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Atmosphäre, Oberpfaffenhofen, Germany12
bNow at: Pachama Inc., San Francisco, CA, USA13

*Correspondence: selma.bultan@lmu.de14

1



Supplementary Figure 1: Schematic overview of the model-data assimilation framework
used to isolate environmental terrestrial carbon sources and sinks (=SLAND). The individual
steps (1-5) are explained in Section 2. Pre- and post-processing steps are shown by filled squared boxes.
Filled circles represent the model simulations.
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Supplementary Figure 2: Spatial distribution of the 15 regions used for aggregating the
model results. The region definitions are based on the RECCAP-2 project, but we further aggregated
Northern South America and Southwest South America to South America and aggregated China, Korea
and Japan as Eastern Asia.
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Supplementary Figure 3: Fractional grid cell area covered by each of the eleven natural vegetation
types (“Plant Functional Type”) in BLUE.
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Supplementary Figure 4: Spatial comparison of the interannual variability of SLAND,B be-
tween BLUE (a) (woody vegetation) and the average of 13 TRENDY DGVMs (b) (all
vegetation types). The interannual variability is calculated as standard the deviation between 2000 and
2018 to emphasize areas with high absolute values of SLAND,B and a large interannual variability.
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Supplementary Figure 5: Global map of different biomes. The biomes were used for aggregating
the forest biomass carbon stocks (Tab. 2). The boreal biome is visualized in blue, the temperate biome
is shown in green and the tropical biome is shown in light brown. The biome mask is based on the
RECCAP-2 regions map (Supplementary Fig. 2), which is further aggregated according to the definitions
by [1].
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Supplementary Figure 6: Spatial correlation between annual anomalies of climate variables
and biomass carbon. The global maps show the Spearman correlation coefficient between the time series
of biomass carbon anomalies (as opposed to woody biomass carbon anomalies in Fig. 2) as estimated by
averaging over eight TRENDY DGVMs (prior to the correlation analysis for the S3 setup) and the time
series of a) precipitation (P) anomalies and b) air temperature (Ta) anomalies. The climate variables are
taken from ERA-5 reanalysis data. The anomalies are calculated by detrending each variable. The dark
blue frame denotes parts of the North American boreal forest, where we find a strong positive correlation
between detrended annual air temperature anomalies and detrended annual biomass carbon anomalies in
our BLUE estimates (Supplementary Fig. 7).
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Supplementary Figure 7: Spatial correlation between annual anomalies of climate variables
and biomass carbon in North America The maps show the Spearman annual anomalies of climate
variables biomass carbon anomalies and the time series of air temperature (Ta) anomalies. The BLUE
estimate is shown in a) and the TRENDY estimate (correlation is calculated as average biomass carbon
over eight DGVMs from the S3 setup) is shown in b). Significance is tested with a two-tailed t-test and
significant correlations (p<0.05) are visualized by hatched areas. The dark blue frame denotes parts of
the North American boreal forest.
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Supplementary Figure 8: Regional accuracy of the data assimilation. The figure shows the
regionally averaged spatial agreement between a) the assimilated woody biomass carbon time series and
b) the original woody biomass carbon time series by Xu et al. [2] for 2000-2019. The agreement (in %)
is calculated as the number of years with the same trend (i.e., increase/decrease/no change in biomass
carbon) for a) and b) divided by the total number of years.
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Supplementary Figure 9: Absolute (a) (in tha-1) and relative (b) (as fraction of the original estimate)
pixel-level uncertainty for biomass carbon densities, as estimated in Xu et al. [2].
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Supplementary Figure 10: Evaluation of different percentile thresholds for excluding unre-
alistic biomass carbon densities. Comparison of the annual change in global woody biomass carbon
stocks (∆CB) between the assimilated BLUE time series resulting from different upper thresholds for
excluding unrealistic woody biomass carbon densities and the original time series by Xu et al. [2]. The
percentile-based thresholds are derived by cutting the distribution of woody biomass carbon densities
smaller than 375 tha-1 to the respective percentiles and choosing the percentile values as upper thresholds
for the exclusion of further grid cells. The resulting time series of change in woody biomass carbon stocks
from the percentile approaches are shown in a-c and the time series based on an upper threshold of 375
tha-1 is shown in d.
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Flux by LULCC transition (PgC yr-1) Model simulation
BLUE transient BLUE fixed BLUE default

