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SUMMARY
Milk fortifiers help meet the nutritional needs of preterm infants receiving their mother’s own milk (MOM) or
donor human milk. We conducted a randomized clinical trial (NCT03214822) in 30 very low birth weight pre-
mature neonates comparing bovine-derived human milk fortifier (BHMF) versus human-derived fortifier
(H2MF). We found that fortifier type does not affect the overall microbiome, although H2MF infants were
less often colonized by an unclassified member of Clostridiales Family XI. Secondary analyses show that
MOM intake is strongly associated with weight gain and microbiota composition, including Bifidobacterium,
Veillonella, and Propionibacterium enrichment. Finally, we show that while oxidative stress (urinary F2-iso-
prostanes) is not affected by fortifier type or MOM intake, fecal calprotectin is higher in H2MF infants and
lower in those consuming more MOM. Overall, the source of human milk (mother versus donor) appears
more important than the type of milk fortifier (human versus bovine) in shaping preterm infant gut microbiota.
INTRODUCTION

While human milk provides optimal nutrition for full-term infants,

its nutrient density is inadequate for those born preterm.1,2 For-

mula made from bovine milk can provide higher levels of energy

and protein3 but lacks many of the bioactive components found

in human milk,4 including the ‘‘personalized’’ components found

only in themother’s ownmilk (MOM).5,6 Formula may also trigger

inflammation and increase the risk of necrotizing enterocolitis.7

Furthermore, considering the fluid restrictions due to relatively

low feeding tolerance in preterm infants, it is essential to utilize

feeding regimes that provide an optimal volume with high

‘‘nutrient-to-calorie ratio.’’ Thus, human milk fortifiers (HMFs)

are commonly used to increase the caloric density of human

milk1 fed to fragile neonates. However, standard HMFs are

derived from bovine milk and may still trigger inflammation and

oxidative stress.8,9 Recently, human-derived HMF (H2MF) has

been developed as an alternative to standard bovine-derived

HMF (BHMF),1 but its impact on oxidative stress and inflamma-

tion is not known.

Apart from influencing gut inflammation and oxidative stress,

early nutrition drives gut microbiome development. Preterm in-
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fants have an immature gastrointestinal tract and delayed matu-

ration of the gut microbiota,10 which has been implicated in the

pathogenesis of necrotizing enterocolitis11 and numerous

chronic conditions.12 Exclusive human-milk-based nutrition re-

gimes using H2MF may prevent some of these conditions and

improve overall feeding in preterm infants,13–16 although not all

studies have found these clinical benefits.17 Due to the lack of

microbiome analyses in prior studies, it is unclear whether any

clinical benefits of H2MF are accompanied and perhaps medi-

ated by favorable changes to the gut microbiota.

In addition to the type of fortifier, the source of humanmilkmay

also influence infant physiology and the developing microbiome.

Donor human milk (DHM) is increasingly used for preterm infants

whenMOM is not available, offering several clinical benefits over

infant formula.2,13 However, DHM is pasteurized and frozen,18,19

resulting in lower ‘‘total antioxidant capacity’’20 than MOM,

especially in early lactation.21 These differences may have an

impact on infant microbiota and metabolism,22–24 but this has

not been widely studied in the context of very low birth weight

(VLBW) preterm infants receiving different types of fortifiers.

To address these knowledge gaps, we performed a random-

ized controlled trial to compare the effects of BHMF versus
edicine 3, 100712, September 20, 2022 Crown Copyright ª 2022 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Flowchart and illustration of changes in gut bacterial diversity and community structure in VLBW infants over time

(A) Participant flow chart: consolidated standards of reporting trials diagram.

(B) Study design and sample collection time points (T1–T4). Infants born from 26 to 30 weeks were recruited into the study, received their assigned fortifier (BHMF

or H2MF) until 33 weeks AGA, and were followed until 35 weeks AGA or hospital discharge. Therefore, the intervention (T1 to T3) and follow-up (T3 to T4) periods

ranged in duration.

(C) Alpha diversity indicating species diversity within samples (n = 30) across time.

(D) Principal coordinate analysis based on Bray-Curtis dissimilarity (Jaccard distances in Figure S1 and phylum/genus level changes over time in Figures S2A and

S2B) showing diversity between samples across four study time points (left) and with adjusted gestational age in days (right). T1, study day 0 (before fortification);

T2, study day 7 (during fortification); T3, week 33 AGA (end of fortification); and T4, week 35 AGA (follow-up after fortification). Statistical significance: ***p < 0.001

across all study time points (Kruskal-Wallis test) for alpha diversity or by permutational multivariate analysis of variance (PERMANOVA) for beta diversity and

betadisper test (permutation test for homogeneity ofmultivariate dispersions; 99,999 permutations with strata by infant ID to account for repeatedmeasures). The

p values were adjusted for multiple comparisons using false discovery rate (FDR) correction. AGA, adjusted gestational age; BHMF, bovine-derived human milk

fortifier; H2MF, human-derived human milk fortifier; VLBW, very low birth weight.
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H2MF on gut microbiome development, oxidative stress, and

gut inflammation in human-milk-fed VLBW preterm neonates.

We also assessed the association of these outcomes with the

proportion of MOM versus DHM intake.

RESULTS

Demographics and clinical characteristics
Of 36 infants randomized, 30 received their allocated interven-

tion and completed the study (14 BHMF and 16 H2MF)

(Figures 1A and 1B). Six infants were excluded before the inter-

vention was initiated because they did not achieve the enteral

feeding requirement by 14 days. Except for parity (marginally
2 Cell Reports Medicine 3, 100712, September 20, 2022
higher in the H2MF group), there were no differences in maternal

demographics between groups (Table 1). Infant demographics

and dietary factors were also balanced between groups, and

there were no differences in terms of Apgar scores, weight

gain, or the number of days on antibiotics, ventilation, or oxygen

support (Table 1).

Changes in gut bacterial diversity and composition in
VLBW infants over time
Generally, in all infants, microbiome diversity (p < 0.01) (Fig-

ure 1C) and variability increased (PERMANOVA, p < 0.001; beta-

disper, p < 0.01) (Figures 1D, S1A, and S1B) with age. The early

phylum-level gut microbial composition (before the intervention,



Table 1. Demographics and characteristics of participants

Characteristic BHMF (n = 14) H2MF (n = 16) p

Mother

Maternal age in years 31.7 ± 5.2 30.6 ± 5.6 0.57

Maternal parity 1 (1, 1) 1 (1, 3.2) 0.04a

Maternal gravidity 2 (1.2, 3) 3 (2, 6) 0.13

Infant

Sex assigned at birth, n (%)

Male 6 (43) 9 (56) 0.71

Female 8 (57) 7 (44)

Mode of delivery, n (%)

Vaginal 2 (14) 4 (25) 0.17

C-section 12 (86) 12 (75)

Age (days)

Gestational age at birth 197 ± 7 196 ± 8 0.80

AGA at study time points

T1 204 ± 7 203 ± 8 0.70

T2 214 ± 10 212 ± 8 0.61

T3 231 ± 1 231 ± 1 0.51

T4 244 ± 8 245 ± 1 0.41

Weight (g)

