Supporting Information

Improved Bst DNA polymerase variants derived via a machine-learning approach

Inyup Paik^{1,2}, Phuoc H. T. Ngo^{1,2,3}, Raghav Shroff^{1,2,4}, Daniel J. Diaz^{2,3}, Andre C. Maranhao^{1,2}, David J.F. Walker^{1,2}, Sanchita Bhadra^{1,2} and Andrew D. Ellington^{1,2,*}

1 Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA

2 Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA

3 Department of Chemistry, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA

4 CCDC Army Research Lab-South, Austin, TX 78712, USA

 $*$ To whom correspondence should be addressed. Tel: $+1-512-232-3424$, $+1-512-471-6445$; Fax: +1-512-471-7014; Email: ellingtonlab@gmail.com

Figure S1. Schematic diagram of LAMP-OSD (Oligonucleotide Strand

Displacement) FAM and Q represent 6-Carboxyfluorescein (6-FAM) fluorophore and quencher,

respectively.

Figure S2. Effect of varying amounts of Br512 on LAMP-OSD of DNA templates. Indicated amounts of Br512 were compared with indicated amounts of in-house purified Bst-LF and commercially sourced Bst 2.0 in human *GAPDH* gene-specific LAMP-OSD assays operated in 1X isothermal buffer (NEB). Reactions were seeded with either 6000 copies of *GAPDH* plasmid template or with no specific templates (NTC). Amplification curves generated by real-time measurement of OSD fluorescence at 65 °C are depicted.

.

Figure S3. Comparison of Br512, Mut23, Mut235, Bst-LF, Bst2.0, and Bst3.0 in LAMP-OSD assays of DNA templates. LAMP-OSD assays for the human *gapd* gene were carried out with 16 units of commercially sourced Bst 2.0 (panel A), 16 units of commercially sourced Bst 3.0 (panel B), 20 pm of in-house purified Bst-LF (panel C), 20 pm of in-house purified Br512 (panel D), 20 pm of in-house purified Mut23 (panel E), or with 20 pm of in-house purified Mut235 (panel F) in the indicated reaction buffer. Amplification curves were observed in real-time at 65 °C by measuring OSD fluorescence in reactions seeded with 600,000 (black traces), 60,000 (red traces), 6,000 (blue traces), 600 (pink traces), and 0 (gray traces) copies of *GAPDH* plasmid templates.

Figure S4. Comparison of Br512, Bst-LF, and Bst 2.0 in LAMP assays of DNA templates read using EvaGreen intercalating dye. LAMP assays for human *GAPDH* gene were operated using Bst 2.0, Bst-LF, or BR512 in the indicated reaction buffer. Amplification curves observed in real-time at 65 °C by measuring EvaGreen fluorescence in reactions seeded with 600,000 (black traces),

60,000 (red traces), 6,000 (blue traces), 600 (pink traces), and 0 (gray traces) copies of *GAPDH*

plasmid templates are depicted. LAMP amplicons were analyzed using the 'melt curve analysis' on LightCycler 96 real-time PCR machine and resulting melting peaks are indicated in the corresponding colored traces.

Figure S5. Initial evaluation of computationally predicted substitutions on Br512 (Bst-LF)

activity. LAMP assays were carried out with a 20 pg (6x10⁷ copies) of *GAPDH* DNA template to

assess the effect of the individual mutations suggested by Mutcompute on Br512 activity. Amplification was observed by EvaGreen dye fluorescence change (Y-axis) over time of incubation in minutes (X-axis) at 65° C. Blue traces indicates Br512 wild type and burnt orange traces are individual mutations (Mut1-Mut10).

Figure S6. Heat challenge LAMP assay with computationally predicted single amino acid substitutions. LAMP assays assembled with wildtype Br512 (wt) or Mutcompute calculated Br512 variants (Mut1 to 5) were subjected to indicated thermal challenges (top panel: no thermal challenge; middle panel: 3 min at 75° C; lower panel: 30 sec at 80° C) prior to real time measurement of DNA amplification during continuous incubation at 65°C. Amplification kinetics was determined by measuring EvaGreen fluorescence (Y-axis) over incubation time in minutes (X-axis; hh:mm:ss). Green: Br512 wt (wild type), Dark blue: Mut1, Red: Mut2, Dotted gray: Mut3, Dotted orange: Mut4, Dotted blue: Mut5

Figure S7. Heat challenge LAMP assay with double mutation Br512 variants.

