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SUMMARY
The SARS-CoV-2 Omicron variant evades most neutralizing vaccine-induced antibodies and is associated
with lower antibody titers upon breakthrough infections than previous variants. However, the mechanism re-
mains unclear. Here, we find using a geometric deep-learning model that Omicron’s extensively mutated re-
ceptor binding site (RBS) features reduced antigenicity compared with previous variants. Mice immunization
experiments with different recombinant receptor binding domain (RBD) variants confirm that the serological
response to Omicron is drastically attenuated and less potent. Analyses of serum cross-reactivity and
competitive ELISA reveal a reduction in antibody response across both variable and conserved RBD epi-
topes. Computational modeling confirms that the RBS has a potential for further antigenicity reduction while
retaining efficient receptor binding. Finally, we find a similar trend of antigenicity reduction over decades for
hCoV229E, a common cold coronavirus. Thus, our study explains the reduced antibody titers associatedwith
Omicron infection and reveals a possible trajectory of future viral evolution.
INTRODUCTION

Thesevereacute respiratory syndromecoronavirus2 (SARS-CoV-

2) continues to evolve, producing variants of concern (VOC) with

improved transmissibility and abilities to evade host immunity.

The newly identified VOCOmicron (B.1.1.529) containsmanymu-

tations including 11 that localize on the variable receptor binding

site (RBS), which is the major target of serologic response (Piccoli

et al., 2020). These mutations collectively facilitate the immune

evasion of both vaccinated and convalescent serawhile maintain-

ing angiotensin converting enzyme 2 (ACE2) binding (Collie et al.,

2021; Edara et al., 2022; Hoffmann et al., 2021; Liu et al., 2021;

Rossler et al., 2022b; Schmidt et al., 2022; Servellita et al., 2022).

Some of the Omicron mutations (S477N, E484K, N501Y, Q498R)

previously emerged from an in vitro directed evolution experiment

optimizingACE2binding (Zahradnik et al., 2021).Others, including

K417N, E484A, and Q498R, induced immune escape from wild-

type (WT)-elicited antibodies (Greaney et al., 2022a). However, it

remains unclear if the extensive RBD mutations could affect the

immunogenicity, antigenicity, and immunodominance hierarchy

of the naive host antibody response (Greaney et al., 2022b).

Here, immunogenicity refers to the ability of an antigen to

induce a humoral and/or cell-mediated immune response upon
This is an open access article under the CC BY-N
immunization or infection (Anfosso et al., 1979). B cell antigenic-

ity refers to the magnitude of antigen binding by affinity-matured

antibodies (Zhang and Tao, 2015). The immunodominance hier-

archy corresponds to the spatial distribution of epitopes on the

antigen structures (Angeletti and Yewdell, 2018). Despite their

importance, however, high-throughput analysis of immunoge-

nicity, antigenicity, or immunodominance hierarchy of a protein

antigen remains very challenging (Angeletti and Yewdell, 2018).

Empirical, data-driven approaches are appealing alternatives,

as they can sidestep the slow and intractable affinity maturation

process. However, while T cell epitope prediction is now well es-

tablished, B cell epitope prediction has limited success. Indeed,

antibodies frequently target conformational epitopes, sets of

residues close in space but distal along the sequence. This

hampers (1) comprehensive experimental mapping of antibody

epitopes and (2) computational prediction from sequence

only. Recently, we have developed ScanNet, a geometric

deep-learning model for structure-based prediction of binding

sites, including protein-protein binding sites and B cell epitopes

(Tubiana et al., 2022). ScanNet is an end-to-end, interpretable

deep-learning architecture that builds representations of atoms

and amino acids based on the spatio-chemical arrangements

of their neighbors. It exploits a large public dataset containing
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Figure 1. Impact of Omicron mutations on antigenicity based on geometric deep learning

(A) Residue-wise antigenicity profile of WT and four VOCs computed with ScanNet. For each sequence, predictions are averaged over multiple structural

conformations (STAR Methods).

(B) Difference between each VOC andWT, depicted as a scatterplot. The area of each point represents the statistical significance of the difference (larger is more

significant): it is proportional to the absolute value of the associated Z score (clipped at |Z| = 10, the dots in the caption correspond to |Z| = 5).

(C) Omicron RBD colored by the difference of antigenicity (PDB: 7qnw) with respect to WT.

(legend continued on next page)
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thousands of antigen structures with labeled epitopes to learn

the three-dimensional structural patterns underlying antibody

binding. Examples of structural patterns learned by the model

include the prescribed absence of atoms, e.g., exposed side

chain atoms or backbones nitrogens/oxygens available for

hydrogen bond formation. ScanNet can make predictions using

either an experimental structure or computational model as input

and calculates a residue-wise epitope probability score, here-

after termed antigenicity profile. ScanNet predicts epitopes sub-

stantially more accurately than other established approaches,

including those based on (1) comparative modeling, (2) phys-

ico-chemical and geometric features such as hydrophobicity

scales and solvent accessibility, and (3) AlphaFold-Multimer.

Importantly, the ScanNet-predicted antigenicity profile of the

WT spike glycoprotein RBD correlated well with the empirical

antibody hit rate estimated from available structures of spike

protein-antibody complexes. Thus, its antigenic profile directly

reflected the immunodominance hierarchy, i.e., the epitope dis-

tribution. This prompted us to systematically investigate the

impact of VOCmutations on antigenicity and immunodominance

hierarchy using ScanNet.
RESULTS

Deep learning predicts a decrease in the Omicron RBS
antigenicity
Here, we used a geometric deep-learning model (ScanNet

[Tubiana et al., 2022]) together with available experimental RBD

structures and structuremodeling tools (Modeller, Rosetta) to sys-

tematically investigate the RBD antigenic profiles for WT (the Wu-

han strain) and the VOCs (Figure 1). To validate our computational

pipeline, we calculated the antigenicity profile for WT and found

that it correlateswell with the frequency of structurally determined

RBDepitopes (Spearman rho = 0.77, STARMethods, Figure S1A).

The antigenicity profiles are overall similar for all the RBDs, as ex-

pected given the high sequential and structural similarity, and the

RBS residues have high antibody binding propensity (Figure 1A).

Alpha, Beta, and Delta VOCs have a moderate increase in the

RBS antigenicity compared withWT (Figures 1B and 1E). Howev-

er, the antigenicity ofOmicronRBS (particularly, residues470–500

and 445–455) was significantly reduced (Figures 1B–1E).

Moderate increases in antigenicity were also detected for several

residues (403–420, 501–505); however, these sites are less tar-

geted than the dominant epitopes mapped experimentally

(Figures S1A, S1C and S1D). A significantly negative correlation

(Pearson correlation r = �0.43, p value = 2.4 3 10�10) was found

between the residue-wise empirical antibody hit rate and the

change in antigenicity upon Omicron mutations (Figure S1B).

Together, our analysis indicates that the overall antigenicityofOm-
(D) Upper panel: Prevalence of mutations for each VOC based on GISAID. Botto

(E) Boxplots of RBS average antigenicity for WT and four VOCs calculated over mu

Wilcoxon-Mann-Whitney test).

(F) Distribution of changes in antigenicity across all single-point mutations and

mutation scan (Starr et al., 2020), a cutoff of �0.5 in log-odds scale). The blue

and intuitively corresponds to the noise level induced by the structural modeling

Figure S2A.
icronRBS is reduced,with the strongest reduction on the residues

most frequently targeted by antibodies.

To assess the significance of the change and dissect the indi-

vidual contribution of the 15Omicronmutations to the overall an-

tigenicity, we modeled the structures of the corresponding 15

single-point mutants using Modeller (Webb and Sali, 2017) and

calculated their antigenic profiles (STAR Methods). Eight muta-

tions (53%) decreased the antigenicity, particularly Q493R,

G496S, and Q498R (Figure 1D). Five mutations (33%) increased

the antigenicity while the remaining had no obvious effect.

