortality globally and a huge burden on public health expenditure. (2) Previous investigators have used the Framingham and SCORE risk estimation systems to assess a patient's risk for CVD. (3,4) These risk scores are primarily derived from the development and establishment of effective primary and secondary prevention interventions for high-risk populations. However, individuals with significantly elevated levels of risk factors are relatively uncommon in the population. Most CVD and stroke events occur in individuals with average or only slightly unfavorable levels of risk factors. Therefore, the concept of cardiovascular health (CVH) was introduced to reduce the risk of cardiovascular mortality in 2010. (5) CVH includes seven metrics, including body mass index (BMI), cigarette smoking, physical activity, dietary intake, total cholesterol level, blood pressure, and fasting glucose level. (5) The beneficial effects of ideal CVH metrics are widely supported by mounts of scientific research. (6) However, a recent study showed that the prevalence of ideal CVH status is low on some metrics, such as dietary pattern. (7) Moreover, a study involving the offspring of Framingham participants showed that the decreasing presence of ideal CVH metrics over the past 20 years has resulted in increasing risks of subclinical diseases, CVDs, and death. (8) Therefore, there is a long way to go regarding the "Strategic Impact Goals for 2030 and Beyond" issued by the American Heart Association (AHA). 

| 1<br>2<br>3                                                          |    |                                                                                                                                      |
|----------------------------------------------------------------------|----|--------------------------------------------------------------------------------------------------------------------------------------|
| 4<br>5                                                               | 76 | Previous studies have suggested that an ideal CVH is negatively associated with age-related diseases. (9) Sarcopenia, marked         |
| 6<br>7<br>8<br>9<br>10<br>11<br>12                                   | 77 | by the age-related loss of muscle mass, strength, and function, has become a severe medical problem in the current aging society.    |
|                                                                      | 78 | A meta-analysis indicated that patients with sarcopenia have decreased function, and higher rates of falls and hospitalization. (10) |
|                                                                      | 79 | Sarcopenia shares many common pathogenic mechanisms with CVDs, such as hormonal changes, inflammation and oxidative stress.          |
| 13<br>14<br>15                                                       | 80 | (11) Studies have confirmed that sarcopenia is significantly associated with increased cardiovascular events or mortality, (12) and  |
| 16<br>17                                                             | 81 | patients with CVDs are also more likely to develop sarcopenia than age-matched controls. (13)                                        |
| 18<br>19                                                             | 82 | Although several studies have explored the relationship between cardiovascular risk factors and sarcopenia, (14) it remains          |
| 20<br>21<br>22                                                       | 83 | unclear whether ideal CVH metrics are beneficial in sarcopenic populations.                                                          |
| 22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33 | 84 | This study aimed to determine the relationship between CVH and sarcopenia by using the 2011-2018 National Health and                 |
|                                                                      | 85 | Nutrition Examination Survey (NHANES) data to contribute to the accomplishment of the AHA 2030 goals.                                |
|                                                                      | 86 | Methods                                                                                                                              |
|                                                                      | 87 | Methods                                                                                                                              |
|                                                                      | 88 | Patient and public involvement                                                                                                       |
| 34<br>35                                                             | 89 | NHANES is a nationally representative health survey designed and administered by the National Center for Health Statistics (NCHS)    |
| 36<br>37<br>38                                                       | 90 | at the Centers for Disease Control and Prevention (CDC) and was approved by the NCHS Research Ethics Review Board (protocols         |
| 39<br>40                                                             |    | 6                                                                                                                                    |
| 41<br>42                                                             |    | Ŭ                                                                                                                                    |
| 43<br>44                                                             |    | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                                            |
| 45<br>46                                                             |    |                                                                                                                                      |

| 91  | Numbers: NHANES Protocol #2011-17 and NHANES Protocol #2018-01). The NHANES was designed to represent the civilian non-                  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------|
| 92  | institutionalized United States population using a complex multistage probability sampling methodology. We conducted a                   |
| 93  | retrospective analysis of a cohort of US population of the NHANES from 2011 to 2018. Written informed consent was acquired from          |
| 94  | each NHANES participant. The NHANES includes extensive demographic data, physical examinations, laboratory tests, health-                |
| 95  | related questionnaires and lists of prescription medications, which were measured at the start of the study. Further details on the data |
| 96  | collection procedure and analytical guidelines are publicly available on the NHANES website. (15) As shown in Figure S1, this study      |
| 97  | included participants with reliable first 24-h dietary recall and ≥ 20 years of age during NHANES 2011-2018 (n = 21,128). Of these       |
| 98  | participants, 11,802 were excluded based on the following: (i) no reliable dual-energy X-ray absorptiometry (DXA) and body mass          |
| 99  | index (BMI) data; and (ii) insufficient data to calculate the CVH scores. Thus, 9,326 participants were enrolled in the present study.   |
| 100 |                                                                                                                                          |
| 101 | DXA, appendicular skeletal muscle mass, and the definition of sarcopenia                                                                 |
| 102 | DXA whole-body scans were performed on participants 8-59 years of age using Hologic Discovery model A densitometers (Hologic,            |
| 103 | Inc., Bedford, MA, USA). DXA exclusion criteria included pregnancy, weight >300 pounds (136 kg, because of the weight limit of the       |
| 104 | scanner), height > 6'5" (DXA table limitations), history of radiographic contrast material (barium) used in the past 7 days, or nuclear  |
| 105 | medicine studies in the past 3 days. Hologic software (version 8.26: a3*) was used to administer all scans.                              |
|     | 7                                                                                                                                        |
|     | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                                                |

| 1<br>2<br>3                                                                      |     |                                                                                                                                           |  |  |  |  |
|----------------------------------------------------------------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 4<br>5                                                                           | 106 | Appendicular skeletal muscle mass was measured using DXA. The sarcopenia index was calculated as follows: sarcopenia index                |  |  |  |  |
| 6<br>7<br>8                                                                      | 107 | = total appendicular skeletal muscle mass (in kg)/BMI (kg/m²).                                                                            |  |  |  |  |
| 9<br>10<br>11<br>12                                                              | 108 | Sarcopenia was defined as the lowest for sex-specific sarcopenia index cut-off values (0.789 for men and 0.512 for women),                |  |  |  |  |
|                                                                                  | 109 | based on the National Institutes of Health (FNIH).                                                                                        |  |  |  |  |
| 13<br>14<br>15                                                                   | 110 |                                                                                                                                           |  |  |  |  |
| 16<br>17                                                                         | 111 | CVH metrics                                                                                                                               |  |  |  |  |
| 18<br>19                                                                         | 112 | CVH metrics include four health behaviors (cigarette smoking, physical activity, healthy dietary scores, and BMI) and three health        |  |  |  |  |
| 20<br>21                                                                         | 113 | factors (total cholesterol level, blood pressure, and fasting plasma glucose level). (5) The definitions of ideal, intermediate, and poor |  |  |  |  |
| 22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35 | 114 | CVH metrics for adults are presented in Table 1. We used the Healthy Eating Index 2010 (HEI-2010) scores as a proxy of healthy            |  |  |  |  |
|                                                                                  | 115 | dietary scores, which were calculated using first-day 24-h dietary recall. HEI-2010 scores were based on a 12-component index, with       |  |  |  |  |
|                                                                                  | 116 | total scores ranging from 0-100, and a higher score indicating a healthier diet: total fruit; whole fruit; total vegetables; grains and   |  |  |  |  |
|                                                                                  | 117 | beans; whole grains; dairy; total protein foods; seafood and plant protein; fatty acids; refined grains; sodium; and empty calories.      |  |  |  |  |
|                                                                                  | 118 | Participants with an HEI-2010 score < 50 were assigned to poor health, those with a score of 51-80 to intermediate health, and those      |  |  |  |  |
|                                                                                  | 119 | with a score $\geq$ 81 to ideal health.                                                                                                   |  |  |  |  |
| 36<br>37<br>38                                                                   | 120 |                                                                                                                                           |  |  |  |  |
| 39<br>40                                                                         |     | 8                                                                                                                                         |  |  |  |  |
| 41<br>42                                                                         |     | U U                                                                                                                                       |  |  |  |  |
| 43<br>44                                                                         |     | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                                                 |  |  |  |  |
| 45<br>46                                                                         |     |                                                                                                                                           |  |  |  |  |

| AHA definitio | ons of CVH for each metric                                                                          | Total sample<br>(n=9,326) |
|---------------|-----------------------------------------------------------------------------------------------------|---------------------------|
| Smoking stat  | tus, n (%)                                                                                          |                           |
| Ideal         | Never or quit >12 mo                                                                                | 7,003 (75.2)              |
| Intermediate  | Former ≤12 mo                                                                                       | 216 (2.9)                 |
| Poor          | Yes                                                                                                 | 2,107 (22.0)              |
| Body mass in  | ndex, n (%)                                                                                         |                           |
| Ideal         | < 25 kg/m <sup>2</sup>                                                                              | 2,890 (31.1)              |
| Intermediate  | 25-29.9 kg/m <sup>2</sup>                                                                           | 2,937 (32.6)              |
| Poor          | ≥ 30 kg/m <sup>2</sup>                                                                              | 3,499 (36.3)              |
| Physical acti | ivity, n (%)                                                                                        |                           |
| Ideal         | ≥150 min/wk moderate intensity or ≥75 min/wk vigorous intensity or ≥150 min/wk moderate+vigorous    | 3,660 (41.9)              |
| Intermediate  | 1–149 min/wk moderate intensity or 1–74 min/wk vigorous intensity or 1–149 min/wk moderate+vigorous | 625 (7.6)                 |
| Poor          | None                                                                                                | 5,041 (50.5)              |
| Healthy diet  | score *, n (%)                                                                                      |                           |
| Ideal         | 4-5 components                                                                                      | 201 (2.2)                 |
| Intermediate  | 2-3 components                                                                                      | 4,046 (44.3)              |
| Poor          | 0-1 components                                                                                      | 5,079 (53.5)              |
| Total cholest | terol, n (%)                                                                                        |                           |
| Ideal         | < 200 mg/dL                                                                                         | 5,213 (54.1)              |
| Intermediate  | 200–239 mg/dL or treated to goal                                                                    | 2,548 (28.7)              |
| Poor          | ≥ 240 mg/dL                                                                                         | 1,565 (17.2)              |
| Blood pressu  |                                                                                                     |                           |
| Ideal         | <120/<80 mm Hg                                                                                      | 4,474 (49.1)              |
| Intermediate  | 5 5                                                                                                 | 2,933 (31.9)              |
| Poor          | SBP ≥140 or DBP ≥90 mm Hg                                                                           | 1,919 (20.0)              |