Activities of wild type (blue traces) and the various double mutant Mutcompute Br512 variants (orange traces) were compared in identical LAMP assays containing 20 pg $(6x10⁷$ copies) of

GAPDH DNA templates that were subjected to indicated thermal challenges (top panel: no thermal challenge; middle panel: 3 min at 75 ° C; lower panel: 30 sec at 80 ° C) prior to real time measurement of DNA amplification at 65°C. Representative amplification curves determined by measuring EvaGreen fluorescence (Y-axis) over incubation time (X-axis; minutes) are depicted.

Figure S8. Threshold cycle (Ct) analysis of triple Mutcompute variants. *GAPDH* LAMP assay results shown in Figure 3 b-d were further quantified with Ct values in minutes. Threshold cycles for amplification of 20 pg (6x10⁷ copies) *GAPDH* DNA templates were calculated using the Lightcycler96 software (Roche). Lower Ct indicates faster amplification. Upper panel: Ct values for No Heat LAMP, Middle panel: Ct values for 75° C 3min heat challenge LAMP, Lower panel: Ct values for 80^oC 30sec heat challenge LAMP., Error bar=S.D., n=2 for No Heat, n=3 for 75^oC and 80° C heat challenge LAMP (Y-axis: Ct in minutes).

Figure S9. Comparison of Br512, Mut23, Mut235, Bst-LF, Bst2.0, and Bst3.0 in LAMP-OSD assays executed at 73 °C. LAMP-OSD assays for the human *GAPDH* gene were carried out with indicated amounts of commercially sourced Bst-LF, Bst 2.0, and Bst 3.0 and in-house purified Br512, Mut23, and Mut235. Amplification curves were observed in real-time at 73 \degree C by measuring OSD fluorescence in reactions seeded with 60,000 (red traces), 6,000 (blue traces), 600 (pink traces), and 0 (gray traces) copies of *GAPDH* plasmid templates.

Figure S10. Protein Thermal Shift Assay for engineered Bst-LF variants.

Thermal stability of the parental (Bst-LF) and engineered enzyme variants were analyzed using Protein Thermal ShiftTM (Thermo Fisher; Catalog Number: 4461146), a dye-based protein thermal shift assay, according to the manufacturer's instructions. The enzymes (5µg) were incubated in a Lightcyler 96 (Roche) real-time PCR machine programmed to ramp temperature from 37 °C to 95 °C at the rate of 0.1 °C/sec while continuously measuring changes in red fluorescence. Melt curves generated by plotting change in fluorescence (dF) as a function of changing temperature (dT) are

depicted.

Figure S11. Generating a microenvironment and a label for self-supervised learning. (a) Select a focal residue (pink; T493; Mut2) and filter all atoms within a 10-angstrom cube of the alpha carbon (green). The cube orientation is determined by normalizing to the protein backbone and aligning the side chain with the +z axis. (b) Delete remaining protein atoms (blue). (c) Mask the focal residue (pink; T493) by deleting it to generate the microenvironment. Now we can utilize the microenvironment as input to a CNN model and the masked focal residue as a label to conduct

self-supervised learning. MutCompute predicted an asparagine as the most probable amino acid to

belong in the center of this microenvironment

Supplementary Table 2. Full sequence of pKAR2-Br512; 6218 bp. Br512 is highlighted.

Detailed annotation of Br512

 $4285 - 4311$ $8x$ His

4312-4452 : HP47

4453-4476 : 2(GS)3(A)P

4476-6216 : Bst-LF

ATCCTAAGCTTAATTTAGCATAACCCCTTGGGGCCTCTAAACGGGTCTTGAGGGGT TTTTTGAGCTGAGCTTGGACTCCTGTTGATAGATCCGGCCGGTAATGACCTCAGAA CTCCATCTGCCTAATGGAGTGATTCTAGCCGGTCGTTACACGTGGAACGGGAACT GCCAGACATCAAATAAAACAAAAGGCTCAGTCGGAAGACTGGGCCTTTTGTTTTAT CTGTTGTTTGTCGGTGAACACTCTCCCGGAAAACTCACGTTAAGGGATTTTGGTCA TGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAACTAGTGAAGTTACCATC ACGGAAAAAGGTTATGCTGCTTTTAAGACCCACTTTCACATTTAAGTTGTTTTTCTAA TCCGCAAATGATCAATTCAAGGCCGAATAAGAAGGCTGGCTCTGCACCTTGGTGAT CAAATAATTCGATAGCTTGTCGTAATAATGGCGGCATACTATCAGTAGTAGGTGTTT CCCTTTCTTCTTTAGCGACTTGATGCTCTTGATCTTCCAATACGCAACCTAAAGTAA AATGCCCCACTGCACTGAGTGCATATAATGCATTCTCTAGTGAAAAACCTTGTTGG CATAAAAAGGCTAATTGATTTTCGAGAGTTTCATACTGTTTTTCTGTAGGCCGTGTA CCTAAATGTACTTTTGCTCCATCGCGATGACTTAGTAAAGCACATCTAAAACTTTTA GCGTTATTACGTAAAAAATCTTGCCAGCTTTCCCCTTCTAAAGGGCAAAAGTGAGT ATGGTGCCTATCTAACATCTCAATGGCTAAGGCGTCGAGCAAAGCCCGCTTATTTT