Next, we modeled the structures of all the point mutants and

calculated their antigenicity (Figure S2A). Only 26% decreased

the antigenicity (Figure 1F). Therefore, the reduced antigenicity

of Omicron is not random (p = 0.034, c2 contingency test) and

may result from evolutionary pressure. To evaluate the potential

synergistic effects, we also investigated the combined effects of

mutations, and found overall positive epistasis, meaning that

mutations with similar effects tended to reinforce one another

(STAR Methods).

Omicron mutations lead to a drastic and systemic
reduction in RBD antigenicity in vivo

To substantiate the deep-learning analysis, we immunized mice

via the mucosal delivery route with the recombinant RBDs from

WT (n = 4) or VOCs (n = 5) and analyzed their adaptive immune

responses (STAR Methods). All the animals showed robust and

comparable T cell responses as indicated by the in vitro recall as-

says. Specifically, their splenocytes produced high levels of

interferon gamma (IFNg) when re-stimulated with WT, Delta, or

Omicron RBDs regardless of the immunogens that they originally

received (Figure S3A), suggesting a successful initiation of Th1-

mediated immune response. A strong Th17 response was also

generated as expected for this type of mucosal immunization

regimen (Clemente et al., 2017) (Figure S3B). Interleukin (IL)-17

levels appeared to be more consistent among all groups of

mice suggesting they were mainly produced by antigen-specific

CD4 T cells, whereas IFNg can come from natural killer or

gamma-delta T cells without the need of antigen recognition.

We also analyzed the local response in the lungs in the

animals and observed comparable IFNg and IL-17 responses

(Figures S3C and S3D).

Next, we performed ELISA to measure antibody titers of the

immunized sera from 15 days (Figure S4) and 25 days (Figure 2)

after the boost against the corresponding antigens. In contrast

to the T cell response, we found that the antibody titers (half-

maximal inhibitory reciprocal serum dilution or ID50) of the Om-

icron-immunized sera were consistently low in both bleeds and

significantly reduced by over 15-fold (mean half-maximal inhibi-

tory concentration [ID50] = 924) compared with that of WT (mean

ID50 = 15,325) and other VOCs (mean ID50s = 11,564, 14,683,
m panel: Corresponding predicted change in overall antigenicity.

ltiple structures. p value annotated legend: ns: p > 5e-2, ***p < 1e-4 (two-sided

all stability-preserving single-point mutations previously identified by deep

histogram denotes the distribution over structural models of the WT scores,

component of the prediction pipeline. The corresponding matrix is shown in
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and 19,557 for Alpha, Beta, and Delta, respectively) (Figure 2A).

Thus, our in vivo experiments were consistent with the deep--

learning model, revealing that mutations can greatly reduce the

antigenicity of Omicron RBD.

Previous structural analysis revealed that most antibodies

target the variable RBS (Yuan et al., 2021). The remaining anti-

bodies bind conserved epitopes that are cross-reactive among

VOCs (Barnes et al., 2020; Cameroni et al., 2021; Gaebler

et al., 2021; Xiang et al., 2021). To better understand the antige-

nicity and immunodominance hierarchy of RBD variants, we

evaluated the cross-reactivity of immunized sera by ELISA

(Figures 2B and 2C). WT-immunized sera had comparably

high titers against Alpha (ID50 = 15,176) and Delta (ID50 =

13,985) RBDs but presented decreased activities against

Beta (ID50 = 10,763; by 35%) and more substantially against

Omicron (ID50 = 6,201; by 69%). The magnitudes of antibody

evasion by VOCs were consistent with clinical data (Edara

et al., 2022; Hoffmann et al., 2021; Liu et al., 2021; Rossler

et al., 2022b; Schmidt et al., 2022; Servellita et al., 2022), indi-

cating that the RBD immunodominance hierarchy is similar be-

tween mouse and human.

We found that Omicron-immunized sera had substantially

lower antibody titers against all the VOCs (with the mean ID50s

in the range of 388–626, Figure 2B). Despite the reductions, Om-

icron-immunized sera still bind most efficiently to its own antigen

(Figure 2B), indicating that Omicron’s RBS remains to be highly

antigenic while other conserved epitopes can also contribute

to the overall antigenicity. Moreover, while the titer of Omicron-

immunized sera against WT RBD was only a small fraction of

that of WT-immunized sera against Omicron (388/6201 or 6%),

the percentages of cross-reactive antibodies were highly com-

parable (�31%, Figure 2C). Thus, the immunodominance hierar-

chy for Omicron remained largely unaltered and the reduction of

response was rather systemic, contributed by both RBS and

other conserved epitopes. This result was further supported by

competitive ELISA using either the recombinant ACE2 or high-af-

finity nanobodies targeting distinct and highly conserved RBD

epitopes (Figure S5, STAR Methods).

Since Beta RBD shares three mutation sites with Omicron

(K417N, E484K/A, and N501Y) critical for antibody binding, we

also evaluated the cross-reactivity of Beta-immunized sera and

found that the titer only decreased by 51% against the Omicron

RBD. These sera cross-reacted better with Omicron RBD than

the WT-immunized sera, where a 69% titer reduction was

observed against the Omicron RBD (Figure 2C). Since the anti-

body titers of the Beta-immunized mice are comparable to those

ofWTsera,weconclude that these threemutated residuesdonot

significantly contribute to the antigenicity decrease (Figure 1D).
Figure 2. Analysis of the RBD-immunized sera

(A) ELISA of RBD-immunized mouse sera (n = 4 mice for WT, n = 5 for VOCs) ag

(reciprocal serum dilution that inhibits the 50% maximal RBD binding).

(B) ELISA of RBD-immunized sera against five different RBDs (cross-reactivity a

(C) The percentage change of binding titers against different RBDs.

(D) Pseudovirus neutralization assay evaluating the potencies of WT and Omicro

strain or Omicron. The neutralization titer was calculated as the ID50 (reciproca

connected dots referred to the pseudovirus neutralization results of the same a

dilution of 22, which is the lowest reciprocal serum dilution) used in the study.
Next, we performed SARS-CoV-2 pseudovirus assay to eval-

uate the contribution of Omicron mutations to the neutralization

potency of the immunized sera (Figure 2D). Despite some cross-

reactivity of WT-immunized sera against Omicron (ID50 = 6,201),

their neutralization activities were barely detectable. Strikingly,

the potencies of the Omicron-immunized sera were generally

inefficient against the Omicron virus (except for one serum)

and their activities against WT (the Wuhan-Hu-1/D614G strain)

were hardly detected.

Analysis of the evolution of hCoV229E reveals a
decrease in antigenicity
hCoV229E is a commoncoldcoronavirus that hasbeencirculating

in the human population for decades. As one of the first coronavi-

rus strains being described, its sequences and structures have

been well documented and can be used as a model system to

study the evolution of antigenicity and host serologic response

(Eguiaetal., 2021;Li etal., 2019;Wongetal., 2017).Previousstruc-

tural and immunological studies suggested that the hCoV229E al-

phacoronavirus has been undergoing extensive antibody escape

(Eguia et al., 2021; Li et al., 2019; Wong et al., 2017), and that its

evolution could reflect the future evolution of SARS-CoV-2 (Eguia

et al., 2021). ThehCoV229Eproteome featuresa spikeproteinwith

a (structurally different) RBD that targets the human aminopepti-

dase N protein. Similar to SARS-CoV-2, the corresponding RBS,

which consists of three loops, is also the major immunodominant

region. We collected RBD sequences of all hCoV229E isolates

with known collection dates and evaluated their antigenicity via

structural modeling and ScanNet. Longitudinal analysis revealed

an overall trend of decreasing antigenicity on RBS until the

2010s, with subsequent oscillation during the last decade (Fig-

ure3A).Allegedly, these twophasesmight correspond to (1) a tran-

sitory adaptation period to the host humoral immunity and (2) an

out-of-equilibrium, stationary phase where the virus continuously

evolves to shield itself from antibodies elicited by past infections.