Clearing for pasture and cropland expansion 3.5 2.5 2.7
Net flux from wood harvest 1.4 0.7 0.6
Abandonment of pasture and croplands -2.1 -1.8 -1.8

Sum 2.8 1.4 1.5

Supplementary Table 1: Comparison of estimated global carbon flux from land use and land cover
change for different transitions for 2000-2019. The numbers from this study (BLUE transient and
BLUE fixed) represent the average from two threshold approaches (see ”Threshold testing for exclud-
ing inconsistent woody biomass carbon densities”).
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Dataset Period Terrestrial biomass carbon sink (SLAND,B)
Cumulative (PgC) Net flux (PgC yr-1) IAV of net flux

This study *• 2001-2019 -29 -1.5 1.0
Xu et al. [2] • 2001-2019 -93 -4.9 0.4
TRENDY v8 (S2) # 2001-2018 -33±9 -1.9±0.5 0.5±0.3
Gasser et al. [3] 2000-2018 -22 -1.2 0.8

• Estimate only includes woody biomass carbon

Supplementary Table 2: Comparison of the estimated global terrestrial biomass carbon sink from
this study compared to a range of other recent studies. Interannual variability (IAV) is calculated as the
ratio of the standard deviation (SD) to the mean. Error estimates are given as the mean of 13 DGVMs
± 1 SD for TRENDY (#) resp. as the mean from two threshold approaches (see ”Threshold testing for
excluding inconsistent woody biomass carbon densities”) (*). Note that, to avoid errors from the rounding
of numbers in the table, percentage values in the main text were calculated from unrounded numbers.
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Model Reference Available setups
CLASS-CTEM Melton & Arora [4] S2,S3,S5,S6
CLM5.0 Lawrence et al. [5] S2
DLEM Tian et al. [6] S2,S3,S5,S6
JSBACH Mauritsen et al. [7] S2,S3,S5,S6
JULES-ES 1.02 Sellar et al. [8] S2
LPJ-GUESS Smith et al. [9] S2,S3,S5,S6
LPX-Bern Lienert & Joos [10] S2,S3,S5,S6
OCN Zaehle et al. [11] S2
ORCHIDEE Krinner et al. [12] S2,S3,S5,S6
ORCHIDEE CNP Goll et al. [13] S2,S3,S5,S6
SDGVM Walker et al. [14] S2,S3,S5,S6
CABLE-POP Haverd et al. [15] S2
ISAM Jain et al. [16] S2

Supplementary Table 3: Overview of the simulation setups for the TRENDY DGVMs used in this
analysis (adjusted from Obermeier et al. [17]).
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LULCC Handling Cdens on initially woody vegetation
transition (PFT 1-8)
v to s Xu et al. (2021) - PFT- and land cover type level
s to s threshold approach - linear interpolation
v to c Xu et al. (2021) - PFT- and land cover type level
v to p threshold approach - linear interpolation
s to c scaling to c and p acc. to Houghton ratios
s to p
c to p Xu et al. (2021) - PFT- and land cover type level
p to c threshold approach - linear interpolation
c to s scaling to c and p acc. to Houghton ratios
p to s interpolation for grid cells without v/s land cover

upon initialization

Supplementary Table 4: Handling of transitions on initially woody vegetation (black fonts show new
steps introduced compared to upper rows). The land cover types are abbreviated as v: primary land (in
BLUE ”virgin”), s: secondary land, c: cropland and p: pasture.
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Supplementary Note 1. Assimilation of ob-15

served woody biomass carbon in BLUE16

Threshold testing for excluding inconsistent woody biomass carbon densities17

We compare the assimilated woody biomass carbon densities resulting from18

different thresholds for excluding unrealistically high values at the beginning19