TTACATGCCAATACAATGTAGGCTGCTCTACACCTAGCTTCTGGGCGAGTTTACGG GTTGTTAAACCTTCGATTCCGACCTCATTAAGCAGCTCTAATGCGCTGTTAATCACT TTACTTTTATCTAAACGAGACATCATTAACCTCCTCAAGAGGATCGAATAGTTATTA CCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCAT AGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCT GGCCCCAGTGCTGCAATGATACCGCGAGAGCCACGCTCACCGGCTCCAGATTTAT CAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTTT ATCCGCCTCCATCCAGTCTATCAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGC CAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGC TCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTAC ATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTG TCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAAT TCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACC AAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAAT ACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAAC GTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATG TAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCT GGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACA CGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGG GTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATTTTTTAAGGCA GTTATTGGTGCCGCTTAAACGCCTGGGGTAATGACTCTCTAGCTTGAGGCATCAAA TAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCG GTGAACGCTCTCCTGAGTAGGACAAATCCGCCCTCTAGATTACGTGCAGTCGATG ATAAGCTGTCAAACGGAATTTCGGGCAGCGTTGGGTCCTGGCCACGGGTGCGCC GGTGTGAAATACCGCACAGATGCGTAAGGAGAAAATACCGCATCAGGCGCTCTTC CGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGT ATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCA GGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCC GCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATC GACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTT TCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGA TACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTG TAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAA CCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCA ACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAG CAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTAC GGCTACACTAGAAGGACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTT CGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGT GGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGA TCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAG GGATTTTGGTCATGGAATTAATTCTTAGAAAAACTCATCGAGCATCAAATGAAACTG CAATTTATTCATATCAGGATTATCAATACCATATTTTTGAAAAAGCCGTTTCTGTAAT GAAGGAGAAAACTCACCGAGGCAGTTCCATAGGATGGCAAGATCCTGGTATCGGT CTGCGATTCCGACTCGTCCAACATCAATACAACCTATTAATTTCCCCTCGTCAAAAA TAAGGTTATCAAGTGAGAAATCACCATGAGTGACGACTGAATCCGGTGAGAATGGC AAAAGTTTATGCATTTCTTTCCAGACTTGTTCAACAGGCCAGCCATTACGCTCGTCA TCAAAATCACTCGCATCAACCAAACCGTTATTCATTCGTGATTGCGCCTGAGCGAA