Birth 1,039 ± 131 1,016 ± 180 0.68

T1 1,010 ± 142 999 ± 165 0.84

T2 1,106 ± 130 1,114 ± 171 0.89

T3 1,581 ± 197 1,555 ± 304 0.78

T4 1,957 ± 216 1,920 ± 414 0.75

Weight gain (since birth)

T1 �29 ± 53 �16 ± 65 0.55

T2 67 ± 62 98 ± 71 0.21

T3 542 ± 180 539 ± 207 0.97

T4 918 ± 221 904 ± 330 0.89

Weight for age Z score

Birth �0.0 (�0.3, 0.5) �0.0 (�0.6, 0.6) 0.89

T1 �0.7 (�0.9, �0.3) �0.6 (�1.1, �0.2) 0.98

T2 �0.9 (�1.4, �0.5) �0.9 (�1.3, �0.5) 0.87

T3 �1.0 (�1.4, �0.5) �0.9 (�1.8, �0.5) 0.76

T4 �1.4 (�1.5, �0.9) �1.4 (�2.2, �0.4) 0.71

Change in Z score (since birth)

T1 �0.6 (�0.8, �0.4) �0.6 (�0.7, �0.3) 0.47

T2 �1.0 (�1.2, �0.7) �0.8 (�1.1, �0.5) 0.28

T3 �1.0 (�1.2, �0.6) �1.0 (�1.3, �0.5) 0.85

T4 �1.1 (�1.6, �0.7) �1.3 (�1.7, �0.7) 0.80

Diet

Total enteral volume (since birth)

T1 67 ± 33 54 ± 33 0.27

T2 128 ± 25 109 ± 40 0.12

T3 174 ± 23 160 ± 41 0.25

T4 206 ± 21 194 ± 45 0.34

(Continued on next page)
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Table 1. Continued

Characteristic BHMF (n = 14) H2MF (n = 16) p

MOM proportion (% since birth)

% MOM (T1) 79.3 (32.5, 100) 100 (37.2, 100) 0.54

% MOM (T2) 69.9 (26.9, 99.5) 80.8 (46.2, 100) 0.72

% MOM (T3) 57.2 (27.3, 94.2) 63.9 (41.6, 95.4) 0.69

% MOM (T4) 57.3 (17.9, 90.4) 51.9 (36.4, 91.5) 0.69

Clinical

Received antibiotics

% days on antibiotics (total study duration) 0 (0, 6.9) 0 (0, 11.4) 0.71

T1–T2 0 (0, 0) 0 (0, 15.7) 0.12

T1–T3 0 (0, 7.5) 0 (0, 21.0) 0.65

T1–T4 0 (0, 6.9) 0 (0, 11.4) 0.71

Prenatal (antenatal) steroids, n (%) 12 (86) 12 (75) 0.66

Received (postnatal) steroids, n (%) 1 (8) 2 (12) 1.00

Apgars 5-min score, median (IQR) 7.5 (6.2, 8.0) 8.0 (5.5, 9.0) 0.46

Total no. of days on ventilation, mean ± SD 32.6 ± 23.3 29.6 ± 18.2 0.70

Total no. of surfactant doses, median (IQR) 1 (0.2, 2.0) 1 (0, 1.2) 0.42

Need for oxygen support at 36 weeks, n (%) 5 (36) 4 (27) 0.69

Retinopathy, n (%) 2 (14) 5 (31) 0.39

Late-onset sepsis, n (%) 2 (14) 6 (37) 0.25

Very low birth weight infants recruited into the study were randomized to receive standard bovine-derived human milk fortifiers (BHMF) or human-

derived humanmilk fortifiers (H2MF) during the intervention period. Values aremeans ±SD ormedian (IQR) or n (%). Percentages reflect the proportion

of non-missing data. Weight gain refers to weight at the study time point—birth weight. Weight-for-age Z scores were calculated using 2013 Fenton

growth charts for preterm infants.25 Total enteral volume (TEV) is the cumulative average of TEV received by infants until a particular study time point

from birth. % MOM volume is the average percentage of mother’s own milk (MOM) (proportion of MOM in the TEV used to prepare the feed prior to

fortification) received by the infant until a particular study time point from birth. % days on antibiotics is the percentage of the number of days on an-

tibiotics during total study duration or until a particular study time point. Nutritional support values indicate the proportion of infants from the particular

group who received one of the other nutritional supports along with the human milk fortifiers during the study: liquid protein fortifier (LPF) 1–4 mL/

100 mL; total parenteral nutrition (TPN), D10W, SMOF_Lipid 20, ECP (EnfaCare premature formula) 1 mg/100 mL; Nutramigen powder 2.5 mg. The

p values are from Pearson’s chi-square test or Fisher’s exact test (for categorical variables) or t test or Wilcoxon sum rank test (for ordinal/numerical

variables).

AGA, adjusted gestational age; MOM, mother’s own milk; T1, study day 0 (before fortification); T2, study day 7 (during fortification); T3, week 33 AGA

(end of fortification); T4, week 35 AGA (follow-up after fortification).
ap < 0.05
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T1) was primarily composed of Firmicutes, Proteobacteria, and

Actinobacteria. At the genus level, Staphylococcus, an unclassi-

fied genus of Enterobacteriaceae, and Erwinia were the most

abundant taxa (Figure S2B). Many Firmicutes (Staphylococcus,

Bacillus, unclassified Peptostreptococcaceae, and Lactobacil-

lales) and Proteobacteria (Acinetobacter, unclassified Pasteurel-

laceae, and Comamonas) declined over time (Figures S2A and

S2B). In contrast, Bifidobacterium, Propionibacterium, and

Streptococcus marginally increased over time, while Veillonella

and Clostridium increased substantially (Figures S2B).

Impact ofmilk fortifier typeongutmicrobiome, oxidative
stress, and gut inflammation
There was a high degree of interindividual variation in microbiota

composition within both groups across all time points (Figures 2,

S2, and S3). Fortifier type did not have an impact on alpha diver-

sity, which increased similarly in both groups over time

(Figures 3A and 3B), or overall microbial community structure

(except marginally at T2, r2 = 0.08, p = 0.06; which was attributed

to the differences in beta dispersion, p = 0.04; Figures 3C and
4 Cell Reports Medicine 3, 100712, September 20, 2022
S4A and Table S1A). An unclassified genus of Clostridiales Fam-

ily XI incertae sediswas significantly enriched in the BHMF group

by the end of fortification (T3 prevalence 69% in BHMF versus

21% in H2MF, p = 0.02), and this difference was sustained at

least 2 weeks after fortification ended (splinectomeR trajectory

p < 0.01; mixed-effects regression p = 0.04) (Figures 3D, S5,

S6, and S7). To a lesser extent, Varibaculum was also enriched

(not detected in any H2MF infants; splinectomeR p = 0.04), but

only during the period of fortification (Figure 3D, Tables S1B

and S1C). Erwinia was more prevalent and abundant in the

H2MF group (splinectomeR p < 0.01); however, these differ-

ences were already evident at baseline, indicating they origi-

nated by chance prior to the randomized fortification intervention

(Figure 3D and Table S1D).

