Supplementary Information

2 Supplementary Figure 1a

9

Supplementary Figure 1. (a, lab; b, field) Development of $R_{To}/R_{To-initial}$ (mean \pm SEM) through the 10 night from onset of darkness/sunset in individual species (Supplementary Table 1). Also shown are 11 the 95%-confidence intervals in blue, estimates of the coefficients (including 1SD) of the power-12 functions ($y = 1 - a * hour^{b}$), and the coefficient of determination (r^{2}). n denotes number of replicate 13 plants per species. The results did not vary significantly (t-test) between biomes (t = -1.116, df = 14 19.614, p-value = 0.2779), experimental conditions (t = 1.0819, df = 21.025, p-value = 0.2915), or 15 plant type (t = -1.3837, df = 27.219, p-value = 0.1777), allowing the entire dataset to be collated and 16 a single universal equation to be derived for modelling, representative of all groups (Fig. 1a). Data 17 are available in Supplementary Data 1. 18

19 Supplementary Figure 2a

 $(\mu molCO_2m^{-2}s^{-1}/\mu molCO_2m^{-2}s^{-1})$

Supplementary Figure 2. A) Observed and modelled $R_{To}/R_{To-initial}$ in nine field-grown broad leaf 34 species (Fig. 2c, Supplementary Table 3) at 13h after sunset. Modelled values are Standard (Equation 35 1 & $Q_{10} = 2$), Standard modified (Equation 1 & TDQ_{10}), New formulation (Equation 4 & $Q_{10} = 2$), 36 and New formulation modified (Equation 4 & TDQ₁₀). B) Box-and-whisker-plots (The centre line is 37 the median. The lower whisker is the lowest datum above the first quartile - 1.5*interquartile range. 38 The upper whisker is the highest datum below the first quartile - 1.5*interquartile range. Any points 39 outside the whiskers are plotted separately) of observed- and modelled leaf R_{T0}/R_{T0} -initial during 40 nights for three species (Fig. 2c, n = 4 per species). C) Standardised residuals of the four simulations 41 (S1-S4, Supplementary Table 4) over time after sunset and over air temperature. The residuals appear 42 more symmetrically distributed for the models that include the new term including time of night. **D**) 43 Model evaluation with a Taylor Diagram showing the models that include TDQ_{10} and $Q_{10} = 2$ and the 44 new formula having better performance (highest correlation coefficient, closest standard deviation to 45 observed and lowest RMSD) than models without the new formula. Data are available in 46 Supplementary Data 2-3. 47

48

49

Observed $R_T/R_{T, initial}$ (mmols⁻¹/mmols⁻¹)

Supplementary Figure 3. Evaluation of Equation 4 using tree stand (Eucalyptus tereticornis) level 84 measured- and modelled (S1-S4, Supplementary Table 4) values of $R_{To}/R_{To-initial}$. A) Predicted 85 $R_{\text{To}}/R_{\text{To-initial}}$ as a function of measured $R_{\text{To}}/R_{\text{To-initial}}$ (replicate chambers = 3, number of nights = 62, 86 period = 8-13 hours), Root Mean Square Error (RMSE) are also given. B) Standardised residuals of 87 the four simulations (S1-S4, Supplementary Table 4) over time after sunset and over air temperature. 88 The residuals appear more symmetrically distributed for the models that include the new term 89 including time of night. C) Measured- and modelled (S1-S4, Supplementary Table 4) values of 90 $R_{\text{To}}/R_{\text{To-initial}}$ (replicate chambers = 3, number of nights = 62) plotted as function of time of night 91 (means \pm 1SD). **D**) Model evaluation with a Taylor Diagram showing the models that include TDQ₁₀ 92 and $Q_{10} = 2$ and the new formula having better performance (highest correlation coefficient, closest 93 standard deviation to observed and lowest RMSD) than models without the new formula. Data are 94 available in Supplementary Data 5. 95

101 Supplementary Figure 4. Cumulated overestimation of R_T as function of length of night (y = 1.0 + 102 $3.2X - 0.14X^2$, quadratic fit, $R^2 = 0.995$, intercept p = 6.45E-06, X p = 9.71E-29, X² p = 9.58E-16) 103 using Equation 1 instead of Equation 3 (mean response of five different rates of cooling at night). 104 Data are available in Supplementary Data 6.