| Page 11 of 37 | Page | 11 | of 37 |  |
|---------------|------|----|-------|--|
|---------------|------|----|-------|--|

| 1<br>2<br>3<br>4<br>5 |     | Glycated hemoglobin A1c, n (%)                                                                                                           |  |
|-----------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------|--|
| 6                     |     | Ideal < 5.7% 6,509 (76.0)                                                                                                                |  |
| 7                     |     | Intermediate 5.7%-6.4% or treated to goal 1,945 (16.8)                                                                                   |  |
| 8                     |     | Poor > 6.4% 875 (7.2)                                                                                                                    |  |
| 9                     | 122 | Abbreviation: CVH, cardiovascular health; CVD, cardiovascular disease; NHANES, National Health and Nutrition Examination                 |  |
| 10                    | 123 | Survey; AHA, The American Heart Association; DBP, diastolic blood pressure; SBP, systolic blood pressure.                                |  |
| 11                    | 124 | * AHA's healthy diet score includes five components: fruits and vegetables, whole grain, fish, sodium, and sugar-sweeten beverage,       |  |
| 12<br>13              | 125 | and a very small proportion (<0.5%) of U.S. adults meet the ideal healthy diet. HEI-2010 is a continuous score consisting of 12          |  |
| 14                    | 125 | components representing major food groups including fruit and vegetables, whole grains, proteins, dairy, oils, sodium, and empty         |  |
| 15                    | 120 | calories. HEI-2010 score ranges from to 100 with a higher score indicates more healthy diet. HEI-2010 has been validated to              |  |
| 16                    |     |                                                                                                                                          |  |
| 17                    | 128 | represent the diet quality in population. We used HEI-2010 as a proxy for AHA's healthy diet score with ideal diet: HEI-2010 $\geq$ 81;  |  |
| 18                    | 129 | intermediate diet: 51-80; and poor diet: ≤ 50.                                                                                           |  |
| 19                    | 130 | Although the ALLA valies on faction characterizes to determine hyperpublicancia we use Lik Ada (Lik Ada) concentrations for two reserves |  |
| 20                    | 131 | Although the AHA relies on fasting glucose to determine hyperglycemia, we use HbA1c (HbA1c) concentrations for two reasons.              |  |
| 21                    | 400 | First recent recommendations from the American Disbetes Accessition allow the use of LlbAde to disperse disbetes Oceand                  |  |
| 22<br>23              | 132 | First, recent recommendations from the American Diabetes Association allow the use of HbA1c to diagnose diabetes. Second, a              |  |
| 24<br>25              | 133 | significant percentage of NHANES participants who took the test did not fast. Therefore, we used HbA1c values < 5.7%, 5.7%-6.4%,         |  |
| 26<br>27<br>28        | 134 | and $\geq$ 6.5% as a proxy for fasting plasma glucose levels < 100 mg/dL, 100 to < 126 mg/dL, and $\geq$ 126 mg/dL. Participants who     |  |
| 29<br>30              | 135 | reported having diabetes or being treated with insulin or an oral medication to lower blood glucose and had an HbA1c concentration       |  |
| 31<br>32              | 136 | between 5.7% and 6.4% were categorized as intermediate health. Similarly, participants who reported taking cholesterol-lowering or       |  |
| 33<br>34<br>35        | 137 | antihypertensive medications and were treated to goal were categorized as "intermediate," whereas participants with these conditions     |  |
| 36<br>37              | 138 | who were untreated or who were not treated to goal were categorized as "poor" for that health factor. Use of antihypertensive,           |  |
| 38<br>39              | 139 | cholesterol-lowering, and glucose-lowering medications were self-reported. Total cholesterol and plasma glucose levels were              |  |
| 40<br>41              |     | 10                                                                                                                                       |  |
| 42<br>43<br>44        |     | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                                                |  |

| 1<br>2               |     |                                                                                                                                           |
|----------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------|
| 3<br>4               |     |                                                                                                                                           |
| 5                    | 140 | measured with enzymatic methods (https://www.cdc.gov/nchs/nhanes/index.htm). BMI was calculated as the weight in kilograms                |
| 6<br>7<br>8          | 141 | divided by the height in meters squared. The mean blood pressure was estimated from up to three readings obtained under standard          |
| 9<br>10              | 142 | conditions during a single physical examination.                                                                                          |
| 11<br>12             | 143 | For each metric, participants received 0, 1, or 2 points, representing poor, intermediate, or ideal categories, respectively.             |
| 13<br>14<br>15       | 144 | Participants with overall scores of 0-7, 8-11, or 12-14 points were categorized as having poor, intermediate, or ideal CVH, respectively. |
| 16<br>17             | 145 | Owing to the relatively low number of people with an ideal CVH score in this sample, the intermediate and ideal CVH categories were       |
| 18<br>19             | 146 | combined.                                                                                                                                 |
| 20<br>21<br>22       | 147 | combined. Statistical analysis                                                                                                            |
| 23<br>24             | 148 | Statistical analysis                                                                                                                      |
| 25<br>26             | 149 | We used the NHANES recommended weights to account for planned oversampling of specific groups. The continuous variables were              |
| 27<br>28<br>29       | 150 | expressed as the mean ± standard error, and the categorical variables were presented as counts (percentages). Baseline                    |
| 30<br>31             | 151 | characteristics between the two CVH groups were compared using a t-test for continuous variables and a $\chi^2$ test for categorical      |
| 32<br>33             | 152 | variables.                                                                                                                                |
| 34<br>35             | 153 | Multiple logistic regression was used to examine the independent influence of CVH on sarcopenia comparing poor CVH versus                 |
| 36<br>37<br>38       | 154 | intermediate or ideal CVH after adjustments for potential confounders, such as age, sex, and race/ethnicity, educational level, alcohol,  |
| 39<br>40             |     | 11                                                                                                                                        |
| 41<br>42             |     |                                                                                                                                           |
| 42<br>43<br>44<br>45 |     | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                                                 |

#### BMJ Open

| 2        |   |
|----------|---|
| 3        |   |
| 4        |   |
| 5        |   |
|          |   |
| 6<br>7   |   |
| ,<br>8   |   |
|          |   |
| 9        |   |
| 10<br>11 |   |
| 11       |   |
| 12       |   |
| 13       |   |
| 14       |   |
| 15       |   |
| 16       |   |
| 17       |   |
| 17<br>18 |   |
| 18       |   |
| 19       |   |
| 20       |   |
| 21       | 1 |
| 22       |   |
| 23       |   |
| 24       |   |
| 25       |   |
| 25       |   |
| 26       |   |
| 27       |   |
| 28       |   |
| 29       |   |
| 30       |   |
| 31       |   |
| 31<br>32 |   |
| 33       |   |
| 34       |   |
| 35       |   |
|          |   |
| 36       |   |
| 37       |   |
| 38       |   |
| 38<br>39 |   |
| 40       |   |
| 41       |   |
| 42       |   |
| 43       |   |
| 11       |   |
| 44<br>45 |   |
| 45       |   |

46

congestive heart failure, coronary heart disease, angina and cancer. The odds ratio (OR) and 95% confidence interval (CI) were 155 computed. We explored the relationship between CVH and sarcopenia in different subgroups (age, sex, race/ethnicity and education 156 level). We also separately estimated the association between individual components of the CVH metrics and sarcopenia. When 157 158 assessing the role of individual components, the age, sex, and race/ethnicity, educational level, alcohol, congestive heart failure, coronary heart disease, angina and cancer were adjusted. Furthermore, we used multiple logistic regression analysis to assess the 159 effect of a different number of ideal cardiovascular health metrics (ICVHMs) on the incidence of sarcopenia. A two-sided P-value < 160 0.05 indicated significance for all analyses. All data analyses were performed using SAS Release 9.4 (SAS Institute) and Survey 161 package in R software (version 4.0.4; R Foundation for Statistical Computing, Vienna, Austria). 162 163 164 Results **Baseline characteristics** 165 This study shown that only 2.2% of the participants met the ideal diet criteria. The frequency in the present sample of participants 166 meeting the ideal level for the remainder of CVH metrics were cigarette smoking (weighted, 75.2%), HbA1c (weighted, 75.2%), total 167 cholesterol level (weighted, 54.1%), blood pressure (weighted, 49.1%), physical activity (weighted, 41.9%), and BMI (weighted, 31.1%) 168 (Table 1). 169 12

| 2        |  |
|----------|--|
| 2<br>3   |  |
|          |  |
| 4        |  |
| 5        |  |
| 6        |  |
| 7        |  |
| 8        |  |
| 9        |  |
| 10       |  |
| 11       |  |
| 12       |  |
| 13       |  |
| 14       |  |
| 15       |  |
| 16       |  |
| 17       |  |
| 18       |  |
| 19       |  |
| 20       |  |
| 20<br>21 |  |
|          |  |
| 22       |  |
| 23       |  |
| 24       |  |
| 25       |  |
| 26       |  |
| 27       |  |
| 28       |  |
| 29       |  |
| 30       |  |
| 31       |  |
| 32       |  |
| 33       |  |
| 34       |  |
| 35       |  |
| 36       |  |
|          |  |
| 37       |  |
| 38       |  |
| 39       |  |
| 40       |  |
| 41       |  |
| 42       |  |
| 43       |  |
| 44       |  |
| 45       |  |
|          |  |