While we are unfamiliar with related works on the evolution of

susceptibility to adaptive immunity, similar trends were reported

for innate immunity (Di Gioacchino et al., 2021; Greenbaum et al.,

2008, 2014). Notably, since the 1918 outbreak, the H1N1 strand

has gradually evolved to hide from pattern recognition receptors

by reducing its number of CpG dinucleotide motifs through syn-

onymous mutations.

Computational exploration for the SARS-CoV-2 RBD
sequence space opens up the possibility of a further
decrease in antigenicity
Since SARS-CoV-2 was only recently introduced into the hu-

man population, there is insufficient information to witness a
ainst the corresponding antigen. The binding titer was calculated as the ID50

nalysis).

n RBD-immunized sera against either SARS-CoV-2 WT (Wuhan-Hu-1, D614G)

l serum dilution that inhibits 50% of the maximal pseudovirus infection). Two

nimal serum. The dashed line indicates the highest serum concentration (i.e.,

Cell Reports 41, 111512, October 18, 2022 5



Figure 3. Plausibility of further decrease of antigenicity in future variants

(A) Evolution of the antigenicity of hCoV229E RBS for isolates collected from the 1960s to date. Classes are assigned based on phylogeny and structural features

of the RBS, following Li et al. (2019) and Wong et al. (2017). Black line denotes the isotonic regression fit (i.e., piecewise constant, monotonous least squares fit)

using all points until 2010. A downward trend is observed for over 40 years (Spearman correlation coefficient: �0.82, p = 1e-18 ).

(B) ScanNet-predicted protein binding propensity (higher is better) versus antigenicity (lower is better) of the SARS-CoV-2 RBS forWT, four VOCs, all single-point

mutants, and 1,000 artificial variants with 15 mutations from WT (same number as Omicron) generated using a sequence generative model (STAR Methods).

Crosses indicate 95% confidence interval.
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similar evolutionary trend. We can nonetheless evaluate the po-

tential for additional reduction of antigenicity. Although the vir-

tual deep mutational scan readily identifies multiple mutations

that could lead to antigenicity reduction, particularly on sites

448, 449, and 506 (Figure S2A), it is unclear whether or not

they are beneficial for the overall viral fitness. Viral fitness in-

cludes multiple factors, such as affinity and specificity of

ACE2 binding, structural stability, equilibrium distribution of

up and down conformations, and corresponding transition

times. Therefore, we restricted the search space to variants

that are likely to arise based on past evolutionary records.

This was done in four steps (STAR Methods): (1) Construction

of a multiple sequence alignment (MSA) of Beta coronaviruses

RBDs; (2) selection, training, and validation of a sequence

generative model, i.e., a probability distribution over RBD se-

quences P(S); (3) generation of a repertoire of de novo RBD

variants by sampling from the sequence generative model in

the vicinity of the original WT (a total of 1,000 variants, each

contains 15 point mutations similar to those of Omicron); and

(4) determination of the antigenicity and protein binding profiles

using ScanNet for each de novo variant. The protein binding

profile is similarly determined as the antigenicity profile using

a ScanNet model trained for generic protein-protein binding

site prediction. We monitored it to ensure that antigenicity

reduction is not achieved by an overall loss of protein binding.

The sequences of the de novo variants obtained by sampling

from the generative model preserved the conservation and

coevolution patterns of the RBD protein family and the sarbeco-

virus subgenius (Figure S6). As expected, their sequences varied

substantially on the RBS and exhibited diverse ranges of antige-

nicity and protein binding propensity (Figure 3B). We found that

antigenicity and protein binding scores are correlated, indicating

a possible evolutionary trade-off between ACE2 binding and the

immune escape. A small fraction (7.4%) of the artificial variants
6 Cell Reports 41, 111512, October 18, 2022
showed potentially improved binding and reduced antigenicity

than Omicron (Figure 3B, shaded square).

Based on Shannon entropy calculations, there are

0.074 3 2.715 = 200k such de novo 15-point variants, implying

a trajectory of uncertainty with a possibility of further antigenic

reduction of new variants. Enrichment analysis (STAR Methods)

further revealed that multiple mutations, including Q493 I/V/L,

P479I, L452Y, and K462Q, may contribute to the decrease while

maintaining stability and ACE2 binding. However, we must

stress that only a fraction of these RBD variants is likely viable

for the virus. First, evolutionary-based generative modeling,

despite being extensively validated (Hawkins-Hooker et al.,

2021; Repecka et al., 2021; Russ et al., 2020; Wu et al., 2021),

does not guarantee (100%) protein stability. Second, both the

evolutionary model and the ScanNet binding propensity scores

are host-agnostic. Hence, the designed sequences do not

necessarily bind Human ACE2 but instead may bind other

ACE2 orthologs, as observed, e.g., for ancestral sarbecovirus

sequences (Starr et al., 2022). Last, the ScanNet antigenicity pre-

diction is imperfect.

DISCUSSION

In this study, we leveraged computational prediction facilitated by

geometric deep-learning (ScanNet) and experimental approaches

to systematically investigate the RBD antigenicity. ScanNet pro-

vides a rapid means to quantify the antigenicity of proteins from

structure, at the individual residue level, for emerging viruses and

their variants. The use of the mouse model for the investigation

of RBD antigenicity enables comparison among variants, mini-

mizing thepotential biasandbackgroundcomplexity thatareoften

associated with clinical samples. Competitive ELISA using pan-

sarbecovirus-binding nanobodies allows experimental investiga-

tion of the immunodominance hierarchy.
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We found that Omicron mutations resulted in substantial anti-

genicity reduction on the RBS site: the key target of neutralizing

antibodies and, correspondingly, substantially lower antibody ti-

ters. Interestingly, we did not detect major changes in the immu-

nodominance hierarchy, as Omicron-immunized sera also

bound less efficiently the conserved, non-RBS epitopes than

WT-immunized sera. This implies that the localized antigenicity

reduction resulted in a lower overall immunogenicity. Hypothet-

ically, proteins that are more antigenic are better associated by

polyreactive immunoglobulin Gs which, in turn, could facilitate

affinity maturation and trigger faster the humoral immune

system.

We stress that such an immune concealing strategy differs

from the immune escape one, where mutations prevent binding

by matured antibodies elicited from past infections. Immune

concealing could provide an absolute viral fitness improvement

that might explain the rapid takeover of Omicron over Delta.

Consistently, longitudinal study of the hCoV229E RBD using

ScanNet showed a consistent decrease of antigenicity over de-

cades (with short-term fluctuations), followed by an oscillatory

phase possibly stirred by immune escape. It remains unclear

which of the two strategies is preferable throughout the com-

plete course of viral evolution. For SARS-CoV-2, computational

analysis of artificial variants shows that a further decrease of an-

tigenicity is plausible. However, only a fraction of these variants

is likely viable, and future experimental validations will be neces-

sary to better understand the properties of these possible future

variants.

Our results corroborate findings from other studies. During our

manuscript preparation, a preprint reported that an Omicron-

specific mRNA vaccine boost appears to provide inferior protec-

tion against Omicron infection in non-human primates compared

with boost using the WT mRNA vaccine (Gagne et al., 2022).

Moreover, new clinical data suggested that the antibody titers af-

ter Omicron breakthrough cases were lower than those of after

Delta infection (Collie et al., 2021; Edara et al., 2022; Hoffmann

et al., 2021; Liu et al., 2021; Rossler et al., 2022b; Schmidt

et al., 2022; Servellita et al., 2022). Finally, Omicron convalescent

sera from unvaccinated individuals was found to only weakly

neutralize Omicron virus while the serum neutralizing activities

against other VOCs was below the detection limits (Khan et al.,

2022; Rossler et al., 2022a). Thus, our study is consistent with

both the preclinical vaccine trials and clinical convalescent

data and provides critical insights into the underlyingmechanism

of the attenuated host serologic response against Omicron.