108	Supplementary Figure 5. Impact of incorporation of nocturnal variation in whole plant R_{To} in
109	simulated reduction in plant respiration R_p (A, C) and corresponding increase in NPP (B) over the
110	period 2000-2018 using TDQ ₁₀ (eqn 2) and the new formula (eqn 5). Impact is estimated as the
111	difference between the temporal mean of simulations with and without nocturnal variation in whole
112	plant R_{To} for NPP and vice versa for R_p (A) and as a percentage respect to simulations without
113	nocturnal variation in $R_{To}(\mathbf{B}, \mathbf{C})$. Note, the reduction in $R_p(\mathbf{A})$ is identical to the increase in NPP in absolute
114	terms. Results are presented for grid cells where grid level NPP is >50 g m ⁻² yr ⁻¹ in the standard
115	TDQ ₁₀ simulations to avoid excessively large % effects at very low NPP.

Supplementary Table 1. Meta data underlying Figure 1a. Replicates within species indicate from published studies number of different values across different conditions that are possible to extract from the total number references for a species. Each value is typically based on several true replicates, a number that is not always possible to extract from the published studies.

Species	Biome	Plant functional type	Experimenta l conditions	Woody or non- woody	Replicat e	Reference
Alocasia macrorrhiza	Tropical	Herbaceous	Lab	non- woody	3	Noguchi <i>et</i> <i>al.</i> 1996 Noguchi &
Alocasia odora	Tropical	Herbaceous	Lab	non- woody	2	Terashima 1997; Noguchi <i>et</i> <i>al</i> . 2001
Amaranthus hypochondriacu s	Tropical	Herbaceous	Lab	non- woody	6	Bunce 2007
Arabidopsis thaliana	Temperate	Herbaceous	Lab	non- woody	4	Trethewey & ap Rees 1994; Watanabe <i>et</i> <i>al</i> . 2014
Astronium graveolens	Tropical	Tree	Field	woody	3	This study
Beta vulgaris	Temperate	Herbaceous	Lab	non- woody	1	Fondy & Geiger 1982
Bistorta bistortoides	Temperate	Herbaceous	Field	non- woody	16	McCutchan & Monson 2001
Campanula rotundifolia	Temperate	Herbaceous	Field	non- woody	8	McCutchan & Monson 2001
Castilla elastica	Tropical	Tree	Field	woody	4	This study
Cecropia longipes	Tropical	Tree	Field	woody	6	This study
Chrysophyllum cainito	Tropical	Tree	Field	woody	9	This study

Flaveria linearis	Tropical	Herbaceous	Lab	non- woody	1	Leonardos et al 2006
Forsythia	Temperate	Shrub	Field	woody	6	This study
Glycine max	Tropical	Herbaceous	Lab	non- woody	6	Bunce 2007
Gossypium	Temperate	Shrub	Lab	woody	1	Gessler <i>et al.</i> 2017
Halimium halimifolium	Temperate	Herbaceous	Lab	non- woody	1	Lehmann et al. 2016
Hedera helix	Temperate	Vine	Field	woody	2	This study
Heliconia	Tropical	Herbaceous	Field	non- woody	3	This study
Hordeum distichum	Temperate	Herbaceous	Lab	non- woody	1	Farrar & Farrar 1985
Hordeum vulgare	Temperate	Herbaceous	Lab	non- woody	1	Baysdorfer et al. 1987
Inga marginata	Tropical	Tree	Field	woody	8	This study
Luehea seemannii	Tropical	Tree	Field	woody	14	This study
Miconia	Tropical	Herbaceous	Field	non- woody	2	This study
Musa	Tropical	Herbaceous	Field	non- woody	5	This study
Oryza sativa	Tropical	Grass	Lab	non- woody	1	Giuliani <i>et</i> <i>al.</i> 2019
Phaseolus vulgaris	Temperate	Herbaceous	Lab	non- woody	2	dessler et al. 2017; Noguchi et al. 2001
Quercus humboldtii	Tropical	Tree	Field	woody	3	This study
Spinacia oleracea	Temperate	Herbaceous	Lab	non- woody	4	Noguchi & Terashima 1995, Noguchi <i>et</i> al 1996
Tabebuia rosea	Tropical	Tree	Field	woody	1	This study
Triticum aestivum	Temperate	Herbaceous	Lab	non- woody	7	Averill & ap Rees 1994

Triticum aestivum	Temperate	Herbaceous	Lab	non- woody	10	Averill & ap Rees 1994
Triticum aestivum	Temperate	Herbaceous	Lab	non- woody	1	Azcon- Bieto & Osmon 1983
Triticum aestivum	Temperate	Herbaceous	Lab	non- woody	5	Azcon- Bieto & Osmon 1983
Unidentified	Tropical	Herbaceous	Field	non- woody	1	This study