46

1

| 170 | This cohort study involved 9,326 adults $\geq$ 20 years of age, comprising 4,733 females (weighted, 50.0%) and 4,593 males                       |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 171 | (weighted, 50.0%), with a weighted mean (SE) age of 39.3 ± 0.3 years. 3,323 (weighted, 60.3%) were of non-Hispanic white ancestry,               |
| 172 | 967 (weighted, 7.3%) of Hispanic ancestry, and 1,955 (weighted, 11.3%) of non-Hispanic Black ancestry. The study population                      |
| 173 | characteristics are listed in <b>Table 2</b> by CVH metrics. The number of intermediate or ideal and CVH participants was 5,654 and 3,672,       |
| 174 | with mean CVH metrics of 9.7 $\pm$ 0.0 and 5.7 $\pm$ 0.0, respectively. The differences of CVH metrics were significant for age, race/ethnicity, |
| 175 | and education ( <i>P</i> < 0.001). The frequency in the present sample of sarcopenia in participants with poor CVH metrics was 12.3%,            |
| 176 | nearly three-fold as participants with intermediate or ideal CVH metrics (4.8%). Moreover, we analyzed the characteristics of this               |
| 177 | study population by sarcopenic status. Sarcopenia was identified in 45.9% of 403 females based on the sarcopenia criteria and the                |
| 178 | non-Hispanic white ancestry more like to develop sarcopenia (47.5%) compared with other races/ethnicities. Furthermore, the patient              |
| 179 | with sarcopenia had poor education level, BMI risk, healthy diet score risk, blood pressure risk, HbA1c risk, and overall CVH metrics.           |
| 180 | And more detailed analyses are presented in Table S1.                                                                                            |
| 181 |                                                                                                                                                  |

# Table 2. Baseline characteristics of the study population

| Characteristics       | Total<br>(n=9,326) | Intermediate or Ideal CVH<br>(n=5,654) | Poor CVH<br>(n=3,672) | P value |  |
|-----------------------|--------------------|----------------------------------------|-----------------------|---------|--|
| Age, mean (SE), years | 39.3 (0.3)         | 36.4 (0.3)                             | 44.3 (0.3)            | < 0.001 |  |
| Female, n (%)         | 4,733 (50.0)       | 2,933 (50.9)                           | 1,800 (48.5)          | 0.078   |  |

13

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

|     | Race/ethnicity, n (%)             |                                       |                      |              |         |
|-----|-----------------------------------|---------------------------------------|----------------------|--------------|---------|
|     | Mexican American                  | 1,406 (11.1)                          | 846 (11.4)           | 560(10.5)    |         |
|     | Other Hispanic                    | 967 (7.3)                             | 598 (7.5)            | 369 (7.0)    | < 0.001 |
|     | Non-Hispanic White                | 3,323 (60.3)                          | 2,067 (61.3)         | 1,256 (58.5) | 0.001   |
|     | Non-Hispanic Black                | 1,955 (11.3)                          | 1,001 (9.5)          | 954 (14.7)   |         |
|     | Other                             | 1,675 (9.9)                           | 1,142 (10.3)         | 533 (9.3)    |         |
|     | Heavy use of alcohol, n (%) * 🦯   |                                       |                      |              |         |
|     | < 12                              | 6,636 (97.8)                          | 4,111 (98.5)         | 2,525 (96.6) | 0 172   |
|     | ≥ 12                              | 156 (2.2)                             | 75 (1.5)             | 81 (3.4)     | 0.173   |
|     | Education levels, n (%)           |                                       |                      | ζ, γ         |         |
|     | < 12                              | 3,675 (34.6)                          | 1,989 (31.0)         | 1,686 (40.9) |         |
|     | 12                                | 3,092 (34.0)                          | 1,863 (33.6)         | 1,299(34.6)  | < 0.001 |
|     | > 12                              | 2,557 (31.4)                          | <b>1</b> ,800 (35.4) | 757 (24.5)   |         |
|     | Scores of CVH metrics, mean       |                                       |                      |              | . 0.004 |
|     | (SE)                              | 8.24 (0.04)                           | 9.70 (0.03)          | 5.66 (0.04)  | < 0.001 |
|     | No                                | 8,519 (92.5)                          | 5,326 (95.2)         | 3,193 (87.7) |         |
|     | Congestive heart failure          | 97 (1.0)                              | 23 (0.2)             | 74 (1.8)     | < 0.001 |
|     | Coronary heart disease            | 92 (1.0)                              | 17 (0.2)             | 75 (2.2)     | < 0.001 |
|     | Angina                            | 94 (1.0)                              | 30 (0.4)             | 64 (2.2)     | < 0.001 |
|     | Cancer                            | 349 (5.0)                             | 158 (3.9)            |              | < 0.001 |
|     | Sarcopenia, n (%)                 | ( <i>)</i>                            |                      |              |         |
|     | Yes                               | 807 (7.5)                             | 328 (4.8)            | 479 (12.3)   |         |
|     | No                                | 8,519 (92.5)                          | 5,326 (95.2)         | 3,193 (87.7) | < 0.001 |
| 183 | Abbreviation: CVH, cardiovascular | · · · · · · · · · · · · · · · · · · · | -,()                 |              |         |
| 184 | * Data missing > 5%               |                                       |                      |              |         |
| 185 |                                   |                                       |                      |              |         |
| 186 |                                   |                                       |                      |              |         |
| 187 | Association between CVH metric    | s and sarcopenia                      |                      |              |         |
|     |                                   |                                       |                      |              |         |
|     |                                   |                                       |                      |              |         |
|     |                                   |                                       | 14                   |              |         |
|     |                                   |                                       |                      |              |         |
|     |                                   |                                       |                      |              |         |

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

| 2        |   |
|----------|---|
|          |   |
| 3<br>4   |   |
| 4<br>5   |   |
|          |   |
| 6        |   |
| 7        |   |
| 8        |   |
| 9        |   |
| 10       |   |
| 11       |   |
| 12       |   |
| 13       |   |
| 14       |   |
| 15       |   |
| 16       |   |
| 17       |   |
| 18       |   |
| 19       |   |
| 20       |   |
| 21       |   |
| 22<br>23 |   |
|          |   |
| 24       |   |
| 25       |   |
| 26       |   |
| 27       |   |
| 28       |   |
| 29       |   |
| 30       |   |
| 31       |   |
| 32       | 2 |
| 33       |   |
| 34<br>25 | 2 |
| 35       | - |
| 36<br>37 |   |
| 37<br>38 |   |
| 38<br>39 |   |
|          |   |
| 40<br>41 |   |
| 41<br>42 |   |
| 42       |   |
| 43       |   |
| 44       |   |
| 45       |   |

46

|                       | 188        | The intermediate or ideal CVH was associated with an odds reduction of sarcopenia than poor CVH (odds ratio [OR]: 0.36 0.29-0.44,         |
|-----------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------|
|                       | 189        | P < 0.001; Table 3). After adjusting for age, sex, race/ethnicity, education level, alcohol use, congestive heart failure, coronary heart |
| 0                     | 190        | disease, angina and cancer, intermediate or ideal CVH was associated with an odds reduction of sarcopenia than poor CVH (adjusted         |
| 1<br>2                | 191        | odds ratio [aOR]: 0.36, 95% CI; 0.26-0.50, P < 0.001). In the fully adjusted model, the odds of sarcopenia were significantly lower for   |
| 3<br>4<br>5           | 192        | each incremental increase of 1 in CVH metrics (aOR: 0.75, 95% CI: 0.71-0.79, P < 0.001). Further stratified and interaction analyses      |
| 5<br>6<br>7           | 193        | were performed for age, sex, race/ethnicity, and education level. And the association between intermediate or ideal CVH and               |
| 8<br>9                | 194        | sarcopenia was significant in different subgroups. Notably, the age group also showed stronger association in the subgroup aged <         |
| 0<br>1<br>2           | 195        | 45 years (aOR: 0.38, 95% CI: 0.27-0.52, P < 0.001). Further, among subgroups of non-Hispanic Black, the odds of sarcopenia                |
| 2<br>3<br>4           | 196        | decreased by 79% in participants with intermediate or ideal CVH than in participants with poor CVH (aOR: 0.21, 95% CI: 0.08-0.50,         |
| 5<br>6                | 197        | P = 0.038; aOR: 0.24, 95%CI: 0.09-0.66, P < 0.001; Table 3). For all of subgroups, there was no significant interaction (all P for        |
| 7<br>8<br>9<br>0      | 198<br>199 | interaction > 0.05), expect of education levels ( <i>P</i> for interaction= 0.014).                                                       |
| 1<br>2<br>3           | 200        |                                                                                                                                           |
| 4<br>5<br>6<br>7<br>8 | 201        | Table 3. The association between CVH metrics and Sarcopenia by selected subgroups                                                         |
| 9<br>0<br>1<br>2      |            | 15                                                                                                                                        |
| 2<br>3<br>4           |            | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                                                 |
|                       |            |                                                                                                                                           |