Cumulatively, our investigations unravel a potential trajectory

of future viral evolution and underlie the challenges to develop

effective Omicron-specific vaccines.

Limitations of the study
Although ScanNet enables rapid and reliable assessment of an-

tigenicity, we note that the correlation between our predicted an-

tigenicity and the experimental results is most likely non-linear. In

the current study, we only explored a single immunization proto-

col by the intraperitoneal route. Our results were also based on

the recombinant RBD, which dominates host antibody response,

instead of on the whole spike glycoprotein and/or viral infection.

However, emerging evidence based on vaccine and infection
support our central conclusion that Omicron is characterized

by inferior antigenicity. In addition, the major focus of our study

is to understand the antibody response against VOCs. Investiga-

tions on other components of cellular immunity (such as T cell

immunity and Fc effectors functions) may yield more compre-

hensive insight into the disrupted host response by Omicron

and the potential mechanism (He et al., 2022; Richardson

et al., 2022). Finally, due to technical challenges, our current

work did not experimentally explore the computationally de-

signed variants. Future studies will be needed to carefully eval-

uate these variants to better understand the potential trajectory

of viral evolution.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Invitrogen T7 Tag Polyclonal Antibody, HRP Thermo Fisher Cat#: PA1-31449; RRID: AB_1960906

PierceTM High Sensitivity NeutrAvidinTM-HRP Thermo Fisher Cat#: 31030

Invitrogen goat anti-mouse IgG (H + L)

secondary antibody, HRP

Thermo Fisher Cat#: G-21040; RRID: AB_2536527

ELISA Mouse IL-17A BioLegend Cat#: 432504

ELISA Mouse IFN-g BioLegend Cat#: 430804

Bacterial and virus strains

SARS-CoV-2 (Wuhan-Hu-1, D614G) reporter

virus particles (luciferase)

Integral Molecular Cat#: RVP-702L

SARS-CoV-2 (Omicron) reporter virus

particles (luciferase)

Integral Molecular Cat#: VP-768L

Chemicals, peptides, and recombinant proteins

SARS-CoV-2 (COVID-19) S protein RBD,

MALS verified

Acro Biosystems Cat#: SPD-C52H3

SARS-CoV-2 (COVID-19) Spike RBD (N501Y/Alpha),

MALS verified

Acro Biosystems Cat#: SPD-C52Hn

SARS-CoV-2 (COVID-19) Spike RBD (K417N,E484K,

N501Y/Beta), MALS verified

Acro Biosystems Cat#: SPD-C52Hp

SARS-CoV-2 (COVID-19) Spike RBD (L452R,

T478K/Delta), MALS verified

Acro Biosystems Cat#: SPD-C52Hh

SARS-CoV-2 (2019-nCoV) Spike RBD

(B.1.1.529/Omicron), MALS verified

Acro Biosystems Cat#: SPD-C522e

ACE2 protein, Human, biotinylated Sinobiologics Cat#: 10108-H08H-B

Epitope 3 and 4 nanobodies Xiang et al., 2022 N\A

LPS-EB VacciGradeTM InvivoGen Cat#: vac-3pelps

Critical commercial assays

Renilla-Glo luciferase assay system Promega Cat#: E2720

Experimental models: Cell lines

293T-hsACE2 stable cell line Integral Molecular Cat# C-HA101; Lot#: TA060720MC

Experimental models: Organisms/strains

C57BL/6J, mus musculus The Jackson Laboratory IMSR_JAX:000664

Software and algorithms

ScanNet Tubiana et al., (2022) https://github.com/jertubiana/ScanNet

http://bioinfo3d.cs.tau.ac.il/ScanNet/

Restricted Boltzmann Machines Tubiana et al. (2019) https://github.com/jertubiana/PGM

Modeller Webb and Sali (2017) https://salilab.org/modeller/

PyRosetta Chaudhury et al., 2010 https://www.pyrosetta.org

HHblits Steinegger et al., (2019) https://github.com/soedinglab/hh-suite

MAFFT Nakamura et al., (2018) https://mafft.cbrc.jp/alignment/software/

ChimeraX Pettersen et al., (2021) https://www.cgl.ucsf.edu/chimerax/
RESOURCE AVAILABILITY

Lead contact
Further information and requests for reagents may be directed to and will be fulfilled by lead contact Yi Shi. (wally.yis@gmail.com).
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Materials availability
This study did not generate new unique reagents.

Data and code availability
d The following datasets are made available from the Zenodo repository https://doi.org/10.5281/zenodo.7079268:

1. List of hCoV229E RBD sequences, with associated isolate and collection date identifiers, and ScanNet antigenicity score for

reproducing Figure 3A.

2. List of artificial RBD sequences generated by an evolutionary-based sequence generative model for reproducing Figures 3B

and S6H.

3. Multiple Sequence Alignment of RBD sequences and sample weights used for training the sequence generative model used in

Figures 3B, S2C and S7.

4. Empirical epitope distribution for the RBD shown in Figures S1.

5. virtual Deep Mutational Scan performed with ScanNet and the sequence generative model shown in Figure S2.
The remaining data analyzed (protein structure files) are publicly available from the Protein DataBank.

d All computational analysis, statistical analysis and visualizations were carried out in Python 3.6.12 and 3.8.5 using publicly

available software and standard packages (numpy, scipy, pandas, numba, scikit-learn, biopython, matplotlib, seaborn).

Source code and trained models for ScanNet are available from https://github.com/jertubiana/ScanNet. ScanNet is also avail-

able as a public webserver from http://bioinfo3d.cs.tau.ac.il/ScanNet/. Source code for training, scoring and sampling

Restricted Boltzmann Machines is available from (https://github.com/jertubiana/PGM). The following additional software

were used: Modeller (https://salilab.org/modeller/), PyRosetta (https://www.pyrosetta.org), HHblits (https://github.com/

soedinglab/hh-suite), MAFFT (https://mafft.cbrc.jp/alignment/software/), ChimeraX (https://www.cgl.ucsf.edu/chimerax/).

BioRender was used for the graphical abstract.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

8 weeks old female C57BL/6 mice were ordered from The Jackson Laboratory and housed in pathogen-free conditions at the core

animal facility at the University of Pittsburgh Medical Center with the approval from the University of Pittsburgh Institutional Animal

Care and Use Committee. 40mg recombinant RBD plus 5mg LPS-EB VacciGradeTM (InvivoGen) was given to isoflurane anesthetized

mice in sterile PBS (50mL) intranasally on day 0 and day 10, a test bleed was draw on day 25 and mice were sacrificed on day 35 for

bleed, spleen and lung harvesting.

METHOD DETAILS

ScanNet
Deep learning has been highly successful in protein structure prediction (AlQuraishi, 2019; Baek et al., 2021; Ingraham et al., 2018;

Jumper et al., 2021; Senior et al., 2020; Wang et al., 2017). However, leveraging the structures for function prediction has remained

amajor challenge (Chruszczet al., 2010). Recently,wehavedevelopedScanNet, a geometric deep learningmodel for structure-based

prediction of binding sites including protein-protein binding sites and B-cell epitopes (Tubiana et al., 2022). ScanNet is an end-to-end

architecture learning representationsof atomsandaminoacidsbasedon the spatio-chemical arrangementsof their neighbors.Briefly,

ScanNet first extracts anatomic neighborhoodaroundeachheavyatom (K=16neighbors, corresponding to about 4Å), andcalculates

their local coordinates in a framecentered around the atomandoriented using the covalent bonds. The neighborhood, formally a point

cloud with attributes (atom group type) is then passed through a set of trainable spatio-chemical filters. Each filter detects a specific

spatio-chemical patternwithin the neighborhood, such as hydrogen bonds. Conversely, some filters also detect prescribed absences

of atoms, e.g. exposed side chain atoms, or backbones nitrogens/oxygens available for hydrogen bond formation. The later filters are

critical for epitopeprediction, as reactive atomgroups that are not engaged in intra-chain interactions aremoreprone tobe targetedby

antibodies. The resulting atom-wise embeddings are next pooled at the amino acid level, and the process is reiterated around each

amino acid. Finally, the resulting amino acid-wise embeddings are converted to propensity scores via a neighborhood attentionmod-

ule, which projects the embeddings to scalar values and smoothes them (in a learnt fashion) across a neighborhood.