Species	Number of	Growth conditions	Source	Inherent Q10	Apparent Q10	Temperature Control
	replicates					
Acer pseudoplatanus	1	Field	This study	1.8	3	0.57
Betula pendula	6	Field	This study	2	6.5	0.43
Eucalyptus pauciflora (autumn)	5	Field	Bruhn et al. 2007	1.7	4.2	(0.22)
Eucalyptus pauciflora (spring)	3	Field	Bruhn et al. 2008	2	2.8	(0.56)
Eucalyptus pauciflora (summer)	3	Field	Bruhn et al. 2008	2	2.7	(0.59)
Fagus sylvatica f. purpurea	1	Field	This study	2.6	7.9	0.32
Musa acuminata	5	Growth cabinet	This study	1.5	3.5	(0.20)
Platinus x hispanica	4	Field	This study	1.7	3	0.49
Pringlea antiscorbutica	4	Field	Bruhn et al. 2008	1.6	2	(0.60)
Prunus padus	4	Field	This study	2.4	5	0.65
Solanum lycopersicum	5	Growth cabinet	This study	2.1	4.3	(0.33)
Tilia x europaea	5	Field	This study	1.9	4.9	0.41
Mean				1.94	4.15	0.48
SD				0.09	0.5	0.05

124

Supplementary Table 2. Values of temperature sensitivity (Q₁₀) and temperature control (TC, see Fig. 2a-b) of nocturnal leaf respiration rate (μ mol CO₂ m⁻² s⁻¹) in different species from this study and from all published literature. Calculations of TC followed the method explained in Figure 2. Values of TC in brackets are not included in the Mean ± SD as they are alternatively calculated as Alternative TC = (Q_{10,inh} -1)/(Q_{10,app} -1) because values of α and β (*sensu* Fig. 2) were not available in published

- studies. In calculations of the Alternative TC the value 1 is subtracted from the Q₁₀-values because 1
- represents the point where the respiration is not temperature-dependent. Thus, the Alternative TC is
- defined only below the temperature optimum of the respiration rate.

134

- Additional 14 species used to evaluate Equation 4 (which is based on 31 species). S1-S4 are fully
- 136 explained in Supplementary Table 4.

Species	Method	Method	Level

	$Q_{10,inh} < Q_{10,app}$	Temporal <i>R</i> _T vs S1-S4	
Acer pseudoplatanus	X		Leaf
Betula pendula	Х		Leaf
Eucalyptus pauciflora	Х		Leaf
Fagus sylvatica f. purpurea	Х		Leaf
Eucalyptus tereticornis		Х	Entire tree
Musa acuminata	Х		Leaf
Plantago major		Х	Leaf
Platinus x hispanica	Х		Leaf
Pringlea antiscorbutica	Х		Leaf
Prunus padus	Х		Leaf
Prunus avium		Х	Leaf
Rumex obtusifolius		Х	Leaf
Solanum lycopersicum	Х		Leaf
Tilia x europaea	Х		Leaf

137

141

142 Modelling protocol

Simulation	Description	Equation
S1	Standard	$R_{\rm T} = R_{\rm To} \times Q_{10} {}^{({\rm T-To})/10}$ with $Q_{10} = 2$, To=25°C
	Standard formula with Q ₁₀ =2	(Equation 1)
		R_{To} , is leaf R at 25°C estimated for each plant
		functional type (PFT) as a fraction (parameter f_d) of
		$V_{\rm cmax}$ at 25°C. Values of $f_{\rm d}$, $V_{\rm cmax}$ and $R_{\rm To}$ for the 9
		PFTs used in Jules simulations included in this study
		are reported in Supplementary Table 5.
S2	New formula	$R_{\rm T,t} = R_{\rm T,sunset} \times Q_{10}^{0.1 \times ({\rm T,t-Tsunset})} \times (1 - 0.08 \times {\rm h}^{0.58})$
	Standard including variable	(Equation 1 & $3 = Equation 4$)
	nocturnal R _{To}	
	As above using upper	$R_{\text{T},t} = R_{\text{T,sunset}} \times Q_{10}^{0.1 \times (\text{T,t-Tsunset})} \times (1 - 0.0703 \times h^{0.562})$
	confidence intervals from	
	Equation 3 derived in Fig. 1a	
	As above using lower	$R_{\text{T},t} = R_{\text{T,sunset}} \times Q_{10}^{0.1 \times (\text{T,t}-\text{Tsunset})} \times (1 - 0.093 \times \text{h}^{0.521})$
	confidence intervals from	
	Equation 3 derived in Fig. 1a	

