Supplementary information

The Omicron BA.2.2.1 subvariant drove the wave of SARS-CoV-2
outbreak in Shanghai during spring 2022

Yun Ling"*, Gang Lu*", Feng Liu*", Yun Tan*", Xiaoguang Xu>", Dong Wei'", Jinkun
Xu?*, Shuai Wang?, Shuting Yu?, Fangying Jiang®, Xinxin Zhang>*, Shuo Chen**,
Shengyue Wang?>*, Xiaohong Fan'#, Saijuan Chen**

Summary

Supplementary information includes methods, one table and five figures.



Methods

Sample collection

This study involved 283 patients, who had tested positive for SARS-CoV-2 RNA and
were admitted to the Shanghai Public Health Clinical Center (159 cases) and Shanghai
Ruijin Hospital (124 cases) between 1%t March and 20" April 2022. Basic demographic,
epidemiological and clinical characteristics of enrolled patients are shown in Table 1.
This study was approved by the Ethics Committee of Shanghai Public Health Clinical
Center (no. 2022-S069-01) in accordance with the Declaration of Helsinki. Informed

consent was obtained from enrolled patients.
RNA extraction and SARS-CoV-2 targeting sequencing

Swabs and sputum samples were collected for nucleic acid extraction using an
automatic magnetic extraction device and accompanying kit (Shanghai Bio-Germ) and
screened using a semi-quantitative RT-PCR kit (Shanghai Bio-Germ) with
amplification targeting the ORF1a/b and N genes. The SARS-CoV-2 amplicon libraries
were obtained with the Illumina COVIDSeq ARTIC V4.1 kit according to the
manufacture’s instruction (Illumina). Libraries were sequenced at the [llumina NextSeq
550AR platform (Illumina) according to a PE 150bp protocol in the National Research
Center for Translational Medicine (Shanghai). Sequencing reads were trimmed using
Trimmomatic (version 0.39)! to remove low-quality regions, adaptor sequences and

sequencing primers prior to subsequent analysis.
Viral genomic sequence variation calling

Sequencing reads were mapped to reference genome (NCBI Accession: NC 045512.2)
with a kmer-based algorithm (kmer-size of 32), valid amplicon targets were evaluated
on criteria of >50 matched 32-mer. Samples with greater than 85% amplicon coverage
passed the QC process and entered downstream analysis. All mapped reads were piled
up for assembly consensus and variation call with [llumina DRAGEN COVID Pipeline
(v1.1.0). Low-quality regions with read depth below 10 were masked.

Phylogenetic analysis

The assembled genome sequences were evaluated with Nextclade (version 1.11.0)

(https://clades.nextstrain.org/) and Pangolin (version 4.0.4)*>. MAFFT (version 7.490)>



was used for multi-sequence alignment after trimming off Ns from both ends of the
genome sequences. Nextstrain (version 3.2.4) was used for phylogeny analysis and
visualization*. The phylogenetic tree was built by IQ-TREE (version 1.6.12) with GTR
model. TreeTime (version 0.8.6)> was then used for time-resolved phylogeny
refinement. The resulting phylogeny tree was visualized using auspice from the
Nextstrain package. Bioinformatics analyses were performed on the ASTRA
supercomputing platform with DAOS high-performance filesystem in the National

Research Center for Translational Medicine (Shanghai).
Quantification of cytokines

The levels of cytokines (IFN-a, IFN-y, IL-1p, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-
12, IL-17 and TNF) were quantified by the BD™ Cytometric Bead Array (human
Th1/Th2/Th17 cytokine kit and Human Inflammatory Cytokine Kit) according to the

manufacture’s instruction.
Plasmid construction and transfection

Full-length wild-type ORF8 and 176V mutated ORF8 were synthesized by Biosune
Biotechnology (Shanghai) and cloned into the pcDNA3.1 plasmid. Plasmids were
transfected into A549 cells using the HilyMax Transfection Reagent according to the

manufacturer’s instructions.
RNA-seq analysis

RNA-seq libraries were constructed with the KAPA RNA HyperPrep Kit according to
the manufacturer’s instructions. Ribosomal RNAs were removed by the KAPA
RiboErase Kit (Human/Mouse/Rat). The libraries were sequenced with the BGI-
sequencing platform. Raw reads were mapped to the hg38 reference genome with the
STAR methods®. Gene read counts were calculated with the Htseq algorithm®.

Differentially expressed genes were calculated with the DEseq2 package’.
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Supplementary Table
Supplementary Table S1

Table S1 General information of enrolled cases.

Entire cohort

Phylogenetic analysis

(n=283) (n=253)
Age
<39 --no. (%) 100 (35.34%) 96 (37.94%)
40-49 --no. (%) 42 (14.84%) 30 (11.86%)
50-59 --no. (%) 51 (18.02%) 46 (18.18%)
60-69 --no. (%) 35 (12.37%) 29 (11.46%)
>70 --no. (%) 55 (19.43%) 52 (20.55%)
Gender
Male --no. (%) 144 (50.88%) 132 (52.17%)
Female --no. (%) 139 (49.12%) 121 (47.83%)
Severe/critical COVID-19
Yes --no. (%) 16 (5.65%) 15 (5.93%)
No --no. (%) 267 (94.35%) 238 (94.07%)
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Supplementary Fig. S1. Mutation profiles of selected SARS-CoV-2 VOC:s. Affected amino
acid residues are shown below. Color gradient indicates relative mutation frequencies. Non-

mutated sites are colored in gray.
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Supplementary Fig. S2. Phylogenetic analysis of SARS-CoV-2 genomes grouped under
the BA.2.2 subvariant. The yellow color indicates genomes carrying BA.2.2.1-characteristic
mutation: C26789T (M:G89G, synonymous).
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Supplementary Fig. S3. Features of SARS-CoV-2 ORF8. Blue arrows indicate secondary
structures of SARS-CoV-2 ORFS. Asterisks indicate residues related to the “covalent” dimer

interface. Squares indicate residues related to “non-covalent” dimeric interface.
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Supplementary Figure S4. Serum levels of indicated inflammatory factors in BA.2.2- and

BA.2.2.1-infected individuals at the time of initial diagnosis.
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Supplementary Figure S5. Role of 176V mutation on ORF8 function. a Heatmap of
differentially expressed genes in A549 cells transfected with plasmid expressing ORFS8 (I176V)
or wild-type ORF8. b Gene ontology analysis of genes differentially upregulated in ORFS8
(I76V)-transduced cells. Top-ranked enriched gene ontology terms were shown. Circle sizes
indicated enriched gene numbers, and color indicated false discovery rate (FDR). ¢ Enriched

genes in the top gene ontology terms.
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