In contrast to infants receiving standard BHMF, those

receiving H2MF experienced a rise in fecal calprotectin levels

across the study period (splinectomeR p = 0.03, Figure 3E).

Urinary F2-isoprostanes differed significantly between groups,

indicating no impact of fortifier type on oxidative stress

(Figure 3E).
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Lachnoclostridium

Corynebacterium

Staphylococcus

Enterobacteriaceae (F)

Erwinia

Clostridium

Enterococcus

Pasteurellaceae (F)

Lactobacillus

Bacillus

Streptococcus

Dialister

Bifidobacterium

Propionibacterium

Veillonella

Clostridiales XI (F)

Peptostreptococcaceae (F)

Figure 2. Impact of human milk fortifier type, bovine (BHMF, n = 14) or human (H2MF, n = 16), on gut bacterial composition in VLBW infants

Bar plots depict the relative abundance of gut bacterial genera (left, individual infants; right, group means). T1, study day 0 (before fortification); T2, study day 7

(during fortification); T3, week 33 AGA (end of fortification); and T4, week 35 AGA (follow-up after fortification). AGA, adjusted gestational age; BHMF, bovine-

derived human milk fortifier; H2MF, human-derived human milk fortifier; VLBW, very low birth weight. Figure S3 shows results at the phylum level. The prefix

‘‘Uncl_’’ indicates an unclassified genus of the particular bacterial family or order.
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Figure 3. Impact of human milk fortifier type on the gut microbiome, gut inflammation, and oxidative stress in VLBW infants over time

(A and B) Longitudinal trajectories of (A) Shannon index and (B) inverse Simpson index, indicating alpha (within-sample) diversity over time in infants receiving

BHMF (n = 14) or H2MF (n = 16); p values are from trend comparison using splinectomeR (999 permutations).

(C) PCoA depicts beta (between-sample) diversity based on Bray-Curtis dissimilarity (Jaccard distances in Figure S4A) at each time point; p values are from

PERMANOVA (99,999 permutations). See Table S1A for betadisper test results (permutation test for homogeneity of multivariate dispersions).

(D) Genera with >10% prevalence across all samples that differed in prevalence or relative abundance (centered log-ratio [CLR] transformed) between groups

over time are shown here (complete data are shown in Tables S1B–S1D, and regression analysis is shown in Figure S5). For Erwinia, the distance between groups

at T1 indicates a random difference at baseline.

(E) Gut inflammation (fecal calprotectin) and oxidative stress (urinary F2-isoprostane). The p values are from Wilcoxon sum rank test (for boxplots) or using

splinectomeR (for longitudinal trajectories, 999 permutations) or Fisher’s exact test (for prevalences) (�p < 0.10, *p < 0.05, **p < 0.01). T1, study day 0 (before

fortification); T2, study day 7 (during fortification); T3, week 33 AGA (end of fortification); and T4, week 35 AGA (follow-up after fortification). AGA, adjusted

gestational age; BHMF, bovine-derived humanmilk fortifier; H2MF, human-derived humanmilk fortifier; PCoA, principal coordinate analysis; VLBW, very low birth

weight.
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Association of MOM intake with gut microbiome,
oxidative stress, gut inflammation, and weight gain
On average, infants in both fortifier groups received similar pro-

portions of MOM (versus DHM) across all study time points (Ta-

ble 1 and Figure S8A), and baseline demographic and clinical

characteristics were comparable among infants receiving low

and high proportions of MOM (Table S2). By the end of the study,

infants with high MOM intake had experienced significantly

higher weight gain (1,017 ± 249 g versus 789 ± 270 g, p =

0.02), translating to significantly lower declines in weight-for-

age Z scores (median �0.8 [IQR �1.1, �0.5] versus �1.7

[IQR �1.9, �1.4], p < 0.001) (Table S2).

MOM intake was strongly associated with microbiome devel-

opment. Among all variables assessed, MOM intake was the

strongest predictor of microbiome composition at T3 and T4

(Figure 4A). For example, in univariate analyses at T3, MOM ex-

plained 22% of the microbiome variation (r2 = 0.22, p = 0.01),

while fortifier type had no effect (r2 = 0.01, p = 0.99). Multivariable

models accounting for both MOM intake and fortifier type further

confirmed the strong association of MOM intake, but not fortifier

type, with the gut microbiome composition (Figures 4B and

S8C). There was no evidence of interaction betweenMOM intake

and fortifier type (Figure 4B).

MOM-associated differences in microbiota composition

included enrichment of Propionibacterium, Veillonella, and one

unclassified genus in the Enterobacteriaceae family among in-

fants with high MOM intake (Figures 5A, S9, S10, S11, and S12

and Tables S1E–S1G). Infants with low MOM intake had enrich-

ment of Clostridium and one unclassified genus of Lactobacil-

lales prevalent at T3 and T4. In addition, infants with low MOM

intake were less likely to be colonized by Bifidobacterium (9%

versus 50% prevalence for low versus high MOM, p = 0.04, Fig-

ure 5A). Low MOM intake was also associated with higher fecal

calprotectin over time (p = 0.02, Figure 5B), particularly during

fortification. MOM intake was not associated with F2-isopros-

tane levels (Figure 5B).

Correlations of MOM intake, microbiota, biomarkers,
and clinical characteristics
To further investigate the importance of MOM intake, we

explored associations of different bacterial taxa with bio-
Figure 4. Association of mother’s ownmilk (MOM) intake, fortifier type,

(A) Microbiome variance is explained by various factors, modeled individually by E

group, high versus low intake; F2IsoP, F2-isoprostane levels; antibiotics, percen

values are denoted by �p < 0.1, *p < 0.05, **p < 0.01.

(B) PCoA depicting beta diversity between MOM groups (low-MOM versus high-M

(99,999 permutations) using the fortifier type and MOM group in a multivariable

mogeneity of multivariate dispersions).

(C) Heatmap illustrating correlations between bacterial genera relative abundanc

T4). Dendrogram clustering was based on pairwise distances obtained from Sp

relations representedwere not significant (p > 0.05, FDR corrected). Clusters 1 and

with covariates. MOM groups were determined based on%MOM volumes that re

T1, study day 0 (before fortification: BHMF, n = 14; H2MF, n = 16; lowMOM, n = 10

n = 16; lowMOM, n = 8; highMOM, n = 22); T3, week 33 AGA (end of fortification: B

35 AGA (follow-up after fortification: BHMF, n = 14; H2MF, n = 16; low MOM, n

human-derived human milk fortifier; PCoA, principal coordinate analysis; VLBW, v

antibiotics, percentage of days on antibiotics until a specific study time point; TEV

named bacterial family or order.
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markers, clinical characteristics, and MOM intake as a contin-

uous variable (cumulative proportion of feeds) while applying

hierarchical clustering (Figure 4C). We observed two bacterial

community clusters, partially distinguished by their correlation

with MOM intake at T3 and T4. Cluster 1 comprised genera

enriched with lower MOM intake, such as Clostridium, Lach-

noclostrium, and Gemella. Most genera in this cluster showed

negative correlations with weight gain and total enteral

feeding volume and positive correlations with calprotectin,

F2-isoprostanes (oxidative stress), and antibiotic usage,

particularly at T3 and T4. Cluster 2 comprised several genera

enriched with higher MOM intake, such as Bifidobacterium,

Veillonella, and one unclassified Enterobacteriaceae genus.

