Supplementary information for

The Discovery and Characterization of the Metallopterin-Dependent Ergothioneine Synthase from *Caldithrix abyssi*

Mariia A. Beliaeva^{1,2} and Florian P. Seebeck^{1,2*}

florian.seebeck@unibas.ch

¹Department of Chemistry, University of Basel, Mattenstrasse 24a, Basel 4002, Switzerland ²Molecular Systems Engineering, National Competence Center in Research (NCCR), 4058 Basel, Switzerland

Sequences of proteins encoded in expression plasmids:

>CaMES (Caldithrix abyssi, UniProt A0A7V4WV16), plasmid: pCOLADuet-1

MGHHHHHAENLYFQGSGMSIAEPNTEKRALCGICPAGCWVKVKYDAGGRLSQVKADDSSHLGMICTLGEHSADIVYSEHRLRYPMRRKGPKGSYDFERISWDTAYD IIVDNLQKIKKESGPEATAVYTGRGSFELAMCDVFQPKGVAVSSASSVLFPFGSPNTLGVGALCYVSFAMIAPHVTMGGMLINMFSDIERAELIVVWGANPATDSPP LDFQRIVAAQKRGAQVVVIDPRRTKTAKVTDAQWIPVRPGTDGALALGLCNVLIEEELYDESFARDWTLGFDDFTRHVQHYRPEVVERITGVPAQTVQELARRIAAA ${\tt NGAAPVMYSGLEYSNSGVQAIRATMALWALAGQLDVPGGRCFNMRDNTFPINREGLIPNPNEAKALGRDRFPVYSAYRGESHAIALPEAVLNGDPYRIRSLIILGGS$ IITAWPOPDIWRKTLKTLDFLVTIDROLTADSAYADIVLPATTMYEIESYMTYGSMFRIREKVIEPVGEARNDFFIMAELAKRLGYGHLYPONEDELLRYVLKGSGF TPEEVRAKGGLVQKPTSILEYKKWEKGLLRSDGQKGFDTPSGKFELASQFLAEHGYDPLPVYTEPTEGPLSRPDLAKEFPLVFNSGSRVTTPFRSQHHGIPALNKRR REPQVTMNSADAGERGIKSGDWVRISTRRGSVVMRAYVTDDIVAGSIDADMGGGGPVGPQAWQKCNINDVTDLQNYDPISGFPVYKTLLCQVSKVESGKDGTVLDSGFVVKTLLCQVSKVESGKDGTVLDSGFVVKTLLCQVSKVESGKDGTVLDSGFVVKTLLCQVSKVESGKDGTVLDSGFVVKTLLCQVSKVESGKDGTVLDSGFVVKTLLCQVSKVESGKDGTVLDSGFVVKTLLCQVSKVESGKDGTVLDSGFVVKTLLCQVSKVESGKDGTVLDSGFVVKTLLCQVSKVESGKDGTVLDSGFVVKTLLCQVSKVESGKDGTVLDSGFVVKTLLCQVSKVESGKDGTVLDSGFVGPQAWQKCNINDVTDLQNYDPISGFVVKTLLCQVSKVESGKDGTVLDSGFVVKTLLCQVSKVESGKDGTVLDSGFVGPQAWQKCNINDVTDLQNYDPISGFVVKTLLCQVSKVESGKDGTVLDSGFVVKTLLCQVSKVESGKDGTVLDSGFVKTLLCQVSKVESGKDGTVLDSGFVVKTLLCQVSKVESGKDGTVLDSGFVVKTLLCQVSKVESGKDGTVLDSGFVGPQAWQKCNINDVTDLQNYDPISGFVYKTLLCQVSKVESGKDGTVLDSGFVKTLLCQVSKVESGKDGTVLDSGFVYKTLLCQVSKVESGKDGTVLDSGFVGPQAWQKCNINDVTDLQNYDPISGFVYKTLLCQVSKVESGKDGTVLDSGFVGPQAWQKCNINDVTDLQNYDPISGFVYKTLLCQVSKVESGKDGTVLDSGFVGPQAWQKCNINDVTDLQNYDF ${\tt Easgitaadngngraaqpefkriyldhnattpidpevkkvmreyldagqgnpsaiyhegkesrfaveaarrsvarllnctarrivftgggseannlaikgiafaheg$ $\label{eq:krnhiitsolehpairntckwlesrgftvtylpvdofgrvrphdlekaisdrtllvsvmlannetgsiopvaelariahohgaymhtdavoavakipvdvnelevdlltsghkfygpkgigalyvrkdipltplvhgghoesdlragtenvlamvglgkaadlavorlpkmkkvealrnhleeeikkiipearvnghpvhrvpvtlnmtipgmukkvealrnhleeeikkiipearvnghpvhrvpvtlnmtipgmukkvealrnhleeeikkiipearvnghpvhrvpvtlnmtipgmukkvealrnhleeeikkiipearvnghpvhrvpvtlnmtipgmukkvealrnhleeeikkiipearvnghpvhrvpvtlnmtipgmukkvealrnhleeeikkiipearvnghpvhrvpvtlnmtipgmukkvealrnhleeeikkiipearvnghpvhrvpvtlnmtipgmukkvealrnhleeeikkiipearvnghpvhrvpvtlnmtipgmukkvealrnhleeeikkiipearvnghpvhrvpvtlnmtipgmukkvealrnhleeeikkiipearvnghpvhrvpvtlnmtipgmukkvealrnhleeeikkiipearvnghpvhrvpvtlnmtipgmukkvealrnhleeeikkiipearvnghpvhrvpvtlnmtipgmukkvealrnhleeeikkiipearvnghpvhrvpvtlnmtipgmukkvealrnhleeeikk$ RGESLVLALDEKGLSLSSGSACRSGSPDPSPALLAMGLSEEEAHCALRFSLGVKTTAKDIERTLHLFEEVVTDAKTMVRFIPCR