We previously trained ScanNet for detecting B-cell epitopes based on 3756 antibody-antigen complexes available from the PDB.

ScanNet predicted known epitopes substantially more accurately than AlphaFold-multimer or previous works that relied on amino

acid propensity scores and geometric features such as solvent accessibility. We previously found that for the Spike protein RBD

of WT, the predicted antigenicity profile correlated well with the residue-wise antibody hit rate computed from 246 PDB structures

of spike protein - antibody complexes, defined as the fraction of antibodies that bind to the residue (Tubiana et al., 2022). We suc-

cessfully reproduced the analysis with the prediction pipeline described below (Figure S1).
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VOCs antigenicity and protein binding profiles
Since the sequences considered are highly similar (92–99%sequence identity toWT) and the structures are virtually indistinguishable

by human eye, the predicted epitope propensity profiles are overall similar. Additionally, ScanNet is sensitive to subtle structural fea-

tures such as sidechain-backbone hydrogen bonds (especially for asparagines) that are not always consistent from one crystal struc-

ture to the other for a given variant. To maximize the signal-to-noise ratio, we proceeded as follows:

1. We used themodel version that only takes the sequence and structure as input and discards the position-weight matrix. For the

antigenicity profile, this version achieves the same performance as the one using evolutionary information (Table S4 of Tubiana

et al., 2022). For the protein binding profile, the performance is overall lower than the version using evolutionary information

(Table 1 of Tubiana et al., 2022), but is nonetheless satisfactory for the Spike RBD.

2. All predictions were averaged over 11 networks, each trained using a different random seed. All SARS-CoV-1/2 antibody-an-

tigen complexes were excluded from the training set.

3. WeusedmultipleRBDstructuresper variant. For theWT,weselected29RBDstructures. For theother VOCs, all the availableRBD

structures were taken (WT PDBs: 7eam:A, 7mzj:B, 7dhx:B, 7mfu:A, 7efr:B, 7kn3:A, 7mmo:C, 7kgj:A, 7n4j:A, 7mf1:A, 7mzm:A,

7jmo:A, 7vnb:B, 7s4s:A, 7lop:Z, 7r6w:R, 7kmg:C, 7deu:A, 7det:A, 7c8v:B, 7cjf:C, 7d2z:B, 7bnv:A, 7nx6:E, 6m0j:E, 7mzh:E,

7ean:A, 7n3i:C, 6yla:E. Alpha: 7fdg:E, 7neg:E, 7nx9:E, 7mji:B, 7mjl:A, 7mjn:B, 7ekf:B. Beta: 7ps4:E, 7ps6:E, 7ps0:E, 7ps7:E,

7ps2:G, 7ps0:A, 7ps5:E, 7q0h:E, 7prz:E, 7pry:E, 7ps1:E, 7q0g:E, 7nxa:E, 7e8m:E. Delta: 7w9f:E, 7w9i:E, 7wbq:B, 7wbq:D,

7v8b:A. Omicron: 7qnw:E, 7wbp:B, 7wbl:B, 7t9l:A. SARS-CoV-1: 3bgf:S, 7rks:R, 6waq:D, 2ajf:E, 3d0g:E, 3scl:E, 2ghv:E,

2ghw:A, 2dd8:S).

4. Since some structures consistently missed many sidechain-backbone hydrogen bonds, we standardized them by applying to

each structure the FastRelax protocol of PyRosetta (5 cycles) (Chaudhury et al., 2010; Nivón et al., 2013). To reduce the noise

induced by Rosetta, we generated 20 relaxation runs per structure and averaged epitope profiles over them. This protocol

reduced the intra-variant, inter-structure standard deviation by 10–25%.

Altogether, the antigenicity and protein binding propensity profiles of each single point mutant were averaged over 11 X 20 X N

profiles where N was the number of available RBD structures. Based on the intra-variant, inter-structure variance, we estimated

the average resolution of our differential antigenicity profiles as 0.008 (in probability units). RBS residues were defined based on avail-

able crystal structures as: 403, 417–421, 445–456, 473–505. The overall RBS antigenicity and the binding score were defined as the

average across RBS residues of the corresponding profile.

Single-point mutants antigenicity profiles
Mutant structures were generated using comparative modeling. We first selected six representative templates for the WT RBD by

clustering the aforementioned RBD structures (7jvb:A, 7eam:A, 7d2z:B, 7kgj:A, 7vnb:B, 7det:A). Next, we generated for each single

point mutant and each template 20 structural models using Modeller (Webb and Sali, 2017). Homology modeling is sufficiently ac-

curate here (and much faster than AlphaFold) because of the high sequence identity values (92–99%), and because VOCs have very

small conformational variability (as evidenced by experimental crystal structures). We also verified on a few examples that Modeller

models were almost identical to AlphaFold ones. As neutral controls, we also generated structural models for the original amino acid

at each position (i.e. theWT sequence). Eachmodel was scored using the 11 networks, obtaining 6x20x11 = 1320 profiles permutant

which were then averaged to yield a single antigenicity profile and a single binding propensity profile. The overall impact of amutation

to antigenicity was defined as the difference between the summed profiles across the entire protein. Despite the averaging, we found

that conformational variability yielded changes in total propensity of the same order of magnitude as the one of changes upon single

point mutants: 48% of the mutations had an insignificant impact on total antigenicity, i.e. within the [5%,95%] percentiles of the WT

antigenicity distribution (Figure S7A). The predicted profiles notably featured small variations in regions far away from the mutation,

arising solely because of modeling noise. To improve the signal to noise ratio, we instead computed a weighted sum of the difference

of profiles, where the weight is a smoothing function of the distance to the mutated residue (Figure S7C). Since ScanNet predictions

are based on local neighborhoods and the conformational noise away from themutation is expected to average out anyway, the local

estimator is unbiased and has lower variance. After smoothing, only 21% of mutations were insignificant (Figure S7B). Protein

binding propensity profiles were calculated in the same manner using comparative models and ScanNet models trained for

protein binding site prediction (Figures S7D and S7E). Finally, a positive correlation was found between changes in antigenicity

and change in binding (Figure S7F). This reflects the trade-off between high receptor binding propensity and low antigenicity. The

�470k structural models and �10 million profiles were generated in about ten days using a single computer with 64Gb RAM and

an Intel Xeon Phi processor with 56 cores (52ms per profile).

Combined effect of mutations
To evaluate potential epistatic effects, we chose the seven RBSmutations that reduced antigenicity (N440K, G446S, S477N, T478K,

Q493R, G496S, Q498R) and tested all 27 combinations of reverse mutations from Omicron background (i.e., the antigenicity should

increase again). The same modeling protocol was used as for the single-point mutants, but with 15 templates instead of six (7jvb_A,

7eam_A, 7d2z_B, 7kgj_A, 7vnb_B, 7det_A, 7w9f_E, 7w9i)E, 7qnw_E, 7wbp_B, 7w7bl_B, 7t9k_A, 7t9c_B, 7u0d_B, 7wlc_E). Figure S8
e3 Cell Reports 41, 111512, October 18, 2022
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shows the scatterplot of Hamming distance to Omicron sequence against the change in antigenicity, with full line and dashed line

corresponding, respectively to the i) average over all mutants with k mutations and the ii) epistasis-free prediction based on the effect

of the single-point mutations. Overall, the epistasis-free prediction underestimates the effect of combined mutations, meaning mu-

tations tend to reinforce one another on average (positive epistasis).