		$R_{T,sunset,}$ corresponds to the value of leaf R_T at sunset
		time under sunset Temperature (Tsunset), estimated
		with Equation 1
S3	TDQ ₁₀	$R_{\rm T} = R_{\rm To} \times Q_{10} {}^{({\rm T-To})/10}$ with $Q_{10} = 3.09 - 0.0435 {}^{*}{\rm T}$
	Standard with temperature	(Equation 1 & 2)
	dependent Q ₁₀ (TDQ ₁₀)	
S4	New formula & TDQ ₁₀	$R_{\rm T,t} = R_{\rm T,sunset} \times Q_{10}^{0.1 \times ({\rm T,t-Tsunset})} \times (1 - 0.08 \times {\rm h}^{0.59})$
	Standard including variable	With $Q_{10} = 3.09 - 0.0435 * T$
	nocturnal R_{To} and TDQ_{10}	(Equation 4 & $2 =$ Equation 5)
	As above using upper	$R_{\text{T},t} = R_{\text{T,sunset}} \times Q_{10}^{0.1 \times (\text{T,t-Tsunset})} \times (1 - 0.0703 \times h^{0.562})$
	confidence intervals from	With $Q_{10} = 3.09 - 0.0435 * T$
	Equation 3 derived in Fig. 1a	
	As above using lower	$R_{\text{T},t} = R_{\text{T,sunset}} \times Q_{10}^{0.1 \times (\text{T,t} - \text{Tsunset})} \times (1 - 0.093 \times \text{h}^{0.521})$
	confidence intervals from	With $Q_{10} = 3.09 - 0.0435 * T$
	Equation 3 derived in Fig. 1a	

151 R_{To} used in Jules simulations estimated as $R_{\text{To}} = f_{\text{d}} \ge V_{\text{cmax}}$ at 25°C used in Equations 1 &2, reported

in Table 2 of reference 33.

Plant functional type	R _{To}	fd	V _{cmax} at 25°C
	[µmol m ² s ⁻¹]		$[\mu mol m^2 s^{-1}]$
Tropical broadleaf	0.41	0.01	41.16
evergreen tree			
Temperate broadleaf	0.61	0.01	61.28
evergreen tree			
Temperature broad	0.57	0.01	57.25
leaf deciduous tree			
Needle leaf evergreen	0.8	0.015	53.55
tree			
Needle leaf deciduous	0.76	0.015	50.83
tree			
C_3 grass	0.97	0.019	51.09
C_4 grass	0.6	0.019	31.71
Evergreen shrub	0.94	0.015	62.41
Deciduous shrub	0.76	0.015	50.40

153

Impact of incorporation of nocturnal variation in whole plant R_{To} in simulated plant respiration R_{p} and *NPP* in simulations with standard $Q_{10}=2$ and with TDQ₁₀ using mean values, upper and lower confidence intervals (CI) (See equations in Supplementary Table 4). Impact is estimated in percentage as the difference between the temporal mean of simulations with and without nocturnal variation in whole plant R_{To} for *NPP* and vice versa for R_{p} divided by respective simulations without nocturnal variation in R_{To} . Calculations only include grid cells where grid level *NPP* is >50 g m⁻² yr⁻¹ in the respective standard simulations to avoid excessively large % effects at very low *NPP*.

- 163
- 164

Simulation	Global NPP	Global <i>R</i> _p	Tropical NPP	Tropical <i>R</i> _p
Standard Q ₁₀ mean values	8.8	5.0	10.2	5.2
Standard Q10 upper CI	8.0	4.5	9.2	4.7
Standard Q ₁₀ lower CI	10.0	5.7	11.5	5.9
TDQ ₁₀ mean values	7.9	5.2	10.2	5.9
TDQ ₁₀ upper CI	7.2	4.8	9.4	5.4
TDQ ₁₀ lower CI	8.8	5.9	11.4	6.6