| Variable                            | No. (%)   | Intermediate or<br>Ideal CVH<br>OR (95%CI) <sup>†</sup> | P value | Intermediate or<br>Ideal CVH<br>OR (95%CI) * | P value | P for interaction |
|-------------------------------------|-----------|---------------------------------------------------------|---------|----------------------------------------------|---------|-------------------|
| Continuous                          |           |                                                         |         |                                              | _       |                   |
| CVH (per 1 score)                   | 807/9,326 | 0.77 (0.74-0.79)                                        | <0.001  | 0.75 (0.71-0.79)                             | <0.001  | -                 |
| Categories <sup>†</sup><br>Poor CVH | 479/3,672 | 1[Ref]                                                  | -       | 1[Ref]                                       | -       | -                 |
| Intermediate or<br>Ideal CVH        | 328/5,654 | 0.36 (0.29-0.44)                                        | <0.001  | 0.36 (0.26-0.50)                             | <0.001  | -                 |
| Subgroup<br>Age                     |           |                                                         |         |                                              |         |                   |
| <45                                 | 211/4,200 | 0.41 (0.31-0.54)                                        | <0.001  | 0.38 (0.27-0.52)                             | <0.001  | 0.400             |
| 45-59                               | 117/1,454 | 0.37 (0.27-0.52)                                        | <0.001  | 0.32 (0.19-0.53)                             | <0.001  | 0.189             |
| Sex                                 |           |                                                         |         | 1                                            |         |                   |
| Male                                | 157/2,721 | 0.33 (0.24-0.45)                                        | <0.001  | 0.36 (0.24-0.53)                             | <0.001  |                   |
| Female                              | 171/2,933 | 0.40 (0.30-0.54)                                        | <0.001  | 0.35 (0.21-0.58)                             | <0.001  | 0.827             |
| Race                                |           |                                                         |         |                                              |         |                   |
| Mexican American                    | 127/864   | 0.41 (0.28-0.60)                                        | <0.001  | 0.43 (0.28-0.67)                             | <0.001  |                   |
| Other Hispanic                      | 44/598    | 0.32 (0.18-0.58)                                        | <0.001  | 0.37 (0.20-0.70)                             | 0.003   | 0.704             |
| Non-Hispanic White                  | 80/2,067  | 0.30 (0.22-0.40)                                        | 0.019   | 0.31(0.17-0.56)                              | <0.001  |                   |

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

| 1                                      |                                        |                                                                                                                                                                                                                                                                                                                                                                               |           |                             |                 |                             |        |       |  |
|----------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------------|-----------------|-----------------------------|--------|-------|--|
| 2<br>3                                 |                                        |                                                                                                                                                                                                                                                                                                                                                                               |           |                             |                 |                             |        |       |  |
| 4<br>5<br>6                            |                                        | Non-Hispanic Black                                                                                                                                                                                                                                                                                                                                                            | 8/1001    | 0.15 (0.07-0.32)            | <0.001          | 0.21 (0.08-0.50)            | <0.001 |       |  |
| 7<br>8                                 |                                        | Other                                                                                                                                                                                                                                                                                                                                                                         | 69/1,142  | 0.40 (0.23-0.69)            | 0.001           | 0.45 (0.22-0.95)            | 0.036  |       |  |
| 9                                      |                                        | Education levels                                                                                                                                                                                                                                                                                                                                                              |           |                             |                 |                             |        |       |  |
| 10<br>11                               |                                        | <12                                                                                                                                                                                                                                                                                                                                                                           | 179/1,989 | 0.43 (0.33-0.57)            | <0.001          | 0.49 (0.33-0.74)            | <0.001 |       |  |
| 12<br>13<br>14                         |                                        | 12                                                                                                                                                                                                                                                                                                                                                                            | 87/1,863  | 0.39 (0.25-0.61)            | <0.001          | 0.32 (0.19-0.54)            | <0.001 | 0.014 |  |
| 15<br>16                               |                                        | >12                                                                                                                                                                                                                                                                                                                                                                           | 62/1,800  | 0.30 (0.18-0.50)            | <0.001          | 0.20 (0.10-0.40)            | <0.001 |       |  |
| 17<br>18<br>19<br>20<br>21<br>22<br>23 | 202<br>203<br>204<br>205<br>206<br>207 | <ul> <li>Abbreviations: CVH, cardiovascular health; OR, odds ratio.</li> <li>† Unadjusted model.</li> <li>* Analyses were adjusted for age, sex, race/ethnicity, education level, alcohol use, congestive heart failure, coronary heart disease, angina and cancer.</li> <li>Poor CVH: CVH metrics scores 0-7; Intermediate or Ideal CVH: CVH metrics scores 8-14.</li> </ul> |           |                             |                 |                             |        |       |  |
| 24<br>25<br>26                         | 208                                    | Association between number of ICVHMs and sarcopenia                                                                                                                                                                                                                                                                                                                           |           |                             |                 |                             |        |       |  |
| 20<br>27<br>28                         | 209                                    | 21% of participants with sarcopenia had only 1 ICVHM and 5% had 5 ideal ICVHMs. In participants without sarcopenia, up to 70%                                                                                                                                                                                                                                                 |           |                             |                 |                             |        |       |  |
| 29<br>30                               | 210                                    | had ≥ 3 ICVHMs (Figure S2). Logistic regression of the ICVHM number and the odds of sarcopenia revealed that the higher the                                                                                                                                                                                                                                                   |           |                             |                 |                             |        |       |  |
| 31<br>32<br>33                         | 211                                    | number of ICVHMs, the lower the odds of sarcopenia. When participants had 3 ideal CVH metrics, the odds of sarcopenia decreased                                                                                                                                                                                                                                               |           |                             |                 |                             |        |       |  |
| 34<br>35                               | 212                                    | by 50% compared to participants with non-ideal CVH metrics (aOR: 0.50, 95% CI: 0.32-0.78). If the number of ICVHMs was ≥ 5, the                                                                                                                                                                                                                                               |           |                             |                 |                             |        |       |  |
| 36<br>37                               | 213                                    | odds of sarcopenia decreased by up to 84% (aOR: 0.16, 95% CI: 0.08-0.30; Figure 1).                                                                                                                                                                                                                                                                                           |           |                             |                 |                             |        |       |  |
| 38<br>39<br>40<br>41<br>42             |                                        |                                                                                                                                                                                                                                                                                                                                                                               |           |                             | 17              |                             |        |       |  |
| 43<br>44<br>45                         |                                        |                                                                                                                                                                                                                                                                                                                                                                               | For p     | eer review only - http://bm | jopen.bmj.com/s | site/about/guidelines.xhtml |        |       |  |

BMJ Open

| 214 <b>As</b> | sociation between different individual CVH components and sarcopenia |
|---------------|----------------------------------------------------------------------|
|---------------|----------------------------------------------------------------------|

In the subgroup analysis of the seven individual CVH components, participants defined as intermediate or poor CVH had a higher odds of sarcopenia odds than those with ideal CVH in all CVH metric subgroups except for the subgroup with cigarette smoking status, total cholesterol, and physical activity. Especially in the BMI and healthy diet score subgroups, the odds of sarcopenia decreased > 80% (BMI: [aOR: 0.08, 95% CI: 0.05-0.13, P < 0.001]; healthy diet score: [aOR: 0.18, 95% CI: 0.06-0.54, P = 0.005]). A decreasing odd of sarcopenia trends were observed between increasing levels of CVH components for BMI, healthy diet score, HbA1c and blood pressure (all *P for trend* < 0.05; **Table 4**).

| 3 | 222 | Table 4. Adjusted odds ratios (95% C | l) of Sarcopenia by individ | ual | component of CVH Metric |
|---|-----|--------------------------------------|-----------------------------|-----|-------------------------|
|   |     |                                      | .,                          |     |                         |

| Variable           | OR *   | 95%CI     | P value | P for trend |
|--------------------|--------|-----------|---------|-------------|
| Smoking status     |        |           |         |             |
| Poor               | 1[Ref] | 1[Ref]    | NA      |             |
| Intermediate       | 0.84   | 0.33-2.12 | 0.706   | 0.201       |
| Ideal              | 1.25   | 0.87-1.80 | 0.223   |             |
| Body mass index    |        |           |         |             |
| Poor               | 1[Ref] | 1[Ref]    | NA      |             |
| Intermediate       | 0.21   | 0.16-0.29 | <0.001  | <0.001      |
| Ideal              | 0.08   | 0.05-0.13 | <0.001  |             |
| Healthy diet score |        |           |         |             |

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

|            | Poor                   | 1[Ref]                             | 1[Ref]         |           | NA           |                                                      |
|------------|------------------------|------------------------------------|----------------|-----------|--------------|------------------------------------------------------|
|            | Intermediate           | 0.66                               | 0.46-0.93      |           | 0.019        | 0.005                                                |
|            | Ideal                  | 0.18                               | 0.06-0.54      |           | 0.003        |                                                      |
|            | Total cholesterol      |                                    |                |           |              |                                                      |
|            | Poor                   | 1[Ref]                             | 1[Ref]         |           | NA           |                                                      |
|            | Intermediate           | 0.91                               | 0.62-1.36      |           | 0.650        | 0.054                                                |
|            | Ideal                  | 0.68                               | 0.45-1.03      |           | 0.069        |                                                      |
|            | Glycated hemoglob      | bin A1c                            |                |           |              |                                                      |
|            | Poor                   | 1[Ref]                             | 1[Ref]         |           | NA           |                                                      |
|            | Intermediate           | 0.37                               | 0.21-0.63      |           | 0.001        | <0.001                                               |
|            | Ideal                  | 0.28                               | 0.14-0.36      |           | < 0.001      |                                                      |
|            | Physical activity      |                                    |                |           |              |                                                      |
|            | Poor                   | 1[Ref]                             | 1[Ref]         |           | NA           |                                                      |
|            | Intermediate           | 0.93                               | 0.56-1.54      |           | 0.774        | 0.401                                                |
|            | Ideal                  | 0.89                               | 0.67-1.18      |           | 0.402        |                                                      |
|            | Blood pressure         |                                    |                |           |              |                                                      |
|            | Poor                   | 1[Ref]                             | 1[Ref]         |           | NA           |                                                      |
|            | Intermediate           | 0.62                               | 0.43-0.89      |           | 0.010        | <0.001                                               |
|            | Ideal                  | 0.37                               | 0.26-0.52      |           | <0.001       |                                                      |
| 223        |                        | , cardiovascular health; OR, odd   |                | laal a    | -            |                                                      |
| 224<br>225 | angina and cancer.     | sted for age, sex, race/etrinicity | , education    | ievei, a  | alconol use  | e, congestive heart failure, coronary heart disease, |
| 225        | angina and cancer.     |                                    |                |           |              |                                                      |
| 227        | Discussion             |                                    |                |           |              |                                                      |
| 228        | This study used nation | onwide, population-based, cros     | ss-sectional   | l data t  | o demons     | trate a significant association between CVH and      |
|            |                        |                                    |                |           |              | č                                                    |
|            |                        |                                    |                | 19        |              |                                                      |
|            |                        |                                    |                |           |              |                                                      |
|            |                        | For peer review only               | - http://bmjop | en.bmj.co | om/site/abou | t/guidelines.xhtml                                   |

#### BMJ Open

sarcopenia and showed a significantly 64% decreased adjusted risk of sarcopenia in subjects with better CVH metrics. For each unit
increase in the metrics of CVH, the risk of CVDs decreased by 25%. Furthermore, higher intermediate or ideal CVH metrics were
associated with a lower prevalence of sarcopenia.