of each time step in BLUE to the original woody biomass carbon densities20

by Xu et al. [2]. We test various thresholds to account for uncertainties in-21

troduced by the choice of an upper threshold for unrealistic woody biomass22

carbon densities. The percentile thresholds (97th, 98th and 99th percentile)23

are applied to each year of the woody biomass carbon density time series24

that was generated by excluding all values larger than the maximum pixel-25

value of the time series by Xu et al. [2] (i.e., all values equal to or larger26

than 375 tha-1). All woody biomass carbon densities that are equal to or27

exceed the chosen percentile threshold are excluded from the dataset and28

interpolated by means of linear barycentric interpolation. The fraction of29

excluded grid cells (related to the total number of grid cells: 720x1440 at30

0.25°resolution), including grid cells that were already excluded prior to the31

calculation of percentiles according to the 375 tha-1 threshold (∼ 3%), varies32

from ∼ 4% (99th percentile) to ∼ 6% (97th percentile) over the entire time33

series. We evaluate each threshold by comparing the global biomass carbon34

trends (i.e., increase/decrease) of the assimilated time series to the original35

time series. Supplementary Fig. 10 shows that the trends of the assimi-36

lated woody biomass carbon time series start to diverge from the observed37

woody biomass carbon time series in recent years (especially 2014-2015 and38

2017-2018) for thresholds smaller than the 99th percentile. Consequently, we39

choose the 99th percentile as an additional threshold approach to the 37540

tha-1 approach.41
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Special assumptions42

Upon any LULCC transition, the woody biomass carbon density of the target43

cover type is zero if the area covered by the target cover type was zero upon44

initialization of BLUE. Consequently, - albeit a change in land use and/or45

land cover can occur at a later time - there would be no carbon transferred46

from the source land cover type to the target land cover type in the respective47

PFT. In those special cases, the actual biomass carbon density for the target48

land cover type in the respective PFT is calculated by scaling the actual49

biomass carbon density from the source land cover type in the respective50

PFT with the relation of source and target land cover type, taken from the51

Houghton et al. [18] carbon densities:52

ρBa,j′,l(t) = ρBa,j,l(t) ∗
ρB,j′,l

ρB,j,l

(1)

with j{v, s, p, c}; l{1..8}; t{2000..2019}53

17



Handling of non-woody vegetation54

Non-woody vegetation carbon (i.e., PFTs 9..11 or land cover type p,c) is55

excluded (i.e., initialized with zero) for non-woody PFTs in our simulation56

setups. The inclusion of carbon fluxes on non-woody vegetation types might57

be desirable to obtain holistic values for some carbon fluxes or to facilitate58

the comparison with other datasets (mainly relevant for ELUC and CB in our59

analysis). For those variables, we add the non-woody carbon fluxes from the60

”default” BLUE simulations with woody biomass carbon densities based on61

Houghton et al. [18] (but otherwise the same setup).62

However, there is still non-woody vegetation which needs to be directly con-63

sidered in our assimilated biomass carbon setups. This is the case for areas64

that are naturally vegetated by woody biomass (PFTs 1..8), but that were65

converted to non-woody land cover types (p,c) through LULCC and can66

return to woody vegetation again any time through abandonment (i.e., pas-67

ture/crop is converted to secondary land). Similarly, woody vegetation might68

be temporarily converted to non-woody vegetation through clearing for agri-69

culture or pasture. Consequently, we need biomass carbon density estimates70

for non-woody vegetation on areas where woody vegetation naturally grows.71

This is achieved by 1) scaling the ”processed” (i.e., threshold approach and72

interpolation finished) woody biomass carbon densities for primary and sec-73

ondary land to crop and pasture according to the ratios from Houghton et al.74

[18] and 2) interpolating ”missing” values, i.e., grid cells with no primary or75

secondary land cover upon initialization (only 1% of all grid cells over the76

entire time series). Supplementary Tab. 4 gives an overview of how each77

LULCC transition type is realized.78
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