Generation and screening of de novo variants
We investigated whether additional mutations of the SARS-CoV-2 RBD could further reduce its RBS antigenicity, without altering

other components of the viral fitness such as structural stability and ACE2 binding. Using ScanNet, we tested sequences in the vi-

cinity of the original WT sequence that are likely to arise based on past evolutionary records. These de novo RBD variant sequences

were obtained by sampling from a sequence generativemodel trained on amultiple sequence alignment (MSA) of beta coronaviruses

RBDs. Methodological details about the protocol and validation steps are described below.

1. Construction of the MSA.Homologs of theWT RBDwere first searched in the UniprotKB using BLAST. Top hits were manually

aligned with MAFFT (Nakamura et al., 2018) (command: mafft —amino—localpair —maxiterate 1000—op 5—ep 0), and only

the columns not gapped for the WT were kept. Next, additional homologs were searched in the UniRef30 (release 2020/06)

using HH-blits (Steinegger et al., 2019). After filtering out hits with unknown residues and/or >25% of gaps, we obtained a

(redundant) alignment of B = 521 sequences. The MSA covered all the five betacoronaviruses subgenii (sarbecovirus, embe-

covirus, merbecovirus, nobecovirus, hibecovirus). The effective number of sequences (defined as in (Morcos et al., 2011),

approximately corresponding to the number of 90% sequence identity clusters) was Beff = 72.8, a relatively low value. The

sequence profile of theMSA (Figure S6A) features conserved sites (most of which are buried), whereas the RBS region is highly

variable.

2. Sequence generative model. Herein, the objective is to learn a probability distribution over the sequence space P(S) by maxi-

mizing the average likelihood ˂logP(S)˃ of the previously observed viral sequences in theMSA. Intuitively, maximizing the likeli-

hood amounts to assigning high probability values to seen (i.e. evolutionary selected) sequences and low elsewhere (i.e. se-

quences unexplored or washed away by selection), such that P is normalized to 1. The likelihood can therefore be interpreted

as a proxy for viral fitness (Cocco et al., 2018). Importantly, a ‘‘smooth’’ parametric formPq(S) must be chosen to ensure that the

model also assigns high probability values to sequences that are close (and presumably evolutionary fit), but unobserved either

due to limited sequencing or exploration of the sequence space throughout evolution. Possible choices for the parametric

forms include the independent model (i.e. the position specific sequence model or equivalently, insertion-free HMM profiles),

Potts model (i.e. the Boltzmann Machine, BM) (Morcos et al., 2011) or Restricted Boltzmann Machine (RBM) as well as various

deep learning-based models (Riesselman et al., 2018; Wu et al., 2021). We used RBM here, which is an undirected graphical

model that learns the conservation and coevolution patterns of the sequence distribution (Tubiana et al., 2019). In the context of

RBDmodeling, RBMenjoys two desirable properties over themore thoroughly validated BMmodel. First, its flexible number of

parameters allows better optimization of the bias-variance trade-off. RBM hasN3 (M + 1)3 q parameters, where N is the num-

ber of columns, M is the (tunable) number of hidden units and q = 21is the number of amino acids (+gap) compared to NðN� 1Þ
2q2 +

Nq for the Potts model. Our selected model has 100Xfewer parameters than a regular Potts model. Second, it is able to model

high-order epistasis arising from heterogeneous viral fitness landscapes. Indeed, since different subgenii target different re-

ceptors, they are expected to have related but distinct fitness landscapes.

RBM were trained using the PGM package (https://github.com/jertubiana/PGM) (Tubiana et al., 2019) using the Persistent

Contrastive Divergence algorithmwith the following parameters: number of hidden units: from 5 to 100; hidden unit potential: dReLU;

batch size: 100; number of Markov chains: 100; number of Monte Carlo steps between each gradient evaluation: 100; number of

gradient updates: 40000; optimizer: ADAM with initial learning rate: 5,10�4, exponentially decaying after 50% of the training to

5 3 10�6, b1 = 0, b2 = 0.99, ε = 10�3. For the regularization, we used a L1
2 penalty on the weights (of strength l21 ranging from 0.0

to 5.0) and L2 penalty on the fields (of strength l2 = 2:10� 3 3 l21). Samples were assigned a weight inversely proportional to their

number of 90% sequence identity homologs in theMSA. Annealed importance sampling was used to evaluate the partition functions,

using 33 104 intermediate temperatures and 10 repeats. The low depth of the alignment prompted us to thoroughly explore the hy-

perparameter space to best calibrate themodel complexity (Figures S6B andS6C).We divided theMSA into five folds so that any pair

of sequences belonging to different folds have at most 80% sequence identity. We then performed a grid search over the regulari-

zation strength and number of hidden units. We monitored i) the quality of convergence, ii) the cross-validation likelihood, iii) cross-

validation pseudo-likelihood (not shown, correlated to the likelihood), and iv) the spearman correlation between the likelihood of all

single-point variants of WT and their corresponding yeast-display expression levels - an experimental proxy for structural stability.

The latter were measured in a deep mutational scan experiment performed by Starr et al. (Starr et al., 2020). We selected the model

withM = 20 hidden units and regularization strength l21 = 0:5. It featured a per-site likelihood value of�1.31 (compared to�1.98 for

the best independent model after grid search on pseudo-count values), Spearman correlation r = 0.53 (Figure S6D, compared to 0.42

for the best independent model and 0.54 for the Potts model as recently reported in (Rodriguez-Rivas et al., 2022)) and per-site en-

tropy of 0.99 (corresponding to 2.7 amino acid choices per site). Its likelihood function also correlated with the changes in ACE2 bind-

ing affinity upon mutation as measured by deep mutational scan (Starr et al., Spearman correlation 0.41, p = 10�158). Finally, the
Cell Reports 41, 111512, October 18, 2022 e4
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generative properties of the model were deemed satisfactory: Monte Carlo samples obtained from P(S) reproduced the moments

(Figures S6E and S6F) and the clustered topology of the distribution of natural sequences (Figure S6G).

3. Artificial mutant generation. After model selection 1,000 artificial mutants were generated as follows. We sampled from the

gap-less, focused distribution PðS��DHammingðWT ;SÞ = 15;Ngaps = 0Þ; where 15 is the same number of mutations from WT

as Omicron. Sampling from the conditional distribution was done by importance sampling Markov Chain Monte Carlo, i.e.

by sampling from the modified distribution PlðSÞ � PðSÞ3exp½lDHammingðWT ;SÞ � 10NgapsðsÞ� where l = 1.9 was chosen

such that CDHammingðS;WTÞDPl
= 15: We used the alternate Gibbs sampler, with 5000 burn-in steps, 100 steps between

each sample and 100 independent chains. Generated samples with fewer or more mutations were discarded; approximately

5000 samples with exactly 15 mutations were kept. We extracted 1,000 representatives by agglomerative clustering (using as

representative the cluster member with highest likelihood). The distribution of the mutations (Figure S6H) features high vari-

ability on the RBS in general and particularly at positions mutated in VOCs. In total, 1523 of the 19 3 15 = 3705 potential mu-

tations are observed at least once. All VOCs mutations are observed at least once, except for Q498R and S375F, with the

mutations Y505H and G446S being the most frequent (in 6.9% and 6.4% of the sequences).

4. Scoring of artificial mutants.We used the same comparative modeling followed by ScanNet antigenicity and binding site pre-

diction pipeline as for the single-point mutants.