Our study yielded several interesting findings. First, the CVH metrics were not only associated with CVDs, but also non-CVDs, including sarcopenia. This result agreed with Han et al., (16) who also reported that sarcopenia was independently associated with cardiovascular risk factors, including diabetes and hypertension. And these risk factors were shown to be associated with the prevalence of sarcopenia defined by the recommended algorithm of the Asian Working Group in the Chinese elderly. (14) However, these results may only be applicable in patient with high-risk cardiovascular risk factors. In order to explore the association between sarcopenia and the common individual with average or only slightly unfavorable levels of risk factors, we chose CVH and elaborated on the detail and found that higher intermediate or ideal CVH metrics were associated with a lower prevalence of sarcopenia, as defined by the recommended algorithm of the FNIH in American adults. This finding suggests that the level of CVH influences the incidence of sarcopenia and emphasizes the greater importance of CVH for health care and medical conditions. A previous study showed that the presence of more desirable CVH indicators was associated with a significant reduction in CVD morbidity and mortality (17). Our study broadens the application value of the CVH metrics; specifically, the higher the number of intermediate or ideal CVH metrics, the lower the incidence of sarcopenia. It showed that only a small percentage of American adults met the ideal criteria for 6 

| 2<br>3         |     |                                                                                                                                              |
|----------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------|
| 4<br>5         | 244 | or 7 ideal health metrics. This result is disappointing, but perhaps not surprising. Furthermore, this result challenges clinical and public |
| 6<br>7<br>8    | 245 | health professionals to keep steering the health metrics in the desired direction. In the meantime, additional research is warranted in      |
| 9<br>10        | 246 | the future to explore CVH and non-cardiovascular fields to increase public awareness of CVH and promote achievement of AHA                   |
| 11<br>12       | 247 | 2030 goals.                                                                                                                                  |
| 13<br>14<br>15 | 248 | Second, we further observed the effects of CVH metrics on sarcopenia in different subgroups. We have reported that CVH                       |
| 16<br>17       | 249 | influences the incidence of sarcopenia not only in the elderly population, (14) but in the younger population. In addition, we               |
| 18<br>19       | 250 | demonstrated similar results in the sex and ethnicity subgroups. Surprisingly, it appeared that the ideal CVH metrics affect different       |
| 20<br>21<br>22 | 251 | levels of participant with different levels of education. Recent study shown that low education compared to high education was               |
| 22<br>23<br>24 | 252 | associated with lower odds of having ideal CVH (18). However, it appears that participants with higher levels of education are able          |
| 25<br>26       | 253 | to benefit more from the ideal CVH. At the same time, participants with low education levels also reduced the prevalence of sarcopenia       |
| 27<br>28       | 254 | by nearly 50% from the ideal CVH. Therefore, we not only need to focus on the ideal level of CVH for participants with low education         |
| 29<br>30<br>31 | 255 | levels, but also need to further increase the attainment rate of ideal CVH for participation with high education levels to achieve further   |
| 32<br>33       | 256 | benefits.                                                                                                                                    |
| 34<br>35       | 257 | Third, we attempted to determine the effect of each indicator in CVH alone on sarcopenia in this study. Our study showed that                |
| 36<br>37<br>38 | 258 | reduced HbA1c levels were associated with a decreased risk of sarcopenia. This was consistent with the results of previous studies.          |
| 39<br>40       |     | 21                                                                                                                                           |
| 41<br>42       |     | 21                                                                                                                                           |
| 43<br>44       |     | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                                                    |
| 45             |     |                                                                                                                                              |

Page 23 of 37

#### BMJ Open

(19) This finding may be attributed to the fact that higher blood glucose levels accelerate the loss of muscle mass and strength. (20) In addition, ideal blood pressure was the second significant feature associated with sarcopenia. Han P et al. (14) also found that hypertension is an independent risk factor for sarcopenia. Although the mechanism underlying sarcopenia and hypertension is currently unknown, recent studies have concluded that inflammatory factors during aging could impair blood flow by damaging the microvascular endothelium, (21) which exerted a detrimental effect on the body of the elderly. Additional studies are needed to elucidate the causal relationship between hypertension and sarcopenia. Healthy eating is significantly associated with sarcopenia. The Papaioannou study (22) highlighted the beneficial link between healthy eating and sarcopenia risk. There are several possible mechanisms to explain the beneficial effects of a healthy diet on skeletal muscle. First, a healthy diet rich in fruits and vegetables prevents metabolic acidosis and reduces protein hydrolysis and amino acid catabolism, thus reducing the risk of sarcopenia. (23) In addition, unfavorable dietary patterns, including foods rich in saturated fats, may be detrimental to the maintenance of muscle health, (24) while a fiber-rich diet reduces the risk of sarcopenia. (25) Some studies, however, suggest that a lower BMI indicates the presence of sarcopenia and malnutrition and is associated with higher mortality in the older population. (26) Conversely, obese patients may have a survival benefit. (27) However, our study still found that being overweight or obese can significantly increase the risk of sarcopenia. The poor prediction of physical activity in the present study was unexpected, in contrast to previous studies (28) that suggested only ideal physical activity does appear to be associated with the onset of sarcopenia. This finding might be due to 

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

the population in our study cohort included only young and middle-aged adults. Physical activity may be crucial for the occurrence of sarcopenia in the elderly population. Our study has several limitations. First and foremost, cigarette smoking, physical activity, diseases, and diet were self-reported, and subjected to misclassification and recall bias, which can lead to an over- or under-estimated association between CVH and sarcopenia. Second, as noted above, for practical reasons, we were not fully compliant with all of the AHA 2020 health indicators. Moreover, our study was cross-sectional, so the association between CVH and sarcopenia cannot be interpreted as a direct cause-and-effect relationship. Finally, a half of initial cohort has been excluded in this study, which will increase the variance of the odds ratio estimates. However, our results are still relatively reliable after weighting, since the main missing data are due to missing sampling. Conclusion In conclusion, our findings suggested a relationship between CVH indicators and the prevalence of sarcopenia among US adults. Our analysis confirms that CVH extends beyond protection against cardiovascular disease. More research is needed to clarify the association between CVH and other non-CVDs. The results of our study can help facilitate the 2030 goal of achieving CVH for all because the AHA 2030 goal may be supported by efforts to reduce the prevalence of sarcopenia. For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml 

| 1  |     |
|----|-----|
| 2  |     |
| 3  |     |
| 4  |     |
| 5  | 289 |
| 6  |     |
| 7  | 290 |
| 8  |     |
| 9  | 291 |
| 10 | 231 |
| 11 |     |
| 12 | 292 |
| 13 |     |
| 14 | 293 |
| 15 |     |
| 16 | 294 |
| 17 | 204 |
| 18 | 005 |
| 19 | 295 |
| 20 |     |
| 21 | 296 |
| 22 |     |
| 23 | 297 |
| 24 |     |
| 25 | 298 |
| 26 | 290 |
| 27 |     |
| 28 | 299 |
| 29 |     |
| 30 | 300 |
| 31 |     |
| 32 | 301 |
| 33 |     |
| 34 | 202 |
| 35 | 302 |
| 36 |     |
| 37 | 303 |
| 38 |     |
| 39 |     |
| 40 |     |
| 41 |     |
| 42 |     |
| 43 |     |
| 44 |     |
| 45 |     |

## 290 **Contributorship**

The authors' contributions were as follows; WHC: participated in formulating the research question, design of analyses, interpretation 1 of the data, drafting the manuscript, revising the manuscript, and the approval of the final version; SSS: participated in the design of 2 analyses, data analysis, revising the manuscript, and approval of the final version; YZJ: drafting the manuscript, revising the 3 manuscript, and the approval of the final version; YL: interpretation of the data and the approval of the final version; KHC: participated )4 95 in formulating the research question, design of analyses, revising the manuscript, and the approval of the final version; RCH: participated in formulating the research question, design of analyses, data analysis, interpretation of the data, and the approval of 6 the final version; KH: participated in formulating the research question, design of analyses, data analysis, interpretation of the data, )7 and the approval of the final version; and all authors: read and approved the final version of the manuscript and are responsible for 8 all aspects of the manuscript. 99 00

## 301 Funding Statement

302 This study was supported by grants from the Summit Talent Plan, Beijing Hospital Management Center (plan no: DFL20190101) 303 (Beijing, China), and the Natural Science Foundation of Fujian Provincial Science and Technology Department (2018J01405).