165

Acronym	Explanation
Q10	T-sensitivity, is the relative change in
	R obtained with a 10°C change in T
Q10,inh	Inherent Q ₁₀ : measured via short term
	(max 30 min) artificial T-changes
Q10,app	Apparent Q ₁₀ : measured via longer
	(hours) term natural changes in T in
	the environment
R	Rate of respiration
R_{T}	<i>R</i> at any given T
R_{To}	R at set T, constant T
$R_{\text{To-initial}}$	Initial measurement of R_{To}
$R_{\mathrm{T,sunset}}$	Rate of respiration at sunset in terms
	of time and temperature (Equation 5)
$R_{\mathrm{T},t}$	Rate of respiration at given timestep, t
	(Equations 4 & 5)
Т	Temperature
To	Set temperature, constant temperature
T,t	Leaf Temperature at a given timestep
	(Equations 4 & 5)
T _{sunset}	Temperature at sunset
TC	Degree to which T (via Q _{10,inh})
	determines temporal variation in R
TDQ ₁₀	T-dependent Q ₁₀

168 Explanation of symbols and acronyms regarding respiration and its temperature-sensitivity

169

171 Supplementary References

- Noguchi, K., Sonoike, K., Terashima, I. Acclimation of Respiratory Properties of Leaves of Spinacia oleracea L., a Sun Species, and of Alocasia macrorrhiza (L.) G. Don., a Shade
 Species, to Changes in Growth Irradiance. *Plant Cell Physiol.* 37, 377-384 (1996).
- Noguchi, K., Nakaijma, N., Terashima, I. Acclimation of leaf respiratory properties in
 Alocasia odora following reciprocal transfers of plants between high- and low-light
 environments. *Plant Cell Environ.* 24, 831–839 (2001).
- Bunce, J.A. Direct and Acclimatory Responses of Dark Respiration and Translocation to
 Temperature. *Ann. Bot.* 100, 67–73 (2007).
- 4. Trethewey, R. N., ap Rees, T. The role of the hexose transporter in the chloroplasts of
 Arabidopsis thaliana L. *Planta* 195, 168-174 (1994).
- 5. Watanabe, C. K., Sato, S., Yanagisawa, S., Uesono, Y., Terashima, I., Noguchi, K. Effects
 of Elevated CO₂ on Levels of Primary Metabolites and Transcripts of Genes Encoding
 Respiratory Enzymes and Their Diurnal Patterns in *Arabidopsis thaliana*: Possible
 Relationships with Respiratory Rates. *Plant Cell Physiol.* 55, 341–357 (2014).
- 6. McCutchan, C. L., Monson, R. K. Night-time respiration rate and leaf carbohydrate
 concentrations are not coupled in two alpine perennial species. *New Phytol.* 49, 419–430
 (2001).
- 189 7. Leonardos, E. D., Micallef, B. J., Micallef, M. C., Grodzinski, B. Diel patterns of leaf C
 190 export and of main shoot growth for *Flaveria linearis* with altered leaf sucrose–starch
 191 partitioning. *J. Exp. Bot.* 57, 801–814 (2006).
- Lehmann, M. M., Wegener, F., Werner, R. A., Werner, C. Diel variations in carbon isotopic
 composition and concentration of organic acids and their impact on plant dark respiration in
 different species. *Plant Biol.* 18, 776–784 (2016).

195	9.	Farrar, S. C., Farrar, J. F. Carbon fluxes in leaf blades of Barley. New Phytol. 100, 271-283
196		(1985).

- 10. Baysdorfer, C., Sicher, R. C., Kremer, D. F. Relationship between Fructose 2,6-Bisphosphate
 and Carbohydrate Metabolism in Darkened Barley Primary Leaves. *Plant Physiol.* 84, 766769 (1987).
- 11. Giuliani, R., Karki, S., Covshoff, S., Lin, H., Coe, R., Koteyeva, N., Quick, W., Von
 Caemmerer, S., Furbank, R., Hibberd, J., Edwards, G. and Cousins, A. Knockdown of glycine
 decarboxylase complex alters photorespiratory carbon isotope fractionation in *Oryza sativa*leaves. J. Exp. Bot. **70**, 2773-278. (2019).
- 204 12. Averill, R. H., ap Rees, T. The control of respiration in wheat (*Triticum aestivum* L.) leaves.
 205 *Planta* 196, 344-349 (1995).
- 13. Azcón-Bieto, J., Relationship between Photosynthesis and Respiration: The Effect of
 Carbohydrate Status on the Rate of CO2 Production by Respiration in Darkened and
 Illuminated Wheat Leaves, *Plant Physiol.* 71, 574-581 (1983).
- 14. Bruhn, D., Edgerton, J., Loveys, B. and Ball, M. Evergreen leaf respiration acclimates to
 long-term nocturnal warming under field conditions. *Glob. Change Biol.*13, 1216-1223
 (2007).