
Appendix S1.  Finding the singular value decomposition through eigendecomposition.  

The columns of  and  and the values of  can be found by forming the matrix product 𝑈 𝑉 Σ

 and  and then finding the eigenvectors and eigenvalues of these two products.  𝐹𝐹𝑇 𝐹𝑇𝐹

Depending on the order of multiplication of F with its transpose, two different matrices are 

obtained.

(S1A)𝐶 = 𝐹𝐹𝑇

(S1B)𝐷 = 𝐹𝑇𝐹

We refer to  as a "sequence identity matrix" and to  as a "residue pair count matrix" for 𝐶 𝐷

reasons that will become clear below.  and  are symmetric with dimensions m by  and  𝐶 𝐷 𝑚 20𝓁

by  respectively.20𝓁
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Each element in the  matrix gives the number of identities in a pair of aligned 𝐶

sequences.  The diagonal elements, which result from the dot product of each MSA sequence 

vector  with itself, are equal to the length of sequence  (  minus the number of gaps).  The off-𝑠𝑖 𝑖 𝓁

diagonal elements, which result from the dot product of pairs of sequences, are equal to the 

number of identical residues between sequences  and .𝑖 𝑗

Each element of the  matrix gives the number of sequences that contain a pair of 𝐷

residues at two positions. Each element  on the main diagonal (resulting from the dot product 𝑑𝑖𝑖

of each residue vector  with itself) is a count of how many times a residue of a given type 𝑟𝑖

occurs at a given position.  There are two types of off-diagonal elements in .  The off-diagonal 𝐷

elements that are contained within 20 by 20 block matrices running along the main diagonal of   𝐷

all have values of zero because they count the number of impossible sequences where two 

different residue types (e.g., Ala and Leu) occur at the same position.  Outside of these blocks, 

elements  correspond to the number of sequences that have a residue of one type at position , 𝑑𝑖𝑗 𝑖

and a residue of another type at position .  If these two residue types occur frequently in 𝑗

positions  and  in the same sequences,  will be a large number.𝑖 𝑗 𝑑𝑖𝑗

The singular value decomposition of the F matrix is closely related to the 

eigendecomposition of the  and  matrices (which are the matrices on which principal 𝐶 𝐷

component analysis is performed10).  Each of these symmetric matrices can be written in a 

diagonalized form:

(S2A)𝐶 = 𝑋 ∧ 𝐶𝑋 ―1

   (S2B) 𝐷 = 𝑌 ∧ 𝐷𝑌 ―1

10 Though typically PCA is performed on a data matrix in which the columns of matrix  are shifted to have a mean 𝐹
of zero.  When this "centering" is applied, the first component of the PCA (and SVD) no longer reflects the 
conservation among sequences. 
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 and  are square matrices of dimensions  by  and  by , respectively.  Their 𝑋 𝑌 𝑚 𝑚 20𝓁 20𝓁

columns (  and ) are the eigenvectors of  and , which we will refer to as sequence and 𝐶 𝐷

residue eigenvectors, respectively.   and  are diagonal matrices with the same dimensions ∧ 𝐶 ∧ 𝐷

as  and , respectively, with eigenvalues  on their diagonals.  Equations S2A and S2B are 𝐶 𝐷 𝜆𝑖

rearranged versions of the eigenvalue equations

 (S3A)𝐶𝑥(𝑖) =  𝜆𝑖𝑥(𝑖)

   (S3B)𝐷𝑦(𝑖) =  𝜆𝑖𝑦(𝑖)

which state that for each eigenvector/eigenvalue pair, multiplying the sequence and residue 

eigenvectors  and  by matrices  and  does not change the direction of  and , but 𝑥(𝑖) 𝑦(𝑖) 𝐶 𝐷 𝑥(𝑖) 𝑦(𝑖)

simply scales them by their eigenvalues11.  As in SVD, the eigenvectors  and  are 𝑥(𝑖) 𝑦(𝑖)

normalized to have unit length, and the eigenvalues are adjusted accordingly.