| otocols Numbers: NHANES Protocol #2011-17 and |
|-----------------------------------------------|
|                                               |
|                                               |
| NHANES for their valuable contributions.      |
|                                               |
|                                               |
|                                               |
| NHANES for their valuable contributions.      |
|                                               |
|                                               |
|                                               |
|                                               |
|                                               |
| pout/guidelines.xhtml                         |
|                                               |
|                                               |

| 1<br>2      |     |      |                                                                                                                                                     |
|-------------|-----|------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| -<br>3<br>4 |     |      |                                                                                                                                                     |
| 5<br>6      | 319 | Refe | rences:                                                                                                                                             |
| 7<br>8      | 320 | 1.   | Mehta NK, Abrams LR, Myrskylä M. US life expectancy stalls due to cardiovascular disease, not drug deaths. Proceedings of the National Academy      |
| 9           | 321 |      | of Sciences of the United States of America 2020;117:6998-7000.                                                                                     |
| 10          | 322 | 2.   | Mozaffarian D, Benjamin EJ, Go AS et al. Heart Disease and Stroke Statistics-2016 Update: A Report From the American Heart Association.             |
| 11<br>12    | 323 |      | Circulation 2016;133:e38-360.                                                                                                                       |
| 13          | 324 | 3.   | D'Agostino RB, Sr., Grundy S, Sullivan LM, Wilson P. Validation of the Framingham coronary heart disease prediction scores: results of a multiple   |
| 14<br>15    | 325 |      | ethnic groups investigation. Jama 2001;286:180-7.                                                                                                   |
| 16          | 326 | 4.   | Conroy RM, Pyörälä K, Fitzgerald AP et al. Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. European heart |
| 17<br>18    | 327 |      | journal 2003;24:987-1003.                                                                                                                           |
| 19          | 328 | 5.   | Lloyd-Jones DM, Hong Y, Labarthe D et al. Defining and setting national goals for cardiovascular health promotion and disease reduction: the        |
| 20<br>21    | 329 |      | American Heart Association's strategic Impact Goal through 2020 and beyond. Circulation 2010;121:586-613.                                           |
| 22          | 330 | 6.   | Ommerborn MJ, Blackshear CT, Hickson DA et al. Ideal Cardiovascular Health and Incident Cardiovascular Events: The Jackson Heart Study.             |
| 23<br>24    | 331 |      | American journal of preventive medicine 2016;51:502-6.                                                                                              |
| 24<br>25    | 332 | 7.   | Peng Y, Cao S, Yao Z, Wang Z. Prevalence of the cardiovascular health status in adults: A systematic review and meta-analysis. Nutrition,           |
| 26          | 333 |      | metabolism, and cardiovascular diseases : NMCD 2018;28:1197-1207.                                                                                   |
| 27<br>28    | 334 | 8.   | Enserro DM, Vasan RS, Xanthakis V. Twenty-Year Trends in the American Heart Association Cardiovascular Health Score and Impact on Subclinical       |
| 29          | 335 |      | and Clinical Cardiovascular Disease: The Framingham Offspring Study. Journal of the American Heart Association 2018;7.                              |
| 30<br>31    | 336 | 9.   | Samieri C, Perier MC, Gaye B et al. Association of Cardiovascular Health Level in Older Age With Cognitive Decline and Incident Dementia. Jama      |
| 32          | 337 |      | 2018;320:657-664.                                                                                                                                   |
| 33<br>34    | 338 | 10.  | Beaudart C, Zaaria M, Pasleau F, Reginster JY, Bruyère O. Health Outcomes of Sarcopenia: A Systematic Review and Meta-Analysis. PloS one            |
| 35          | 339 |      | 2017;12:e0169548.                                                                                                                                   |
| 36<br>37    | 340 | 11.  | Curcio F, Testa G, Liguori I et al. Sarcopenia and Heart Failure. Nutrients 2020;12.                                                                |
| 38          | 341 | 12.  | Han P, Chen X, Yu X et al. The Predictive Value of Sarcopenia and Its Individual Criteria for Cardiovascular and All-Cause Mortality in Suburb-     |
| 39<br>40    |     |      |                                                                                                                                                     |
| 40<br>41    |     |      | 26                                                                                                                                                  |
| 42          |     |      |                                                                                                                                                     |
| 43<br>44    |     |      | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                                                           |
| 45          |     |      |                                                                                                                                                     |
| 46          |     |      |                                                                                                                                                     |

| 1<br>2<br>2 |     |        |                                                                                                                                                        |
|-------------|-----|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3<br>4      |     |        |                                                                                                                                                        |
| 5           | 342 |        | dwelling Older Chinese. The journal of nutrition, health & aging 2020;24:765-771.                                                                      |
| 6<br>7      | 343 | 13.    | Fülster S, Tacke M, Sandek A et al. Muscle wasting in patients with chronic heart failure: results from the studies investigating co-morbidities       |
| 8           | 344 |        | aggravating heart failure (SICA-HF). European heart journal 2013;34:512-9.                                                                             |
| 9<br>10     | 345 | 14.    | Han P, Yu H, Ma Y et al. The increased risk of sarcopenia in patients with cardiovascular risk factors in Suburb-Dwelling older Chinese using the      |
| 11          | 346 |        | AWGS definition. Scientific reports 2017;7:9592.                                                                                                       |
| 12<br>13    | 347 | [datas | et] 15. Centers for disease control and prevention, National center for health statistics. about the National health and nutrition examination survey. |
| 14          | 348 |        | Available:, https://www.cdc.gov/nchs/nhanes/about_nhanes.htm                                                                                           |
| 15          | 349 | 16.    | Han E, Lee YH, Kim YD et al. Nonalcoholic Fatty Liver Disease and Sarcopenia Are Independently Associated With Cardiovascular Risk. The                |
| 16<br>17    | 350 |        | American journal of gastroenterology 2020;115:584-595.                                                                                                 |
| 18          | 351 | 17.    | Ford ES, Greenlund KJ, Hong Y. Ideal cardiovascular health and mortality from all causes and diseases of the circulatory system among adults in the    |
| 19<br>20    | 352 |        | United States. Circulation 2012;125:987-95.                                                                                                            |
| 21          | 353 | 18.    | Alam MT, Echeverria SE, DuPont-Reyes MJ et al. Educational Attainment and Prevalence of Cardiovascular Health (Life's Simple 7) in Asian               |
| 22<br>23    | 354 |        | Americans. International journal of environmental research and public health 2021;18.                                                                  |
| 24          | 355 | 19.    | Han P, Kang L, Guo Q et al. Prevalence and Factors Associated With Sarcopenia in Suburb-dwelling Older Chinese Using the Asian Working Group           |
| 25          | 356 |        | for Sarcopenia Definition. The journals of gerontology Series A, Biological sciences and medical sciences 2016;71:529-35.                              |
| 26<br>27    | 357 | 20.    | Morley JE, Malmstrom TK, Rodriguez-Mañas L, Sinclair AJ. Frailty, sarcopenia and diabetes. Journal of the American Medical Directors Association       |
| 28          | 358 |        | 2014;15:853-9.                                                                                                                                         |
| 29<br>30    | 359 | 21.    | Han K, Park YM, Kwon HS et al. Sarcopenia as a determinant of blood pressure in older Koreans: findings from the Korea National Health and             |
| 31          | 360 |        | Nutrition Examination Surveys (KNHANES) 2008-2010. PloS one 2014;9:e86902.                                                                             |
| 32<br>33    | 361 | 22.    | Papaioannou KG, Nilsson A, Nilsson LM, Kadi F. Healthy Eating Is Associated with Sarcopenia Risk in Physically Active Older Adults. Nutrients          |
| 34          | 362 |        | 2021;13.                                                                                                                                               |
| 35<br>36    | 363 | 23.    | Kim J, Lee Y, Kye S, Chung YS, Kim KM. Association of vegetables and fruits consumption with sarcopenia in older adults: the Fourth Korea National     |
| 37          | 364 |        | Health and Nutrition Examination Survey. Age and ageing 2015;44:96-102.                                                                                |
| 38          |     |        |                                                                                                                                                        |
| 39<br>40    |     |        | 27                                                                                                                                                     |
| 41          |     |        | 21                                                                                                                                                     |
| 42<br>43    |     |        |                                                                                                                                                        |
| 44          |     |        | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                                                              |
| 45          |     |        |                                                                                                                                                        |
| 46          |     |        |                                                                                                                                                        |

