Metabolic control of histone acetylation for precise and timely regulation of minor ZGA in early mammalian embryos

Jingyu Li,^{2,8} Jiaming Zhang,^{1,7,8} Weibo Hou,^{1,7,8} Xu Yang,¹ Xiaoyu Liu,³ Yan Zhang,⁴ Meiling Gao,⁴ Ming Zong,^{1,7} Zhixiong Dong,¹ Zhonghua Liu,⁷ Jingling Shen,⁵ Weitao Cong,⁶ Chunming Ding,¹ Shaorong Gao,^{3,*} Guoning Huang,^{2,*} and Qingran Kong^{1,*}

¹School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China

²Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China

³Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China

⁴School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China

⁵Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, China

⁶School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China.

⁷College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China

⁸These authors contributed equally

*Correspondence: gaoshaorong@tongji.edu.cn (S.G.), gnhuang217@sina.com (N.G.), kqr721726@163.com (Q.K.)

Supplementary Information: Supplementary Figs. S1-7 Supplementary Tables S1-6

2-cell

4-cell

8-cell

Morula

Blastocyst

С

Figure S1. Targeted metabolomic analysis. a Relative level of 11 metabolites related to carbohydrate metabolism during mouse early embryo development based on targeted metabolomic data. **b** Heatmap showing comparison of untargeted and targeted metabolome data. **c** Network connections of metabolites (yellow) and genes (pink)

а

Figure S2. Activities of metabolic pathways during mouse pre-implantation embryo development. a Changes in metabolic enzyme levels during mouse pre-implantation development. Expression patterns of metabolic enzymes on RNA and protein according to transcriptomic and proteomic data on mouse early embryos.

-Trp

Expression level during preimplantation development (protein)

Gene	Zygote	2-cell	4-cell	8-cell	Morula	Blastocyst
NAMPT	0.5781	0.7520	0.9063	1.0256	1.0508	1.6872

ns T

е

f

ns

b

Figure S3. Inhibition of NAD⁺ synthesis impairs mouse early embryonic development. **a**, Developmental rate of mouse embryos cultured in Trp-deprived medium. **b**, Expression patterns of *Nampt* at mRNA (upper) and protein (bottom) levels during mouse preimplantation embryonic development. **c**, Developmental rate of mouse embryos cultured in FK866-addition medium. **d**, Developmental rate of mouse embryos cultured in NMN-addition medium, 5 μ M and 10 μ M NMN were added into the KSOM medium. Neither concentrations could significantly affect the development of mouse embryos. Thus, the 10 μ M NMN was used in the rescue experiments. Developmental rate of mouse embryos cultured in GNE-140-addition medium (**e**) and oxamate-addition medium (**f**). Expression patterns of *Ldha* (**g**) and *Ldhb* (**h**) according to RNA-seq data on mouse early embryos.

upregulated gene in FK866-treated late 2-cell

b

Figure S4. RNA-seq analysis of control and FK866-treated mouse embryos. a Unsupervised clustering of gene expression among control and FK866-treated embryos at the late 2- and 4-cell stages. **b** KEGG analysis of upregulated genes in FK866-treated late 2- and 4-cell embryos. **c** Bar plot showing the numbers of ZGA genes embedded within upregulated genes upon FK866 treatment, and those expected by chance in late 2- and 4-cell embryos. Box plots showing ZGA genes upregulated between control and FK866-treated embryos that were rescued by NMN supplementation in (**d**) late 2-cell and (**e**) 4-cell embryos, respectively.

Figure S5. Establishment of zyH3K27ac landscapes in early mouse embryos. a, b Immunostaining of H3K9ac during mouse pre-implantation embryo development. Representative image from three independent experiments is shown. Scale bar, 25 µm. Each dot represents a single nucleus. c, d Dynamics of H3K27ac enrichment across all pronuclear stages in the zygote. The H3K27ac fluorescence intensity of zygotes was quantified. Each dot represents a single nucleus. e Genome-wide landscapes of H3K27ac histone modification in mouse sperm, oocyte, zygote (PN4), early 2-cell, late 2-cell, and 4-cell embryos. f Fraction of the mouse genome covered by H3K27ac reads at different developmental stages. g Pie charts show the percentages of H3K27ac peaks assigned to the promoter, intron, exon, and intergenic regions. h Representative confocal images of control, FK866-treated, and FK866+NMN-treated 4-cell embryos stained with H3K27ac antibody. Scale bars, 25 μm. i Quantification of H3K27ac fluorescence intensity in 4-cell embryos. Each dot represents a single nucleus. j Heatmap showing all H3K27ac signals ranked by their relative change after FK866 treatment. NMN rescued the changes induced by FK866 treatment in 4-cell embryos. Heatmap showing minor ZGA genes (k) and major ZGA genes (m) promoter H3K27ac signals in zygote, early 2-cell, and late 2-cell embryos. Heatmap showing minor ZGA genes (I) and major ZGA genes (n) promoter ATAC signals in early and late 2-cell embryos. o Representative confocal images of control and pyruvate-deprived zygotes stained with H3K27ac antibody. Scale bars, 25 µm.