Because the  and  matrices are symmetric (i.e., they are equal to their transposes), their 𝐶 𝐷

eigenvectors are orthogonal.  Thus,  and  are orthogonal matrices.  Since the inverse of an 𝑋 𝑌

orthogonal matrix is equal to its transpose (e.g., ), Equations S2A and S2B can be 𝑋𝑇 =  𝑋 ―1

written as 

(S4A)𝐶 = 𝑋 ∧ 𝐶𝑋𝑇

(S4B)𝐷 = 𝑌 ∧ 𝐷𝑌𝑇

To relate the eigendecomposition of  and  and the SVD of , we can substitute the 𝐶 𝐷 𝐹

singular value decomposition of F (Equation 1) into Equations S1A and S1B.  For example, 

     (S5)𝐶 = 𝐹𝐹𝑇

11 Note that Equations S3A and S3B seem like more than just simple rearrangements of the Equations S2A and S2B 
because the former are matrix equations and the latter are vector equations, Equations S3A and S3B can be 
obtained by right-multiplying Equations S2A and S2B by their eigenvalue matrices and evaluating a column at a 
time.
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     = 𝑈Σ𝑉𝑇(𝑈Σ𝑉𝑇)𝑇

     = 𝑈Σ𝑉𝑇(𝑈Σ𝑉𝑇)𝑇

Because  (since  is orthogonal),𝑉𝑇 =  𝑉 ―1  𝑉

               (S6)     𝐶 = 𝑈Σ𝑉 ―1Σ𝑇U𝑇

= 𝑈ΣΣ𝑇U𝑇  

Comparing Equations 8 and 3A gives 

  (S7)𝑈ΣΣ𝑇U𝑇 =  𝑋 ∧ 𝐶𝑋 ―1

An analogous relationship involving V and Y can be obtained from Equations 1 and S1B using a 

derivation analogous to Equations S5-S7:

(S8)𝑉Σ𝑇ΣV𝑇 =  𝑌 ∧ 𝐷𝑌 ―1

Equations S7 and S8 imply that

(S9A)𝑈 = 𝑋

(S9B)𝑉 = 𝑌

that is, the SVD matrices  and  of  are equal to the eigenvector matrices  and  of  and 𝑈 𝑉 𝐹 𝑋 𝑌 𝐹𝐹𝑇

.  Additionally, Equations S7 and S8 imply that 𝐹𝑇𝐹

(S10A)ΣΣ𝑇 =  ∧ 𝐶

(S10B)Σ𝑇Σ =  ∧ 𝐷

Multiplying out the products on the left-hand sides of Equations S10A and S10B gives the result 

that .  This relationship requires the same ordering of eigenvectors and values as 𝜎2
𝑖 =  𝜆𝑖

described above for SVD (i.e., decreasing values of  along the diagonal of ).  Equations 𝜆𝑖 ∧

S10A and S10B require that the eigenvalues associated with the sequence identity matrix  are 𝐶

the same as those associated with residue pair count matrix , even though  and  differ in 𝐷 ∧ 𝐶 ∧ 𝐷

dimension.  The connection between eigendecomposition and SVD is summarized in Figure S2.  
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In addition to providing a means to obtain a singular value decomposition of , the eigenvalue 𝐹

approach forms the basis of PCA.

Appendix S2.  Visualizing MSA sequences in SVD space.

The coordinates of sequences in SVD space can be obtained by separating the U and V 

matrices in the SVD Equation 1.  Right-multiplying Equation 1 by the V matrix gives12

(S11)𝐹𝑉 = 𝑈Σ𝑉𝑇𝑉 = 𝑈Σ𝑉 ―1 = 𝑈Σ

The left side of Equation S11 is a matrix in which each element is the dot product of a sequence 

vector  from  and a residue eigenvector  (Figure S3).  The right side of Equation S11 is a 𝑠(𝑖) 𝐹 𝑣(𝑘)

matrix in which the columns are the sequence eigenvectors weighted by their corresponding 

singular values (e.g., the  column is ).  The equality between the  and  product 𝑘𝑡ℎ 𝜎𝑘𝑢(𝑘) 𝐹𝑉 𝑈Σ

matrices requires that each of their corresponding elements (for example, the red and blue boxed 

elements in Figure S3) be equal, giving a set of  equations of the form of Equation 2 in the 𝑚

main text:

(S12)𝑠𝑖 ∙ 𝑣(𝑘) =  𝜎𝑘𝑢(𝑘)
𝑖

Appendix S3.  Scripts for SVD analysis of multiple sequence alignments.

To run SVD on a family of sequences, an MSA must be prepared.  Although the 

guidelines for MSA preparation provided above have performed well in revealing functionally 

relevant clustering, they may not be optimal for all protein families.  It may be wise to try a 

range of identity filters, length cut-offs, and gap filters.  Once an MSA is prepared, SVD can be 

performed using a collection of Python scripts that we have made available in GitHub 

12 Again, we use the equality  which results from the orthogonality of .𝑉𝑇 =  𝑉 ―1 𝑉
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(https://github.com/barricklab-at-jhu/SVD-of-MSAs).  To help streamline the process, we have 

combined various calculations into a single Jupyter Notebook.  The major steps in the process 

are show in in Figure S11, along with the various output files.
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