| 1<br>2   |            |     |                                                                                                                                                                                                                                                                                        |
|----------|------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3        |            |     |                                                                                                                                                                                                                                                                                        |
| 4<br>5   | 365        | 24. | Montiel-Rojas D, Santoro A, Nilsson A et al. Beneficial Role of Replacing Dietary Saturated Fatty Acids with Polyunsaturated Fatty Acids in the                                                                                                                                        |
| 6        | 366        |     | Prevention of Sarcopenia: Findings from the NU-AGE Cohort. Nutrients 2020;12.                                                                                                                                                                                                          |
| 7<br>8   | 367        | 25. | Montiel-Rojas D, Nilsson A, Santoro A et al. Dietary Fibre May Mitigate Sarcopenia Risk: Findings from the NU-AGE Cohort of Older European                                                                                                                                             |
| 9        | 368        | 20. | Adults. Nutrients 2020;12.                                                                                                                                                                                                                                                             |
| 10       | 369        | 26. | Global BMIMC, Di Angelantonio E, Bhupathiraju Sh N et al. Body-mass index and all-cause mortality: individual-participant-data meta-analysis of 239                                                                                                                                    |
| 11<br>12 | 309<br>370 | 20. |                                                                                                                                                                                                                                                                                        |
| 13       |            | 07  | prospective studies in four continents. Lancet (London, England) 2016;388:776-86.                                                                                                                                                                                                      |
| 14<br>15 | 371        | 27. | Amundson DE, Djurkovic S, Matwiyoff GN. The obesity paradox. Critical care clinics 2010;26:583-96.                                                                                                                                                                                     |
| 16       | 372        | 28. | Amundson DE, Djurkovic S, Matwiyoff GN. The obesity paradox. Critical care clinics 2010;26:583-96.<br>Bosaeus I, Rothenberg E. Nutrition and physical activity for the prevention and treatment of age-related sarcopenia. The Proceedings of the Nutrition<br>Society 2016;75:174-80. |
| 17       | 373        |     | Society 2016;75:174-80.                                                                                                                                                                                                                                                                |
| 18<br>19 |            |     |                                                                                                                                                                                                                                                                                        |
| 20       |            |     |                                                                                                                                                                                                                                                                                        |
| 21       |            |     |                                                                                                                                                                                                                                                                                        |
| 22<br>23 |            |     |                                                                                                                                                                                                                                                                                        |
| 24       |            |     |                                                                                                                                                                                                                                                                                        |
| 25<br>26 |            |     |                                                                                                                                                                                                                                                                                        |
| 27       |            |     |                                                                                                                                                                                                                                                                                        |
| 28<br>29 |            |     |                                                                                                                                                                                                                                                                                        |
| 30       |            |     |                                                                                                                                                                                                                                                                                        |
| 31       |            |     |                                                                                                                                                                                                                                                                                        |
| 32<br>33 |            |     |                                                                                                                                                                                                                                                                                        |
| 34       |            |     |                                                                                                                                                                                                                                                                                        |
| 35       |            |     |                                                                                                                                                                                                                                                                                        |
| 36<br>37 |            |     |                                                                                                                                                                                                                                                                                        |
| 38       |            |     |                                                                                                                                                                                                                                                                                        |
| 39<br>40 |            |     |                                                                                                                                                                                                                                                                                        |
| 40       |            |     | 28                                                                                                                                                                                                                                                                                     |
| 42       |            |     |                                                                                                                                                                                                                                                                                        |
| 43<br>44 |            |     | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                                                                                                                                                                                              |
| 45       |            |     |                                                                                                                                                                                                                                                                                        |
| 16       |            |     |                                                                                                                                                                                                                                                                                        |

## **Figure Legend**

## **Title to Figure 1**

Association between number of ICVHMs and sarcopenia.

# Legend to Figure 1

Abbreviation: ICVHMs, Ideal cardiovascular health metrics.

Model: Adjusted by age, sex, and race/ethnicity, educational level, alcohol use, congestive heart failure, coronary heart disease, 

angina and cancer.

\* *P* < 0.05.

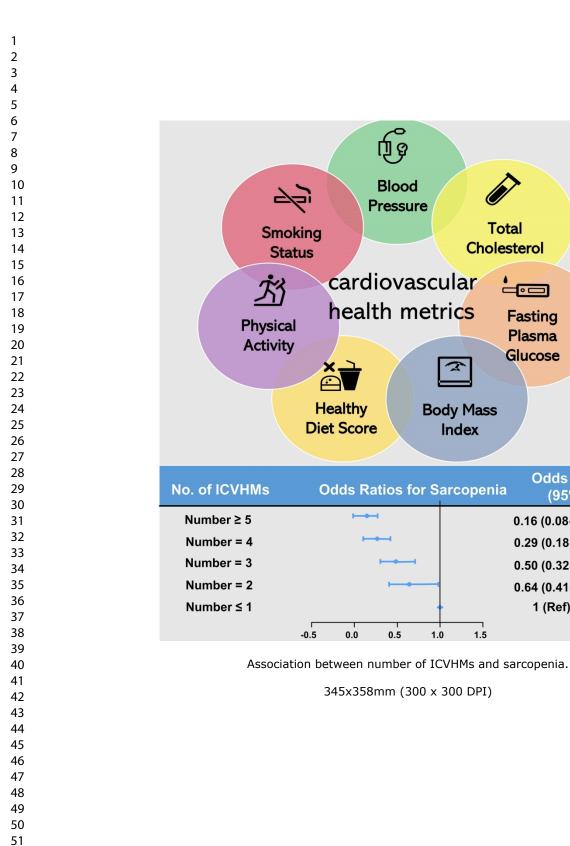
60

Fasting

Plasma

Odds Ratios

(95% CI)


0.16 (0.08-0.30)\*

0.29 (0.18-0.46)\*

0.50 (0.32-0.78)\*

0.64 (0.41-0.99)\*

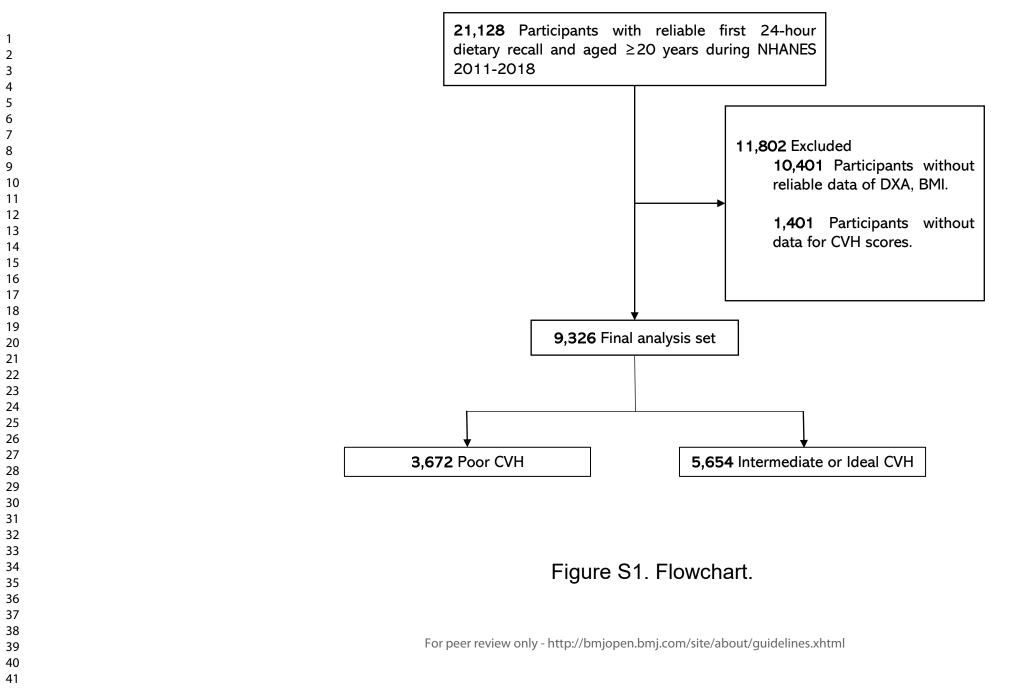
1 (Ref)

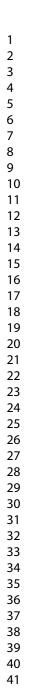


For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

| 2                                                                                                        |  |
|----------------------------------------------------------------------------------------------------------|--|
| 2                                                                                                        |  |
| ر<br>۸                                                                                                   |  |
| 3<br>4<br>5<br>7<br>8<br>9<br>10                                                                         |  |
| 5                                                                                                        |  |
| 6                                                                                                        |  |
| 7                                                                                                        |  |
| 8                                                                                                        |  |
| 9                                                                                                        |  |
| 10                                                                                                       |  |
| 11                                                                                                       |  |
| 12                                                                                                       |  |
| 13                                                                                                       |  |
| 14                                                                                                       |  |
| 15                                                                                                       |  |
| 16                                                                                                       |  |
| 11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19                                                       |  |
| 18                                                                                                       |  |
| 19                                                                                                       |  |
| 20                                                                                                       |  |
| 20                                                                                                       |  |
| 21                                                                                                       |  |
| 22                                                                                                       |  |
| 20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37 |  |
| 24                                                                                                       |  |
| 25                                                                                                       |  |
| 20                                                                                                       |  |
| 27                                                                                                       |  |
| 28                                                                                                       |  |
| 29                                                                                                       |  |
| 30                                                                                                       |  |
| 31                                                                                                       |  |
| 32                                                                                                       |  |
| 33                                                                                                       |  |
| 34                                                                                                       |  |
| 35                                                                                                       |  |
| 36                                                                                                       |  |
| 37                                                                                                       |  |
| 38                                                                                                       |  |
| 39                                                                                                       |  |
| 40                                                                                                       |  |
| 41                                                                                                       |  |
| 42                                                                                                       |  |
| 43                                                                                                       |  |
| 44                                                                                                       |  |
| 45                                                                                                       |  |
|                                                                                                          |  |

| Characteristics             | Non-sarcopenic<br>(n=8519) | Sarcopenic<br>(n=807) | p-value |
|-----------------------------|----------------------------|-----------------------|---------|
| Age, mean (SE), years       | 39.0 (0.3)                 | 42.9 (0.6)            | 0.002   |
| Female, n (%)               | 4330 (50.3)                | 403 (45.9)            | 0.060   |
| Race/ethnicity, n (%)       |                            |                       |         |
| Mexican American            | 1124 (9.9)                 | 282 (26.1)            |         |
| Other Hispanic              | 846 (6.9)                  | 121 (12.0)            | < 0.001 |
| Non-Hispanic White          | 3103 (61.3)                | 220 (47.4)            | < 0.001 |
| Non-Hispanic Black          | 1905 (11.9)                | 50 (3.4)              |         |
| Other                       | 1541 (9.9)                 | 134 (11.1)            |         |
| Heavy use of alcohol, n (%) |                            | 6                     |         |
| <12                         | 6174 (97.9)                | 426 (95.8)            | 0.000   |
| ≥12                         | 135 (2.1)                  | 21 (4.2)              | 0.026   |
| Education level, n (%)      |                            |                       |         |
| Less Than High School       | 3214 (33.2)                | 461 (52.0)            |         |
| High School Diploma         | 2878 (34.1)                | 214 (32.2)            | < 0.001 |
| More Than High School       | 2425 (32.7)                | 132 (15.8)            |         |
| Smoking risk, n (%)         |                            |                       |         |
| Ideal                       | 1969 (22.2)                | 138 (18.8)            |         |
| Intermediate                | 202 (2.9)                  | 14 (1.8)              | 0.085   |
| Poor                        | 6348 (74.8)                | 655 (79.4)            |         |
| Body mass index risk, n (%) | 、 <i>,</i>                 | . ,                   |         |
| Ideal                       | 2826 (33.1)                | 64 (6.5)              |         |
| Intermediate                | 2746 (33.5)                | 191 (21.1)            | < 0.001 |
| Poor                        | 2947 (33.4)                | 525 (72.4)            |         |
|                             | · · ·                      | · · · ·               |         |