Fig. S6 Failure of zyH3K27ac removal resulted in excessive minor ZGA. a Schematic presentation of the experimental TSA treatment protocol. b Representative images and (c) developmental rates of control and TSA-treated embryos. Data are from three independent experiments. ***P < 0.001 (Student's t-test). Scale bars, 50 μm. **d** Quantification of cells in control and TSA-treated embryos. Dots represent cell numbers in a single embryo. e Representative confocal images of control and TSA-treated embryos stained with H3K27ac antibody. Scale bars, 75 µm. f Quantification of H3K27ac fluorescence intensity in control and TSA-treated embryos. Each dot represents a single nucleus. g Heatmap showing zyH3K27ac signals ranked by their relative change after TSA treatment. h Metaplot of H3K27ac signals (Z-score normalized) in control and TSA-treated late 2-cell embryos. i Unsupervised clustering of gene expression among control and TSA-treated embryos at the late 2-cell stage. j RNA-seq analysis results for control and TSA-treated late 2-cell mouse embryos. Volcano plots show gene expression changes. Yellow and blue dots indicate significantly upregulated (fold change > 1) and downregulated (fold change < -1) genes (P < 0.05). k Heatmap (left) showing H3K27ac signals ranked by their relative changes after TSA treatment. Heatmap (right) shows that minor ZGA genes were upregulated between control and TSA-treated embryos. Mean values of two biological replicates were scaled and are represented as Z scores.

е

2

k

С

d

p < 2.2e−16

Domain architecture comparison of SIRT1 between human and mouse

b

Fold Change (FPKM)