This cluster did not show any overall patterns of association

with infant biomarkers or clinical characteristics. Notably, at

T3 and T4, we also observed clustering between MOM intake,

total enteral volume, and weight gain. Antibiotic usage, cal-

protectin, and F2-isoprostanes formed another distinct clus-

ter. Taken together, these findings support the hypothesis

that higher MOM intake could ameliorate the harmful effects

of early antibiotic exposure by modulating the gut

microbiome development to reduce oxidative stress and

inflammation.

DISCUSSION

Our findings suggest that the source of human milk (own mother

versus donor milk) was a major determinant of gut microbiome

development in VLBW infants, whereas the type of fortifier (hu-

man versus bovine) had a minimal impact. Although a few indi-

vidual taxawere affected, the type of fortifier did not substantially

influence gut microbiota diversity or composition and did not

affect urinary F2-isoprostanes (oxidative stress). Notably, fecal

calprotectin levels were higher in those receiving H2MF. The clin-

ical significance of this unexpected result is unclear, and war-

rants further investigation. In a secondary analysis, we observed

strong associations between MOM intake and gut microbiome

composition and development, as well as lower fecal calprotec-

tin and greater weight gain (with significantly lower declines in

weight-for-age Z scores) among infants consuming higher pro-

portions of MOM.
and other factors with gut microbiome composition in VLBW infants

nvFit using Bray-Curtis dissimilarity. Fortifier type, BHMF versus H2MF; MOM

tage of days on antibiotics until a particular study time point. FDR-adjusted p

OM infants, see Figure S8 for details) over time, modeled from PERMANOVA

analysis. See Table S1A for betadisper test results (permutation test for ho-

es (CLR transformed) and other continuous covariates at each time point (T1–

earman correlations, independently for each time point (horizontal axis). Cor-

2 on the vertical axis depict the clustering of genera based on their correlations

present the proportion of MOM used to prepare the feeds prior to fortification.

; high MOM, n = 20); T2, study day 7 (during fortification: BHMF, n = 14; H2MF,

HMF, n = 14; H2MF, n = 16; lowMOM, n = 13; highMOM, n = 17); and T4, week

= 14; high MOM, n = 16). BHMF, bovine-derived human milk fortifier; H2MF,

ery low birth weight; F2IsoP, F2-isoprostanes; AGA, adjusted gestational age;

, total enteral volume. The prefix ‘‘Uncl_’’ indicates an unclassified genus of the
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Figure 5. Association of mother’s own milk (MOM) intake with microbiome trajectories, gut inflammation, and oxidative stress in VLBW

infants over time

(A) Trajectories of bacterial relative abundance (CLR transformed) and prevalence over time in infants with high versus lowMOM intake (see Figure S8 for details).

Genera with >10% prevalence across all samples that differed in prevalence or relative abundance between groups over time are shown here (complete data are

shown in Tables S1E–S1G, and regression analyses are shown in Figure S10).

(B) Gut inflammation (fecal calprotectin) and oxidative stress (urinary F2-isoprostanes) over time. The p values are from Wilcoxon sum rank test (for boxplots) or

using splinectomeR (for longitudinal trajectories, 999 permutations) or Fisher’s exact test (for prevalences) (�p < 0.10, *p < 0.05, **p < 0.01). MOM groups were

determined based on%MOM volumes that represent the proportion of MOM used to prepare the feeds prior to fortification. T1, study day 0 (before fortification:

lowMOM, n = 10; highMOM, n = 20); T2, study day 7 (during fortification: lowMOM, n = 8; highMOM, n = 22); T3, week 33 AGA (end of fortification: lowMOM, n =

13; high MOM, n = 17); and T4, week 35 AGA (follow-up after fortification: low MOM, n = 14; high MOM, n = 16).
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Little impact of fortifier type (human versus bovine) on
gut microbiome
Given the large and well-established impact of human milk

versus bovine-derived infant formula on the microbiome of full-

term infants,26,27 we were surprised to find relatively few differ-

ences between the microbiota of VLBW infants randomized to

receive human versus bovine-derived milk fortifiers. This unex-

pected finding might reflect the fact that formula feeding often

replaces human milk entirely, whereas fortification displaces

only a small volume of human milk. Notably, liquid H2MF dis-

places a relatively larger volume of milk (30%–40% displace-
ment) compared with powdered BHMF (<5% displacement),

which could potentially offset some of the expected benefits of

H2MF in human-milk-fed infants. It is possible that provision of

humanmilk components (throughMOM, DHM, and/or H2MF) af-

fects the microbiome more strongly than avoidance of bovine

products in BHMF. More research is needed to evaluate these

hypotheses and quantify the relative impacts of MOM, DHM, for-

mula, BHMF, and H2MF on the infant microbiome.

In our study, Varibaculum and an unclassified genus belonging

to Clostridiales Family XI were the only two taxa differentially

affected by fortification type, both showing depletion in the
Cell Reports Medicine 3, 100712, September 20, 2022 9
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H2MF group. Interestingly, Varibaculum in the infant gut has

been associated with degradation of 60 sialyllactose, an oligo-

saccharide that is more abundant in bovine versus human

milk;28–30 however, its functional role and clinical relevance in

VLBW infants have not been studied. Depletion of Clostridiales

Family XI incertae sedis often precedes nosocomial C. difficile

infection31,32 in adults; however, this has not been shown in

VLBW infants, where the risk factors and consequences of

C. difficile infection are unclear,33 although C. difficile coloniza-

tion has been linked to necrotizing enterocolitis (NEC) in this pop-

ulation.34,35 Overall, we observed no significant impact of the

type of fortifier on the gut microbiome and growth, which aligns

with the findings from a previous study that noted no impact on

feeding tolerance and clinical outcomes.17

Strong association of milk source (mother versus donor)
with microbiome and fecal calprotectin
While fortifier type had only a minimal impact on the developing

microbiome, MOM intake was strongly associated with multiple

measures of microbiome composition. MOM intake was the sin-

gle most important predictor of bacterial community structure at

T3 and T4 (33–35 weeks adjusted gestational age), surpassing

antibiotics and birth mode, which are well-known determinants

of the infant microbiome. The major role of MOM was also

evident from longitudinal analyses showing that infants with

higher MOM intake experienced lower levels of Clostridium

over time, along with greater increases in Bifidobacterium, Veil-

lonella, and Propionibacterium, consistent with the previous

studies.23,36,37

Some of these differences were evident from the initial sam-

pling time point, indicating the importance of MOM in the first

hours and days of life for the colonization (Propionibacterium)

or constraint (Clostridium) of these organisms. Higher abun-

dance of Clostridium spp., particularly C. difficile and

C. perfringens, in early stages are associated with the develop-

ment of NEC in preterm infants.38,39 For other taxa (e.g., Bifido-

bacterium), differences emerged and increased over time, indi-

cating a continuing role for MOM in supporting or constraining

their growth as the immature gut develops in the weeks after

birth. For some taxa (e.g., Veillonella), lowMOM intake appeared

to delay the maturation trajectory by several weeks, whereas for

others (e.g., Bifidobacterium and Propionibacterium) maturation

remained suppressed for the entire study period. Further

research is warranted to determine whether and when these

bacteria were eventually acquired by infants with low MOM

intake and to understand the clinical consequences of this

disruption in their microbiome development.