GACGAAATACGCGATCGCTGTTAAAAGGACAATTACAAACAGGAATCGAATGCAAC CGGCGCAGGAACACTGCCAGCGCATCAACAATATTTTCACCTGAATCAGGATATTC TTCTAATACCTGGAATGCTGTTTTCCCGGGGATCGCAGTGGTGAGTAACCATGCAT CATCAGGAGTACGGATAAAATGCTTGATGGTCGGAAGAGGCATAAATTCCGTCAG CCAGTTTAGTCTGACCATCTCATCTGTAACATCATTGGCAACGCTACCTTTGCCATG TTTCAGAAACAACTCTGGCGCATCGGGCTTCCCATACAATCGATAGATTGTCGCAC CTGATTGCCCGACATTATCGCGAGCCCATTTATACCCATATAAATCAGCATCCATGT TGGAATTTAATCGCGGCCTAGAGCAAGACGTTTCCCGTTGAATATGGCTCATAACA CCCCTTGTATTACTGTTTATGTAAGCAGACAGTTTTATTGTGTAATCGTTAATCCGC AAATAACGTAAAAACCCGCTTCGGCGGGTTTTTTTATGGGGGGAGTTTAGGGAAAG AGCATTTGTCATCATGACCATGACATTAACCTATAAAAATAGGCGTATCACGAGGC CCTTTCCCTAGGGTCTTCACACTCTATCATTGATAGAGTTAATACGACTCACTATAG GGTCCCTATCAGTGATAGAGAGAATTCGTACTGAGCACAGCTGTCACCGGATGTG CTTTCCGGTCTGATGAGTCCGTGAGGACGAAACAGCCTCTACAAATAATTTTGTTTA AACTAGTTAGATAAGGAGGTTACATATGCACCATCATCACGGTCATCACCACCATC CGCGTGGTGTTGACCCGAGCCGTAAGGAGAACCACCTGTCTGACGAAGACTTCAA GGCGGTGTTCGGTATGACCCGTTCTGCGTTCGCGAACCTGCCGCTGTGGAAACAA CAGAACCTGAAGAAGGAGAAAGGTCTGTTCGGTTCTGGAAGCGCAGCAGCACCTA AGATGGCATTCACATTGGCCGATCGTGTCACCGAAGAGATGCTGGCAGACAAGGC AGCCTTGGTCGTGGAGGTAGTTGAGGAGAACTATCACGACGCACCGATTGTTGGA ATCGCCGTGGTCAATGAACATGGTCGCTTCTTCTTGCGCCCTGAGACTGCGTTGG CCGACCCACAATTCGTGGCCTGGTTAGGAGATGAAACGAAGAAGAAGTCAATGTT CGACAGCAAACGCGCAGCCGTAGCTCTGAAGTGGAAAGGAATTGAGCTGTGTGGT GTGAGTTTCGACCTTCTCTTAGCAGCGTACTTGCTTGATCCCGCTCAAGGCGTCGA CGACGTGGCAGCCGCTGCCAAGATGAAGCAATATGAAGCGGTGCGTCCGGATGA GGCTGTGTACGGGAAGGGAGCTAAACGCGCGGTGCCTGATGAACCCGTGCTTGC TGAGCACTTGGTACGCAAGGCTGCGGCTATCTGGGAGCTGGAGCGTCCCTTCCTG GATGAGTTGCGTCGCAACGAGCAGGACCGCCTGCTTGTAGAGTTAGAACAGCCTC TTAGCTCTATTCTTGCCGAGATGGAGTTCGCTGGTGTCAAAGTAGATACCAAGCGC CTTGAGCAAATGGGTAAGGAGTTGGCTGAACAACTGGGCACAGTGGAACAGCGTA TCTACGAACTGGCCGGTCAGGAGTTCAACATCAACAGCCCCAAGCAGCTGGGAGT GATCCTGTTCGAGAAGTTGCAGCTGCCAGTATTGAAGAAGACTAAGACTGGCTACA GTACCTCGGCTGACGTACTGGAGAAGCTGGCTCCTTACCATGAGATCGTGGAGAA CATCTTGCACTACCGCCAGCTGGGCAAGCTGCAGTCTACCTACATTGAGGGTCTG TTAAAGGTCGTGCGTCCAGACACGAAGAAGGTGCATACGATCTTCAATCAGGCGC TGACCCAAACTGGTCGTTTGTCGTCCACAGAGCCCAATCTTCAGAATATCCCTATT CGTCTTGAGGAAGGCCGCAAGATTCGCCAGGCCTTCGTTCCTTCGGAATCGGACT GGCTGATCTTCGCAGCAGATTACTCACAGATCGAGCTTCGCGTGTTGGCACATATC GCGGAGGATGACAACTTAATGGAGGCGTTCCGCCGCGATCTGGATATCCATACTA AGACCGCGATGGATATCTTCCAAGTGTCAGAAGACGAGGTAACACCGAACATGCG ACGCCAGGCGAAAGCGGTTAACTTCGGCATCGTCTACGGCATCAGCGACTATGGC CTGGCCCAGAACTTGAACATCAGCCGCAAGGAGGCAGCCGAGTTCATCGAGCGCT ACTTCGAGAGTTTCCCAGGTGTGAAGCGTTATATGGAGAATATCGTACAAGAGGCG AAGCAGAAAGGCTACGTGACCACGCTGTTACACCGTCGTCGCTACCTTCCTGATAT CACTAGCCGTAACTTCAATGTACGTTCCTTCGCCGAACGCATGGCGATGAATACCC CCATCCAGGGGTCAGCTGCAGATATCATCAAGAAAGCTATGATCGACTTAAACGCT CGTCTGAAGGAAGAACGCTTACAGGCGCACCTCTTACTGCAAGTCCATGACGAATT GATCCTTGAGGCGCCCAAGGAAGAGATGGAGCGTCTTTGCCGTCTGGTGCCGGA AGTAATGGAACAGGCCGTCACGCTGCGCGTACCTCTGAAAGTCGATTACCACTAC GGCTCCACCTGGTATGACGCCAAGTAAGG