| Physical activity risk, n (%) |             |            |         |
|-------------------------------|-------------|------------|---------|
| ldeal                         | 3371 (42.1) | 289 (39.1) |         |
| Intermediate                  | 579 (7.7)   | 46 (6.5)   | 0.274   |
| Poor                          | 4569 (50.2) | 472 (54.4) |         |
| Healthy diet score risk, n (9 | %)          |            |         |
| Ideal                         | 188 (2.3)   | 13 (1.0)   |         |
| Intermediate                  | 3716 (44.7) | 330 (38.8) | 0.001   |
| Poor                          | 4615 (52.9) | 464 (60.0) |         |
| Total cholesterol risk, n (%  |             |            |         |
| Ideal                         | 4853 (54.8) | 360 (45.7) |         |
| Intermediate                  | 2292 (28.4) | 256 (32.1) | 0.002   |
| Poor                          | 1374 (16.8) | 191 (22.2) |         |
| Blood pressure risk, n (%)    |             |            |         |
| Ideal                         | 4203 (46.6) | 271 (25.7) |         |
| Intermediate                  | 2650 (33.3) | 283 (37.6) | < 0.00  |
| Poor                          | 1666 (20.1) | 253 (36.8) |         |
| Fasting plasma glucose ris    | sk,         |            |         |
| n (%)                         |             |            |         |
| Ideal                         | 6103 (50.4) | 406 (32.3) |         |
| Intermediate                  | 1711 (31.8) | 234 (33.9) | < 0.00  |
| Poor                          | 705 (17.8)  | 167 (33.8) |         |
| Scores of seven healthy       | 8.4 (0.0)   | 6.8 (0.1)  | < 0.00  |
| metrics, mean (SE)            | 0.4 (0.0)   | 0.0 (0.1)  | < 0.00  |
| Overall CVH metrics, n (%)    |             |            |         |
| Poor                          | 3193 (34.3) | 479 (59.3) | < 0.001 |
| Intermediate or Ideal         | 5326 (65.7) | 328 (40.7) |         |


Abbreviations: CVH, cardiovascular health.

 Poor CVH: CVH metrics scores 0-7; Intermediate or Ideal CVH: CVH metrics scores 8-14.

For peer review only







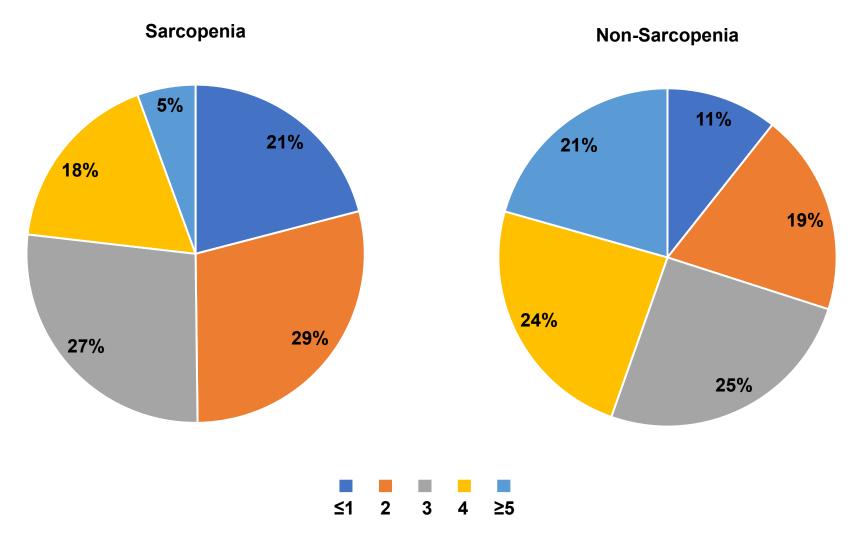



Figure S2. Proportion of IGVHMs in sarcopenia and non-sarcopenia.

|                        | Item<br>No | Recommendation                                                                                                               | Page<br>No |
|------------------------|------------|------------------------------------------------------------------------------------------------------------------------------|------------|
| Title and abstract     | 1          | ( <i>a</i> ) Indicate the study's design with a commonly used term in the title or the abstract                              | 1、3        |
|                        |            | (b) Provide in the abstract an informative and balanced summary of what                                                      | 3          |
|                        |            | was done and what was found                                                                                                  |            |
| Introduction           |            |                                                                                                                              |            |
| Background/rationale   | 2          | Explain the scientific background and rationale for the investigation being reported                                         |            |
| Objectives             | 3          | State specific objectives, including any prespecified hypotheses                                                             | 6          |
| Methods                |            |                                                                                                                              |            |
| Study design           | 4          | Present key elements of study design early in the paper                                                                      | 6-9        |
| Setting                | 5          | Describe the setting, locations, and relevant dates, including periods of                                                    | 6-7        |
| Sound                  |            | recruitment, exposure, follow-up, and data collection                                                                        |            |
| Participants           | 6          | (a) Give the eligibility criteria, and the sources and methods of selection                                                  | 7          |
|                        | 0          | of participants                                                                                                              | '          |
| Variables              | 7          | Clearly define all outcomes, exposures, predictors, potential                                                                | 7-9        |
|                        | /          | confounders, and effect modifiers. Give diagnostic criteria, if applicable                                                   |            |
| Data sources/          | 8*         | For each variable of interest, give sources of data and details of methods                                                   | 7-8        |
|                        | 0.         | of assessment (measurement). Describe comparability of assessment                                                            | /-0        |
| measurement            |            |                                                                                                                              |            |
| Bias                   | 0          | methods if there is more than one group                                                                                      | 23         |
|                        | 9          | Describe any efforts to address potential sources of bias                                                                    |            |
| Study size             | 10         | Explain how the study size was arrived at                                                                                    | 7          |
| Quantitative variables | 11         | Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why | 11         |
| Statistical methods    | 12         | ( <i>a</i> ) Describe all statistical methods, including those used to control for                                           | 11-12      |
|                        | 12         | confounding                                                                                                                  | 11-12      |
|                        |            | (b) Describe any methods used to examine subgroups and interactions                                                          | 11         |
|                        |            | (c) Explain how missing data were addressed                                                                                  | NA         |
|                        |            | (d) If applicable, describe analytical methods taking account of sampling                                                    | NA         |
|                        |            | strategy                                                                                                                     |            |
|                        |            |                                                                                                                              | NA         |
|                        |            | ( <u>e</u> ) Describe any sensitivity analyses                                                                               | INA        |
| Results                |            |                                                                                                                              |            |
| Participants           | 13*        | (a) Report numbers of individuals at each stage of study—eg numbers                                                          | 11-12      |
|                        |            | potentially eligible, examined for eligibility, confirmed eligible, included                                                 |            |
|                        |            | in the study, completing follow-up, and analysed                                                                             |            |
|                        |            | (b) Give reasons for non-participation at each stage                                                                         | Figur<br>1 |
|                        |            | (c) Consider use of a flow diagram                                                                                           | Figur<br>1 |
| Descriptive data       | 14*        | (a) Give characteristics of study participants (eg demographic, clinical,                                                    | 11-12      |
|                        |            | social) and information on exposures and potential confounders                                                               | Table      |
|                        |            |                                                                                                                              | 2          |
|                        |            | (b) Indicate number of participants with missing data for each variable of interest                                          | NA         |

| Outcome data      | 15* | Report numbers of outcome events or summary measures                                                                                                                                                                  | Table   |
|-------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Main results      | 16  | ( <i>a</i> ) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included | 3 14-17 |
|                   |     | (b) Report category boundaries when continuous variables were categorized                                                                                                                                             | 9       |
|                   |     | (c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period                                                                                                      | NA      |
| Other analyses    | 17  | Report other analyses done—eg analyses of subgroups and interactions,<br>and sensitivity analyses                                                                                                                     | 18      |
| Discussion        |     |                                                                                                                                                                                                                       |         |
| Key results       | 18  | Summarise key results with reference to study objectives                                                                                                                                                              | 19-20   |
| Limitations       | 19  | Discuss limitations of the study, taking into account sources of potential<br>bias or imprecision. Discuss both direction and magnitude of any<br>potential bias                                                      | 23      |
| Interpretation    | 20  | Give a cautious overall interpretation of results considering objectives,<br>limitations, multiplicity of analyses, results from similar studies, and<br>other relevant evidence                                      | 20-21   |
| Generalisability  | 21  | Discuss the generalisability (external validity) of the study results                                                                                                                                                 | NA      |
| Other information |     |                                                                                                                                                                                                                       |         |
| Funding           | 22  | Give the source of funding and the role of the funders for the present<br>study and, if applicable, for the original study on which the present<br>article is based                                                   | 23      |

\*Give information separately for exposed and unexposed groups.

**Note:** An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.