MOM intake tended to be negatively correlated with fecal

calprotectin (a biomarker of gut inflammation), consistent with

existing evidence that MOM-enriched bacteria such as Bifido-

bacterium and Propionibacterium can improve gut health by

producing anti-inflammatory short-chain fatty acids.40 Further-

more, as others have shown,41,42 we observed greater weight

gain in infants fed with high MOM proportions, suggesting a

growth-promoting effect of MOM compared with DHM,

perhaps mediated through the microbiome. Further research

is needed to explore this hypothesis, but it is consistent with

the known impact of DHM processing (pasteurization
10 Cell Reports Medicine 3, 100712, September 20, 2022
and freezing) on the maternal cells, microbes, and bioactive

proteins (including lipase and adipokines) found in fresh

MOM,19–21,43 and the unique composition of MOM in early

lactation compared with mature milk typically provided to

donor milk banks.18,43,44 Somewhat unexpectedly, we

observed that infants with high MOM intake had enrichment

of one unclassified member of Enterobacteriaceae, a family

comprising many (but not exclusively) inflammatory species.

Further analysis with strain-level resolution would be required

to identify this taxon and its biological properties.

Impact of H2MF on fecal calprotectin, but not oxidative
stress
We did not find any impact of the feeding regime on oxidative

stress (urinary F2-isoprostanes), although differences have

been reported in previous studies.8,45 Interestingly, and seem-

ingly in contrast to our hypothesis that BHMF triggers gut

inflammation, we observed 2-fold higher fecal calprotectin (a

potential biomarker of gut inflammation) over time among in-

fants fed H2MF. Previous reports found no difference in calpro-

tectin between BHMF- and H2MF-fed infants.17 The clinical

relevance of a 2-fold difference in fecal calprotectin is unclear

because pathological cut-offs have not been established in

VLBW infants, and typically much larger differences (5- to

20-fold) have been associated with gut pathology.46 Notably,

although fecal calprotectin is an established biomarker of gut

inflammation in adults, its relevance during infancy is unclear.

In fact, others have observed higher fecal calprotectin in exclu-

sively breast-fed versus formula-fed infants,47 and suggest that

breast milk is a key source of calprotectin that significantly in-

fluences fecal calprotectin content.48 Moreover, it has been hy-

pothesized that rising fecal calprotectin during the early post-

natal period reflects normal gut development rather than

always implicating pathological inflammation.49 Together with

these previous studies, our findings indicate a need for further

research to understand the role of calprotectin during early gut

development and its utility as a clinical biomarker in this unique

population.

Limitations of the study
Our study is limited by a relatively small sample size of 30 infants

and relatively short follow-up period to 35 weeks adjusted age.

We powered the trial to detect a moderate-to-large effect on the

microbiome, and indeed, this samplewas sufficient to detect clear

associations between MOM intake and microbiota composition.

The impact of H2MF was comparably much smaller, indicating

that either fortifiers do not affect the overall microbiome in this

population of human-milk-fed VLBW infants, or they have a rela-

tively small impact that was not detectable in our study. It is

also important to note that H2MF is a concentrated form of donor

milk that displaces MOM in the feed, which needs to be ac-

counted for while designing and interpreting future studies.

Another limitation of our study is the amplicon sequencing

approach. It is possible that fortifier type is associated with

strain-level differences or functional changes that were not

captured by 16S rRNA gene profiling. It is also important to note

that our findings related to MOM intake are observational. Finally,

since no infants in our study were fed infant formula, we could not
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compare MOM or DHM with infant formula, nor evaluate the

impact of fortifier type among infants receiving formula.

Conclusions
In this randomized controlled trial of human-milk-fed VLBW in-

fants, the type of milk fortifier (bovine versus human) hadminimal

impact on the gut microbiome, whereas the source of human

milk (mother versus donor) was strongly associated with micro-

biome composition. Our findings do not provide a clear biolog-

ical basis for the clinical impact of H2MF, but emphasize the

importance of feeding MOM in this population of fragile infants.
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Materials availability
This study did not generate new unique reagents.

Data and code availability
d Microbiome sequence data is available at the NCBI SRA under BioProject ID: PRJNA690658.

d All original code has been deposited (https://github.com/shreyaskumbhare/Preterm-and-fortifiers-article-analysis.git) and is

publicly available as of date of publication.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Sample size
We based our sample size on the primary outcome of microbiota composition. Based on a reported 49% decrease in microbiota

diversity among infants with necrotizing enterocolitis versus healthy controls,58 we calculated that 26 infants (13 per group) would

be required to detect a similar effect size, with 80% power and 5% significance. Allowing for 15% loss to follow up, we enrolled

30 infants.

Eligibility, enrollment, blinding, and allocation
All neonates born between 26 and 30 weeks gestation at the Winnipeg Health Sciences Centre between September 2017 and April

2019 were screened for eligibility on the day of birth (Figure 1A). Parents willing to participate provided written informed consent. In-

clusion criteria were: birth weight <1250g, gestational age between 26 + 0 to 30+0weeks, parenteral nutrition started by day two after

birth, consent to receive DHM, and enteral feeding >80 mL/kg/day by day 14 after birth. Exclusion criteria were: major congenital

malformation, intestinal perforation or stage-2 necrotizing enterocolitis, unlikely to survive the study period, probiotics at any time,

or receiving antibiotics on study day 0. It was not feasible to blind clinical staff because of the different preparation protocols for

BHMF and H2MF. The randomization sequence was created by a non-clinical staff member using a computer-based algorithm.

Study group allocations were kept in sealed envelopes until interventions were assigned. This study used the identifier ‘mother’ in

the registered protocol and recruitment materials and hence the terminology ‘Mother’s Own Milk’. We acknowledge that not all

breastfeeding parents identify as ‘mothers’ and are committed to using more inclusive language in our future research.

Study design
We conducted a randomized, controlled open-label trial in VLBW premature neonates (born <1250g, 26–30 weeks gestational age)

fed standard BHMF, or H2MF (ClinicalTrials.gov NCT03214822) (Figure 1A). Feces and urine were collected on study day 0 (T1: just

before fortification), day 7 (T2: after 1week of fortification), 33+0weeks AGA (T3: end of H2MF fortification), and 35+0weeks AGA (T4:

2 weeks after the end of H2MF fortification) (Figure 1B). Parents provided written informed consent. The study was approved by the

University of Manitoba and Public Health Agency of Canada/Health Canada research ethics boards.