10

5

0

Score		Expect Method	Identities	Positives	Gaps	Frame			
1148 bits(2970) 0.0() Compositional matrix adjust. 632/748(84%) 671/748(89%) 12/748(1%)									
Human	1	MADEAALALQPGGSPSAAGADREAAS	SPAGEPLRKRE	RRDGPGLERS	PGEPGGAAPE	REV 60			
Mouse	1	MADE ALALQ GS +A A EAAS MADEVALALQAAGS-PSAAAAMEAAS	PA EPLRKRE PADEPLRKRE	RRDGPGL RS	PGEP A PGEPSAAVAP	AAA 59			
Human	61	PAAARGCPGAAAAALWREAEAAAAA	GEQEAQATAA	AGEGDNGPGL	QGPSREPPLA	DNL 120			
Mouse	60	GCEAASAAAPAALWREAAGAAASA	EREAPATAV	AG+GDNG GL	RREPRAA	DF 112			
Human	121	YDEDDDDEGEEEEEAAAAAIGYRDNL	LFGDEIITNGF	HSCESDEEDR	ASHASSSDWI	PRP 180			
Mouse	113	DDDEGEEEDEAAAAAAAAAIGIRDNL	LLTDGLLTNGF	HSCESDDDDR	ISHASSSDWI	PRP 172			
Human	181	RIGPYTFVQQHLMIGTDPRTILKDLL	PETIPPPELDE	MTLWQIVINI	LSEPPKRKKR	KDI 240			
Mouse	173	RIGPTTFVQQHLMIGTDPRTILKDLL	PETIPPPELDI	MTLWQIVINI	LSEPPKRKKR	KDI 232			
Human	241	NTIEDAVKLLQEC <mark>KKIIVLTGAGVSV</mark>	SCGIPDFRSRD	GIYARLAVDF	PDLPDPQAMF	DIE 300			
Mouse	233	NTIEDAVKLLQECKKIIVLTGAGVSV NTIEDAVKLLQECKKIIVLTGAGVSV	SCGIPDFRSRI	GIYARLAVDF GIYARLAVDF	PDLPDPQAME PDLPDPQAME	DIE 292			
Human	301	YFRKDPRPFFKFAKEIYPGQFQPSLC	HKFIALSDKEG	KLLRNYTQNI	DTLEQVAGIO	RII 360			
Mouse	293	YFRKDPRPFFKFAKEIYPGQFQPSLC	HKFIALSDKEG	KLLRNYTQNI	DTLEQVAGIÇ	RIL 352			
Human	361	QCHGSFATASCLICKYKVDCEAVRGD	IFNQVVPRCPF	CPADEPLAIM	KPEIVFFGEN	LPE 420			
Mouse	353	QCHGSFATASCLICKYKVDCEAVRGD QCHGSFATASCLICKYKVDCEAVRGD	IFNQVVPRCPF	CPADEPLAIM	KPEIVFFGEN	ILPE 412			
Human	421	QFHRAMKYDKDEVDLLIVIGSSLKVR	PVALIPSSIPH	EVPQILINE	PLPHLHFDVE	LLG 480			
Mouse	413	QFHRAMKYDKDEVDLLIVIGSSLKVR	PVALIPSSIP	EVPOILINE	PLPHLHFDVE	LLG 472			
Human	481	DCDVIINELCHRLGGEYAKLCCNPVK	LSEITEKPPRI	OKELAYLSEL	PPTPLHVSED	SSS 540			
Mouse	473	DCDVIINELCHRLGGEYAKLCCNPVK	LSEITEKPPR	QKELVHLSEL	PPTPLHISED	SSS 532			
Human	541	PERTSPPDSSVIVTLLDQAAKSN-DD	LDVSESKGCME	EKPQEVQTSR	NVESIAEQME	NPD 599			
Mouse	533	PERTVPQDSSVIATLVDQATNNNVND	LEVSES-SCVE	EKPQEVQTSR	NVENINVE	NPD 589			
Human	600	LKNVGSSTGEKNERTSVAGTVRKCWP	NRVAKEQISRE	LDGNQYLFLP	PNRYIFHGAE	VYS 659			
Mouse	590	FKAVGSSTADKNERTSVAETVRKCWP	NRLAKEQISKF	LEGNQYLFVP	PNRYIFHGAE	VYS 649			
Human	660	DSEDDVLSSSSCGSNSDSGTCQSPSL	EEPMEDESEIE	EFYNGLEDEP	DVPERAGGAG	FGT 719			
Mouse	650	DSEDDVLSSSSCGSNSDSGTCQSPSL	EEPLEDESEIF	FGA 709					
Human	720	DGDDQEAINEAISVKQEVTDMNYPSN	KS 747						
Mouse	710	DGGDQEVVNEAIATRQELTDVNYPSD	KS 737						

j

Figure S7. Effect of Sirt1 knockdown on zyH3K27ac removal. a, b Sirtuin family expression patterns according to RNA-seq data in early mouse embryos. Results of (c) qPCR and (d) immunofluorescence analysis of late 2-cell Sirt1 knockdown embryos, validating the Sirt1 knockdown efficiency results. e Quantification of SIRT1 the fluorescence intensity of control and Sirt1 knockdown in late 2-cell embryos. Each dot represents a single nucleus. f Representative confocal images of control and Sirt1-knockdown embryos stained with H3K9ac antibody. Scale bars, 50 µm. g Heatmap showing zyH3K27ac signals ranked by their relative change after Sirt1 knockdown in late 2-cell embryos. h Unsupervised clustering of gene expression among control and Sirt1 knockdown embryos at the late 2-cell stage. i RNA-seq analysis results for control and Sirt1 knockdown in late 2-cell mouse embryos. Volcano plots show gene expression changes. Yellow and blue dots indicate significantly upregulated (fold change > 1) and downregulated (fold change < -1) genes (P < 0.05). j Heatmap (left) showing H3K27ac signals ranked by their relative change after Sirt1 knockdown. Heatmap (right) shows that minor ZGA genes were upregulated between control and Sirt1-knockdown embryos. Mean values of two biological replicates were scaled and are represented as Z scores. k SIRT1 proteins are conserved between human and mouse, yellow boxes indicate functional domains.