5. Mutation enrichment analysis. An artificial mutant ‘‘improves’’ over Omicron if (i) its ScanNet antigenicity score is lower or equal

than the one of Omicron, and (ii) its ScanNet binding propensity score higher or equal than Omicron. Out of 1000 sampled arti-

ficial mutants, 74 improved mutants were found. For each of the 1523 mutations sampled, we tested its association with the

improved phenotype using a c2 contingency test, and used the Benjamini-Hochberg procedure to control the false discovery

rate (0.05 cut-off). In total six statistically significantmutationswere found: Q493 I/V/L, P479I, L452Y, K462Q. They are all viable

for expression and ACE2 binding based the DMS data from (Starr et al., 2020).

Analysis of the human 229E alphacoronavirus
Previous structural and immunological studies suggested that the hCoV229E alphacoronavirus has been undergoing extensive anti-

body escape since its entry into human population (Eguia et al., 2021; Li et al., 2019; Wong et al., 2017), and that its evolution could

reflect the future evolution of SARS-CoV-2 (Eguia et al., 2021). The hCoV229E proteome features a spike protein with a (structurally

different) receptor binding domain which targets the human aminopeptidase N protein. Similarly to SARS-CoV-2, the corresponding

receptor binding site, which consists of three loops, is also the major immunodominant region. We evaluated the evolution of anti-

genicity of the hCoV229E RBS using ScanNet as follows. We first collected six template structures for the 229E RBD (PDB 6u7h:A,

6atk:E, 6ixa:A, 6u7e:D, 6u7f:D, 6u7g:D) and constructed a structure-based multiple sequence alignment using ChimeraX (Pettersen

et al., 2021), and an HMM profile model (using the hhalign utility (Steinegger et al., 2019)). Next, we retrieved all 203 available

hCoV229E spike protein sequences from Uniprot, aligned them to the HMM profile (command hhalign -t one_strain_sequence.fasta

-i template_sequences.fasta -oa3m output.fasta -all) and discarded sequences that did not cover at least 100 of the 134 columns of

the alignment. The corresponding EMBL entry was used to retrieve the corresponding isolate/strain name and its collection date, if

available. In total, we obtained 115 (redundant) sequences with known collection dates between 1967 and 2022. For each sequence,

we generated 20 3 6 structural models with MODELLER (Webb and Sali, 2017) (20 per template). Since there was no antibody-

hCoV229E spike protein complex in the training set of ScanNet, we used all the 55 networks trained for antibody binding site pre-

diction (including the 11 used elsewhere that were not trained on SARS-CoV-1/2 data). To define the RBS residues, we first extracted

all interface residues (6Å distance cut-off) of the template complexes (PDB 6atk, 6u7e, 6u7g, 6u7f) and labeled the corresponding

MSA columns as RBS. Then, for a given strain, its RBS residues were identified as the ones mapped onto one of the RBS columns.

The RBS antigenicity was defined for a given strain as the average over all networks, all structural models and all non-gapped RBS

columns of the antigenicity profile. Note that due to the presence of deletions, the number of residues included in the RBS varied from

one variant to the other and therefore summing rather than averaging yielded slightly different results. We tried both options and

found a similar decreasing trend in both cases. Error bars (one standard deviation) were estimated based on the structural model

variability (Figure 3A). The isotonic regression fit was performed using scikit-learn (sklearn.isotonic.IsotonicRegression, default

parameters).

In vitro antigen restimulation assay
Individual lungs were collected, mechanically digested, and enzymatically digested with collagenase/DNase for 1 h at 37�C as

described previously (Chen et al., 2011). Single cell suspensions were then passed through a 70-mm sterile filter. Red blood cells

were lysed using a NH4Cl solution and the cells were enumerated then plated at 5 3 105 cells per well in 96-well, stimulated with

10mg/mL recombinant RBD proteins for 72 h. The supernatants were collected and analyzed by murine IFNg and IL-17A ELISA

(BioLegend). Spleens were processed similar to the lungs without the need of enzymatic digestion.

ELISA (enzyme-linked immunosorbent assay)
Indirect ELISA was carried out to evaluate the serological responses of the total antibody in mice sera to an RBD. A 96-well ELISA

plate (R&D system) was coatedwith the recombinant RBDprotein (Acro Biosystems) at an amount of approximately 2–3 ng per well in
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a coating buffer (15 mM sodium carbonate, 35 mM sodium bicarbonate, pH 9.6) overnight at 4�C, with subsequent blockage with a

blocking buffer (DPBS, v/v 0.05%Tween 20, 5%milk) at room temperature for 2 h. To test the immune response, themice serumwas

serially 4 or 5-fold diluted starting from 1:27 (Omicron-immunized sera), 1:72 (WT) or 1:100 (other VOCs) in the blocking buffer and

then incubated with the RBD-coated wells at room temperature for 2 h. HRP-conjugated secondary goat anti-mouse IgG (H + L)

(Thermo Fisher, cat# G-21040) were diluted 1:1,500 in the blocking buffer and incubated with each well for an additional 1 h at

room temperature. Three washes with 1x PBST (DPBS, v/v 0.05% Tween 20) were carried out to remove nonspecific absorbances

between each incubation. After the final wash, the samples were further incubated in the dark with freshly prepared

w3,30,5,50-Tetramethylbenzidine (TMB) substrate for 10 min at room temperature to develop the signals. After the STOP solution

(R&D system), the plates were read at multiple wavelengths (450 nm and 550 nm) on a plate reader (Multiskan GO, Thermo Fisher).

The raw data were processed by Prism 9 (GraphPad) to fit into a 4PL curve and to calculate IC50/logIC50.

Competitive ELISA with recombinant hACE2
A 96-well plate was pre-coated with either WT or Omicron recombinant RBD at 2–3 mg/mL at 4�C overnight. Mice serum was 3-fold

diluted starting from 1:15 (Omicron) or 1:45 (WT) in the blocking buffer with a final amount of 50 ng biotinylated hACE2 (Sino Biolog-

ical, cat# 10108-H08H-B)/8 ng epitope 3 nanobody/8 ng epitope 4 nanobody at each concentration and then incubated with the plate

at room temperature for 2 h. The plate was washed by the washing buffer to remove the unbound hACE2. 1:5,000 diluted PierceTM

High Sensitivity NeutrAvidin-HRP (Thermo Fisher cat# 31,030) or 1:7,500 diluted T7-tag polyclonal antibody-HRP (Thermo Fisher,

cat# PA1-31449) were incubated with the plate for 1 h at room temperature. TMB solution was added to react with the HRP conju-

gates for 10min. The reaction was then stopped by the Stop Solution. The signal corresponding to the amount of the bound hACE2 or

nanobodies was measured by a plate reader at 450 nm and 550 nm. The wells without sera were used as control to calculate the

percentage of hACE2 or nanobody signal. The resulting data were analyzed by Prism 9 (GraphPad) and plotted.

Pseudotyped SARS-CoV-2 neutralization assay
The 293T-hsACE2 stable cell line (Integral Molecular, cat# C-HA101, Lot# TA060720MC) and pseudotyped SARS-CoV-2 (Wuhan-

Hu-1 strain D614G and Omicron) particles with luciferase reporters were purchased from the Integral Molecular. The neutralization

assay was carried out according to the manufacturers’ protocols. In brief, 2-fold serially diluted immunized mice serum starting from

1:22 dilution was incubated with the pseudotyped SARS-CoV-2-luciferase. For accurate measurements, seven concentrations were

tested for each mice and at least two repeats were done. Pseudovirus in culture media without sera was used as a negative control.