Intervention and control procedures
Infants randomized to BHMF received the standard feeding protocol of human milk (DHM if MOM was not available) fortified with

BHMF (EnfamilTM Human Milk Fortifier, Mead Johnson, USA). Infants randomized to H2MF received human milk fortified with

H2MF (Prolact+ H2MF�, Prolacta Biosciences, USA) until an adjusted gestational age (AGA) of 33+0 weeks was reached. After

this period, the H2MF infants were weaned onto the standard feeding protocol of human milk with BHMF until the end of the study

duration (AGA of 35 weeks or discharge).

Mother’s own milk (MOM) intake
Fortified milk fed to infants in both study groups consisted of varying amounts of MOM and DHM, depending on the availability of

MOM. We calculated the cumulative proportion of MOM used in the preparation across all feedings (volume MOM/total enteral vol-

ume) and classified each infant as High (R50%) or Low (<50%) MOM at each time point. The%MOM volumes reflect the proportion

of MOM used to prepare the feeds prior to fortification, i.e. they do not account for displacement by fortifiers. We also used MOM

proportion as a continuous variable.

Feeding protocols
Minimal enteral feeding (MEF; 1mL/kg humanmilk [MOMor, if unavailable, DHM] every 2 hours) was started as soon as possible after

birth (within 24h). OnceMEF tolerance was established (typically between 72-120 hours after birth), enteral feeding was increased by

25 mL/kg/day up to 80 mL/kg/day, then fortification was initiated. Infants randomized to BHMF received the standard feeding pro-

tocol of humanmilk fortified with BHMF (EnfamilTM HumanMilk Fortifier, Mead Johnson, USA). 100 mL of breast milk (MOM or DHM)

was mixed with 4 packets of BHMF (2.84 g powder). Infants randomized to H2MF received human milk fortified with H2MF (Prolact+

H2MF�, Prolacta Biosciences, USA) until an adjusted gestational age (AGA) of 33+0 weeks was reached. H2MF fortified milk was

prepared by using MOM or DHM (based on availability) with H2MF of strengths: +4, +6 and +8, each displacing 20mL, 30mL and
Cell Reports Medicine 3, 100712, September 20, 2022 e2
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40mL respectively, out of the 100mL recipe. The dose increment was based on feed tolerance, nutrient needs and growth rate. After

this period, the H2MF infants were weaned onto the standard feeding protocol of human milk with BHMF until the end of study dura-

tion (AGA of 35 weeks or discharge). Nutritional support was provided per standard protocols. Per the standard feeding protocol,

infants received Total Parenteral Nutritionwith SMOF lipid emulsion (Smoflipid�SMOF20%, Fresenius Kabi, Sweden) and additional

nutritional support as needed to meet nutrient goals, including liquid protein fortifier (LiquiProteinTM; Abbott Nutrition, USA) and/or

additional fortifier (Enfamil A+� Enfacare� 24 cal/oz or Nutramigen� A+� powder 2.5 g, Mead Johnson, USA). Pasteurized DHM

(using holder pasteurization: heated at 62.5�C for 30 minutes) was procured from NothernStar mothers milk bank, Canada.

Sample collection and storage
Fecal and urine samples were collected on study day 0 (T1: just before fortification began), day 7 (T2: after 1 week of fortification), at

33+0 weeks AGA (T3: end of H2MF fortification), and at 35+0 weeks AGA (T4: 2 weeks after the end of H2MF fortification). The week

33 (T3) samples for the H2MF group were collected after the H2MF fortification was stopped, but prior to when they were switched to

BHMF fortification. Urine samples were collected from absorbent cotton balls placed in infants’ diapers and refrigerated for no more

than 24 h until transferred to the laboratory at Children’s Hospital Research Institute of Manitoba (CHRIM). The cotton balls were then

centrifuged to extract liquid urine, and the urine samples aliquoted to 1.5 mL plastic tubes were then stored at �80�C until analysis.

Fecal samples were also collected at the same time points from soiled diapers as soon as possible after the feces were produced.

The diapers were refrigerated in sterile containers for no more than 24 h until aliquoted and transferred in �80�C freezers at CHRIM

until further analysis.

METHOD DETAILS

Fecal DNA extraction
Two punches (using the sterile disposable biopsy punches) of frozen (�80�C) feces were transferred to a Zymo Research Bashing

BeadTM Lysis Tube (ZymoResearch, USA) with the genomic lysis solution and secured in a bead-beater fittedwith a 2-mL tube holder

assembly and processed for 10 minutes at 1200 rpm. 467 mL of genomic lysis buffer and 333.5 mL isopropanol was added to this

lysate. After mixing, the lysate was transferred to the Zymo-SpinTM IIC (Zymo Research, USA) column in a clean 1.5 mL microcen-

trifuge tube and a 50 mL pre-heated DNA elution buffer was added to the columnmatrix. After 3minutes, the assembly was subjected

to centrifugation at 10,000 x g for 30 seconds and this step was repeated again after transferring the eluent onto the same column.

DNA was eluted and stored in sterile 1.5 mL tubes.

16S rRNA gene sequencing-based microbiome profiling
Genomic DNA was extracted from fecal samples using Zymo Quick DNA Fecal Microbe Miniprep kit (Cat. no. D6010, Zymo

Research, USA) and sequenced following amplification of the 16S rRNA V4 hypervariable region.59 Sequencing was performed in

two batches on the Illumina MiSeq using V3 chemistry (600 cycles: 2 X 300 bp). Sterile DNA-free water was used as negative control

and a mock community (ZymoBiomics mock community, HM-783D BEI resources mock community B: staggered, low concentra-

tions) as a positive control during library preparation for each sequencing run and was subjected for amplicon sequencing along with

the other samples.

ELISA based F2-Isoprostanes and calprotectin quantification
50–100mgof stool samples was used for extraction by diluting (50x as per the initial weight) with the BioVendor extraction buffer (Cat.

No. C005821; BioVendor, Czech Republic), homogenized by vortexing, and centrifuged at 3000 x g for 30 min. The supernatant thus

obtained was diluted 200x (as per manufacturer’s instructions) before the assay. Urine samples were pretreated with glucuronidase

(as per manufacturer’s instructions) to obtain free F2-Isoprostanes and then were diluted (1:4) before the assay. Biomarkers of gut

inflammation (fecal Calprotectin) and oxidative stress (urinary F2-Isoprostanes) were quantified using ELISA. Calprotectin was quan-

tified using the Human S100A8/A9 ELISA kit (BioVendor, Czech Republic). Oxidative stress was quantified using urinary F2-Isopros-

tane ELISA kits (EA-85, Oxford biomedical research, USA) normalized to creatinine concentrations.60 Urinary creatinine was quan-

tified using a creatinine microplate assay kit (CR01, Oxford biomedical research, USA).

QUANTIFICATION AND STATISTICAL ANALYSIS

Sequence data preprocessing
Sequence reads from both sequencing batches were processed separately and merged before downstream analysis in R. Overlap-

ping paired-end reads were preprocessed using the dada2 pipeline56 for all the samples (including controls) in R (R Core Team, 2017)

for each batch. The Amplicon Sequence Variants (ASVs) were then subjected to Chimera removal.61 Unique ASVs were assigned

taxonomy using the Human Intestinal 16S rRNA gene reference taxonomy Database (HITdb, V1.0).55 Potential contaminant se-

quences were filtered using the frequency of ASVs in negative controls.57 The merged sequence tables (both sequencing runs)

were then screened for ASVs classified as Euryarchaeota, Chloroplast, Mitochondria, and those ASVs unclassified at Phylum

level (n = 618). Furthermore, three low read samples (<500 reads) were removed from further analysis, resulting in sequence reads
e3 Cell Reports Medicine 3, 100712, September 20, 2022
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for n = 117 samples and 595 unique ASVs in total. The sparsity of the dataset was tested using microbiome package.51 ASVs that

were not seen more than once in at least 10% of the samples were filtered from the total dataset. This rigorous approach reduced

the number of unique ASVs from 595 to 117, removed 7% of reads from the entire dataset, and reduced the sparsity of the data,

overcoming the consequences of ASVs with small mean and trivially large CV. The sequencing reads were then rarified at 7578 reads

per sample (the lowest number of reads per sample in the dataset) unless otherwise specified. Data was agglomerated at genus level

for downstream analysis. Microbiome longitudinal analysis (using splinectomeR52 and mixed regression model in MaAsLin254) was

performed including infants with data for all time points (n = 108 samples).

Data analysis and statistical methods
Raw reads were processed to filter low-quality, chimeric and contaminant sequences; then analyzed using R. A compositional anal-

ysis approach involving Centred-Log-Ratio (CLR) transformation was employed for downstream analysis unless otherwise specified.

Alpha and beta diversity analyses were performed using phyloseq.50 The effect size and significance of clinical, dietary, maternal and

infant covariates was determined using the ‘EnvFit’ function in vegan.62 Multivariate analysis was performed using PERMANOVA.

Data were analyzed in R. Microbiome metrics and biomarker values across study time points were compared between groups by

Kruskal–Wallis, Fischer’s exact or Wilcoxon sum rank tests using false discovery rate (FDR) correction for multiple comparisons.

Beta-diversity was compared between groups using PERMANOVA, followed by a permutation test for homogeneity of multivariate

dispersions (betadisper) with 99,999 permutations to test whether two groups are homogeneously dispersed (by comparing the

compositional variance of samples) in relation to their taxonomic groups. For repeated measures analysis (analyzing all time points

together; Figures 1D and S1) we used a blocking method by setting strata to Infant IDs in the PERMANOVA test. Spearman corre-

lations with Benjamini-Hochberg correction were determined using the microbiome package and heat maps were plotted using

ComplexHeatMap package.51,53 Longitudinal analysis was performed using SplinectomeR.52 Multivariable regression was per-

formed using the MaAsLin2 package in R.54 MOM proportion was used as a time co-varying variable (both in categorical and contin-

uous form). Infants who receivedmore vs. less than 50%MOMwere classified as High or LowMOM respectively (See Figure S8A). To

account for the cumulative MOM consumption over time, MOM proportion was calculated at each time point by taking an average of

the proportion of MOM in TEV received by the infant since birth. Z-scores (weight-for-age) were calculated using PediTools25 which

uses the 2013 Fenton growth charts for preterm infants63 to report Z-scores.

ADDITIONAL RESOURCES

The study protocol is registered under ClinicalTrials.gov. National Library of Medicine (U.S.) (2017, July 12) (https://clinicaltrials.gov/

ct2/show/NCT03214822, Identifier: NCT03214822).
Cell Reports Medicine 3, 100712, September 20, 2022 e4

http://ClinicalTrials.gov
https://clinicaltrials.gov/ct2/show/NCT03214822
https://clinicaltrials.gov/ct2/show/NCT03214822


Cell Reports Medicine, Volume 3
Supplemental information
Source of human milk (mother or donor) is more

important than fortifier type (human or bovine)

in shaping the preterm infant microbiome

Shreyas V. Kumbhare, William-Diehl Jones, Sharla Fast, Christine Bonner, Geert `t
Jong, Gary Van Domselaar, Morag Graham, Michael Narvey, and Meghan B. Azad



A BPERMANOVA, p<0.001***
betadisper, p<0.001***

Time point Gestational Age (days)