100 mL of the mixtures were then incubated with 100 mL 293T-hsACE2 cells at 2.53 10e5 cells/mL in the 96-well plates. The infection

took �72 h at 37�C with 5% CO2. The luciferase signal was measured using the Renilla-Glo luciferase assay system (Promega, cat#

E2720) with the luminometer at 1 ms integration time. The obtained relative luminescence signals (RLU) from the negative control

wells were normalized and used to calculate the neutralization percentage at each concentration. Data were processed by Prism

9 (GraphPad). Due to the poor neutralization of the serum at the highest concentration (lowest dilution), the IC50 was estimated as

the maximal dilution that could inhibit �50% cell infections by the pseudovirus.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analysis was carried out using Python and the numpy scipy, and statannot packages. All technical details are provided

throughout the manuscript, in the figure captions, or in the STAR Methods.
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Supplementary Figure S1 (Related to Figure 1): Epitope distribution based on solved antibody-RBD structures and link 
with the ScanNet antigenicity profile. A ScanNet antigenicity profile for WT RBD (red) vs. the empirical antibody hit rate 
calculated based on PDB structures (black). RBD residue solvent accessibility is shown as a baseline (blue). The three curves 
were normalized to the mean value of 1 to facilitate the comparison. The solvent accessibility was computed within the spike 
trimer in the open state configuration (PDB identifier: 7e5r:A). B Scatter plot of the residue-wise empirical antibody hit rate 
(scaling: fraction of antibodies that bind the residue) against the change in ScanNet antigenicity of the Omicron variant (Z-score 
scale, using the residue-wise WT antigenicity distribution as reference, corresponds to the marker size of points in Figure 1B). 
Solid line and shaded area indicate respectively the linear regression fit and its 95% confidence interval. P-value calculated using 
Student t-test. C Omicron mutations (x-axis) vs. antibody binding. The color-coding corresponds to the fraction of the RBD 
residue atoms interacting with the antibody. D RBD structure (PDB: 7jvb) is colored according to the antibody hit rate (number of 
antibodies that interact with the residue). 
 
 
 



Supplementary Figure S2 (Related to Figure 1): virtual Deep Mutational Scans (vDMS) of WT RBD for antigenicity, 
protein binding propensity and sequence likelihood. A vDMS of antigenicity score predicted by ScanNet, see Methods. The 
difference between the summed antigenicity profiles (over the whole domain) of mutants and WT is shown. The corresponding 
distribution of entries is shown in Figure 1F, Figure S8B. Green dots indicate Omicron mutations. B. vDMS of protein binding 

propensity score predicted by ScanNet, see Methods. The difference between the summed protein binding propensity profiles 
(over the whole domain) of mutants and WT is shown. The corresponding distribution of entries is shown in Supplementary 
Figure S6D. Green dots indicate Omicron mutations. C. vDMS of sequence likelihood based on evolutionary records. The 

difference between the log-likelihood log P(S) of mutant sequence and wild type sequence is shown. The likelihood function was 
obtained by training a sequence generative model (Restricted Boltzmann Machine), on a multiple sequence alignment of 

betacoronaviruses RBDs (Methods). The vDMS were averaged over five trainings, each using different random seeds. The 
correlation to the expression level DMS performed in(Starr et al., 2020) is shown in Supplementary Figure S6D. Yellow dots 

indicate Omicron mutations. 
  



 

 
 

Supplementary Figure S3 (Related to Figure 2): The T cell recall responses in the RBD immunized mice. Splenocytes (A, B) or 
lung mononuclear cells (C, D) from naïve or RBD immunized mice were left unstimulated or stimulated with WT, Delta, or Omicron 
RBD for 72h. Culture supernatants were harvested for IFNg and IL-17 measurements by ELISA. Each data point represents an 
animal. Bars and whiskers represent mean +/- SD. Note: Some data points are missing due to technical difficulties in the 
mononuclear cell isolation from the inflamed tissues. 

 

Supplementary Figure S4 (Related to Figure 2): ELISA of RBD-immunized mouse sera on day 25 against the corresponding 
antigen. Binding titer was calculated as the ID50 (reciprocal serum dilution that inhibits the 50% maximal RBD binding). 



 

Supplementary Figure S5 (Related to Figure 1): Competition ELISA. A. Structural representations of the RBD-ACE2 complex. 
The sequence conservation of sarbecovirus RBD was presented in a color gradient, where 1.0 (in dark green) indicates that the 
residue is 100% conserved within all the sarbecovirus clades. B-D. Competitive ELISA between mice sera and (C) hACE2, (B) a 
high-affinity nanobody that targets a conserved RBD epitope (residues 337, 351-358, 396, 464, 466-468), or (D) a high-affinity 
nanobody that targets another conserved RBD epitope (residues 380, 381, 386, 390, 393, 428-431, 464, 514-522) for RBD binding. 
Each plot shows the percentage of remaining ACE2 or Nbs on the immobilized RBD in the presence of sera, expressed as reciprocal 
serum dilution. RBD was shown as gray ribbons. Mutated residues on Omicron were shown in purple. Distinct, conserved nanobody 
epitopes (3 and 4) were shown in pink and blue, respectively.  

 



 
Supplementary Figure S6 (Related to STAR Methods):  Training, validation and sampling of a sequence generative model 
for the RBD.  
A. Sequence profile of the MSA of betacoronavirus RBDs identified in UniRef30. B,C. Hyperparameter search by cross-validation. 
(B) Cross-validation likelihood (divided by the number of sites) and (C) Spearman correlation between the change in sequence log-
likelihood and change in expression around WT, as a function of the number of hidden units  and the regularization strength  
of the RBM. The pseudo-likelihood (not shown) was also monitored and was highly correlated to the likelihood. Since the three 
metrics did not peak at the same position, we manually selected ,  as a compromise. D. Scatter plot of the change 
in expression level (experimentally determined in(Starr et al., 2020) ) and the change in log-likelihood for all single point mutants 
(corresponding matrix shown in Figure S3C). E-G. Evaluation of the generative properties of the selected model. The distribution 
of samples generated by the model matched reasonably well the (E) single site frequency, (F) covariance between visible and hidden 
units and (G) overall topology of the distribution of natural sequences. H. Distribution of mutations to WT found in the set of 1000 
artificial variants obtained by sampling from . For each site, the height of each 
letter is proportional to the frequency of the corresponding amino acid in the generated set. The total height is proportional to the 
mutation rate of the site. As expected, RBS is the most variable region. 
  



 

 

Supplementary Figure S7 (Related to STAR Methods): Noise estimation and reduction methodology for assessing the impact 
of all single point mutations on antigenicity and protein binding propensity.  
 A-B. Histogram of the total change in antigenicity concerning WT across all single point mutations before (A) and after (B) 
smoothing. Blue histogram represents 195 repeated runs of the WT sequence through the comparative modeling pipeline; it 
corresponds to the noise level induced by homology modeling. Text indicates the fraction of mutations outside of the [5%,95%] 
confidence interval. C. The smoothing kernel used for weighting residues in the neighborhood of the mutation. D-E. Histogram of 
the total change in protein binding propensity with respect to WT across all single point mutations before (D) and after (E) 
smoothing. F. Change in protein binding propensity vs. change in antigenicity for all single-point mutants. Each point corresponds 
to a single mutation, colored by the type of amino acid (green: cysteine, gold: aromatic, purple: polar, black: hydrophobic, blue: 
positively charged, red: negatively charged, gray: tiny/proline). The green shaded region denotes mutations that simultaneously 
increase protein binding propensity and decrease antigenicity; they form a small since both properties are correlated. Pink crosses 
indicate Omicron mutations. 
 
 
 
 



 
Supplementary Figure S8 (Related to STAR Methods):  Epistatic effects for antigenicity. Starting from the Omicron sequence, 
all 27 combinations of the seven antigenicity-increasing mutations that reverse to WT sequence are modeled and their RBS 
antigenicity is calculated. The graph shows the change in antigenicity as a function of mutation number. Solid and dashed lines 
indicate average and predicted average from single mutations. On average, the combined effect of mutations is larger than the sum 
of the individual effects. 
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