PERMANOVA, p<0.001***
betadisper, p<0.001***

Figure S1. Changes in gut bacterial diversity in VLBW infants over time. Principal coordinate analysis based on Jaccard distances (Bray-Curtis 
distances in Figure 1D) showing diversity between samples (A) across 4 study time points and (B) with adjusted gestational age (in days). P-values from 
PERMANOVA for beta diversity and betadisper test (permutation test for homogeneity of multivariate dispersions; (permutations=99,999). Adjustments for 
repeated measures were done by setting strata (blocks) to infant IDs. T1 = Study Day 0 (before fortification), T2 = Study Day 7 (during fortification), T3 = 
Week 33 AGA (end of fortification) and T4 = Week 35 AGA (follow up after fortification). VLBW, very low birth infants.
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Figure S2. Changes in gut bacterial relative abundance across study time points (related to Figure 1 
C&D). Relative abundance (CLR-transformed) of bacterial phyla (A) and genera (B) at study time points 
(P values from Kruskal–Wallis test: * p<0.05, ** p<0.01, ***p<0.001, ****p<0.0001). T1 = Study Day 0 
(before fortification), T2 = Study Day 7 (during fortification), T3 = Week 33 AGA (end of fortification) 
and T4 = Week 35 AGA (follow up after fortification). The prefix ‘Uncl_’ indicates an unclassified genus 
of the named bacterial family or order.
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Figure S3. Impact of human milk fortifier type (bovine (BHMF) or human (H2MF)) on gut 
bacterial composition in VLBW infants (related to Figure 2, which illustrates group-wise 
comparison at genus level). Bar plots depict the relative abundance of gut bacterial phyla (Left: 
individual infants, Right: group means). T1 = Study Day 0 (before fortification), T2 = Study Day 7 
(during fortification), T3 = Week 33 AGA (end of fortification) and T4 = Week 35 AGA (follow up 
after fortification). BHMF, bovine-derived human milk fortifier; H2MF, human-derived human milk 
fortifier; VLBW, very low birthweight. Figure 3 shows results at the genus level.
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Figure S4. Impact of human milk fortifier type on gut microbial diversity and trajectories in VLBW infants (related to Figure 3C). (A) PCoA depicts 
between-sample diversity based on Jaccard distances (Bray-Curtis distances in Figure 3C) in BHMF and H2MF group infants over time, p-values from 
PERMANOVA (permutations=99,999). See Table S1A for betadisper test results (permutation test for homogeneity of multivariate dispersions). (B and C) 
Trajectories of bacterial phyla relative abundances (CLR transformed) in each fortifier group over time. P-values from splinectomeR (permutations=999) 
(D) Red line indicates the spline distance between groups over time. T1 = Study Day 0 (before fortification), T2 = Study Day 7 (during fortification), T3 = 
Week 33 AGA (end of fortification) and T4 = Week 35 AGA (follow up after fortification). BHMF, bovine-derived human milk fortifier; H2MF, human-
derived human milk fortifier; VLBW, very low birthweight.
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Figure S5. Effect of human milk fortifier type on gut bacterial relative abundances in VLBW infants (related to Figure 3). Heatmap illustrating relative abundance (CLR transformed) 
of bacterial genera in individual infants, stratified by the fortifier group. Regression coefficients and FDR-corrected p-values from MaAsLin2, cross-sectionally (at discrete time points) and 
longitudinally (combined across all time points): *p<0.05, **p<0.01. T1 = Study Day 0 (before fortification), T2 = Study Day 7 (during fortification), T3 = Week 33 AGA (end of 
fortification) and T4 = Week 35 AGA (follow up after fortification). BHMF, bovine-derived human milk fortifier; H2MF, human-derived human milk fortifier. The prefix ‘Uncl_’ indicates an 
unclassified genus of the named bacterial family or order.
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Figure S6. Impact of fortifier type on gut bacterial relative abundance over time in VLBW infants (related to Figure 3). Relative abundance (CLR 
transformed) of bacterial genera at study time points. Significance symbols from differential abundance testing using Wilcoxon sum-rank test; *p<0.05, 
**p<0.01, ***p<0.001. T1 = Study Day 0 (before fortification), T2 = Study Day 7 (during fortification), T3 = Week 33 AGA (end of fortification) and T4 = 
Week 35 AGA (follow up after fortification). The prefix ‘Uncl_’ indicates an unclassified genus of the named bacterial family or order.
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Figure S7. Impact of human milk fortifier type on the prevalence of gut bacterial genera over time in VLBW infants (related to Figure 3). Prevalence (%) of each 
genus across study time points, compared between fortifier groups (Fisher test: ~p<0.10; *p<0.05). Facets highlighted (black border) indicate significant differences (p<0.05) 
for at least one time point (see Table S1B-D for complete data). T1 = Study Day 0 (before fortification), T2 = Study Day 7 (during fortification), T3 = Week 33 AGA (end of 
fortification) and T4 = Week 35 AGA (follow up after fortification). BHMF, bovine-derived human milk fortifier; H2MF, human-derived human milk fortifier. The prefix 
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Figure S8. Distribution and trajectory of MOM intake and its association with gut microbiome composition in VLBW infants (related to STAR methods section: ‘Mother’s 
Own Milk (MOM) intake’). (A) MOM proportion used to prepare feeds prior to fortification (average until a particular study time point) received by infants during the total study 
duration. Infants from both fortifier groups were stratified into two groups: High MOM group: Infants who received %MOM proportion in TEV ≥ 50% and Low MOM (LMOM): 
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(C)  PCoA depicts beta diversity between MOM groups (Low MOM and High MOM infants) over time based on Jaccard distances (Bray-Curtis distances in Figure 4B), P-values 
modeled from PERMANOVA for MOM groups (permutations=99,999). See Table S1A for betadisper test results (permutation test for homogeneity of multivariate dispersions). T1 
= Study Day 0 (before fortification), T2 = Study Day 7 (during fortification), T3 = Week 33 AGA (end of fortification) and T4 = Week 35 AGA (follow up after fortification). 
BHMF, bovine-derived human milk fortifier; H2MF, human-derived human milk fortifier; MOM, mother’s own milk; VLBW, very low birth weight.
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Figure S9. Association of MOM intake with gut bacterial composition in VLBW infants (related to Figure 5A). 
Bar plots depict the relative abundance of gut bacterial genera (Left: individual infants, Right: group means). T1 = 
Study Day 0 (before fortification), T2 = Study Day 7 (during fortification), T3 = Week 33 AGA (end of fortification) 
and T4 = Week 35 AGA (follow up after fortification). MOM, Mother’s Own Milk; LMOM, Low MOM intake group; 
HMOM, High MOM intake group; VLBW, very low birthweight. The prefix ‘Uncl_’ indicates an unclassified genus of 
the named bacterial family or order. MOM groups were determined based on %MOM volumes that represent the 
proportion of MOM used to prepare feeds prior to fortification.
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Figure S10. Association of MOM intake with gut bacterial relative abundances in VLBW infants (related to Figure 5A). (A) Heatmap illustrates relative abundance (CLR transformed) 
of bacterial genera with the multivariable association, both cross-sectional (at discrete time points) and longitudinal (combined) with MOM intake using MaAsLin2. Regression coefficient 
from MaAsLin2, P-values (corrected) indicating the significance of association (* p<0.05, ** p<0.01). T1 = Study Day 0 (before fortification), T2 = Study Day 7 (during fortification), T3 = 
Week 33 AGA (end of fortification) and T4 = Week 35 AGA (follow up after fortification). The prefix ‘Uncl_’ indicates an unclassified genus of the named bacterial family or order. MOM 
groups were determined based on %MOM volumes that represent the proportion of MOM used to prepare feeds prior to fortification.
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Figure S11. Association of MOM intake and gut bacterial relative abundance over time in VLBW infants (related to Figure 5A). Relative abundance 
(CLR transformed) of bacterial genera at study time points (Significance symbols from differential abundance testing using Wilcoxon sum-rank test; * 
p<0.05, ** p<0.01, *** p<0.001). Y-axis represents CLR transformed abundances of the respective taxa in each facet. T1 = Study Day 0 (before 
fortification), T2 = Study Day 7 (during fortification), T3 = Week 33 AGA (end of fortification) and T4 = Week 35 AGA (follow up after fortification). 
VLBW, very low birthweight. The prefix ‘Uncl_’ indicates an unclassified genus of the named bacterial family or order. MOM groups were determined 
based on %MOM volumes representing the proportion of MOM used to prepare feeds prior to fortification.



Figure S12. Association of MOM intake and prevalence of gut microbiota genera over time in VLBW infants (related to Figure 5A). Prevalence (%) 
of each genus across study time points, compared between MOM intake groups (Fisher test: ~p<0.10; *p<0.05). Facets highlighted (black border) indicate 
significant differences (p<0.05) for at least one time point (see Table S1E-G for complete data). T1 = Study Day 0 (before fortification), T2 = Study Day 7 
(during fortification), T3 = Week 33 AGA (end of fortification) and T4 = Week 35 AGA (follow up after fortification). BHMF,bovine-derived human milk 
fortifier; H2MF, human-derived human milk fortifier; MOM, mother’s own milk used to prepare feeds prior to fortification. The prefix ‘Uncl_’ indicates an 
unclassified genus of the named bacterial family or order.
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