>EaMES (Euryarchaeota archaeon, UniProt A0AlV6KBG7), plasmid: pCOLADuet-1 MGHHHHHHAENLYFQGSGMTHTVQGERRALCGICSAGCGVIVAYDDHGRIASVRPDEDAEIGIICRLGEASPEIVYSSDRVLYPLRRAGPKGTHAFERITWDEAYET IVANLTRIREESGPEAVAIYTGSGSFELSFCDIFQPKGVAVSSASSVLFPFGSPNTMGVGALCYVSFAMIAPHVTMGEMYFNMFSDYEQSDLILVWGTNPATDCPPL GASFAMYTGLEYSDSGVQAIRAVFVLWGISGNLDVPGGRCFAMRGNAFPINRSGYIQNPDLKRAIGTDRFPVYTHYRQEGHAIALPDAVLRGRPYRIRALILEAAHM LISWPOTPVWRETLANLDFLVSVDRHLTADAAYADIVLPATTLYERESYMTYGPVFRLRERVIEPLGEARGDVQIMAELARRLGYGHLYPOSEEEALRHVLKGSGFT $\label{eq:legvraaggtvrspaameyrkwekgllrpdgrpdfdtptgkfeiystileeygydplpvytepgesplsqpeqadrfplvfnsgarvttdfhaqhhsipslvrerpicable and a standard and a standard a standard$ ${\tt EPTVTL} NSHDARERGIRDGDRVIVRTARGEIVLRALVTDGIVRGAVEANMGGGCHQAPEAWREGNVNELTDLARYDPISGFPVYKALLCDVARAEGDGGRVAIGTGE$ vdsvagaapppeapriyldhnattpldpavhqamaayltsnpgnpssiyregrdakvavesarrslarllnctarritftgscteanntvikglafagrdgirreiiinterritftgscteannttvikglafagrdgirreiinterritftgscteanntvikglafagrdgirreiinterritftgscteanntvikglafagrdgirreiinterritftgscteanntvikglafagrdgirreiinterritftgscteanntvikglafagrdgirreiinterritftgscteanntvikglafagrdgirreiinterritftgscteannttvikglafagrdgirreiinterritftgscteanntvikglafagrdgirreiinterritftgscteanntvikglafagrdgirreiinterritftgscteannttvikglafagrdgirreiinterritftgscteannttvikglafagrdgirreiinterritftgscteannttvikglafagrdgirreiinterritftgscteannttvikglafagrdgirreiinterritftgscteannttvikglafagrdgirreiinterritftgscteannttTSPTEHSAVIEPCRWLEOFGFRVTFLPVDRSGRVDPADLEGLIGPETLLVSVMVANNETGTIOPVRELVRIAHDHGALFHTDATOAIGKMPVDAVDLDVDFLTLSGH KIYGPKGVGALYMKKGVRIAPLVHGGEQEGRFRAGTENVAGIVGLGRAAEIAEQHIGRMDAVRHLRDRLEAGIRETVPGARLNGHPTERLANTLNMVLPGYRGESIV LALDRRGISLSSGSACHSGSPAPSHVLLAMGLSAEDAHCSIRMTLGAHTTDEDIDRTLGAFRDLLHGPGEIIRFVACR

>AbMES (Abyssubacteria bacterium, UniProt A0A3A4NVY7), plasmid: pCOLADuet-1 MGHHHHHHAENLYFQGSGMTEISTQLAPQQDSPAEQIKDGLCGICPAGCWVRVRLNGGRMSGVKALPDHPLGMICTIGKHSPQIVHDPNRLQYPLRRTGPKGSYDFE ${\tt RITWNEAMEAIAGKLDDIKREHGPEATAIYTGRGSFELSMCDVYQPRGVAVSSASSVLFPFGSPNTLGVGALCYVSFAMIAPHVTMGEMLITMDTEIEQAELIVVWGFAMIAPHVTMGFAMIAPHVTMGFAMIAPHVTMGEMLITMTEIEQAELIVVWGFAMIAPHVTMAPHVTMAPHV$ ANPATDSPPLAHAQILRARERGAEVVVIDPRRSETAREAESEWIPLRPGTDGALALGMINVLVEEELYDEDFAENWTLGFNELKQYVQHFRPETVEQITEVPAEKVR SLSRRIARARGACPVMYTGLEYSDSGVQAIRAVHTLWALAGOLDVPGGLVFRMKENIFPINRSGLIANPDVRKALGRDRFPVYSMYRGESHAIALPESVLEGRPYKI RSLIILGASIITAWPQPDLWRKTLNALDFLVCIDRYFTADAAYADIVLPATTMYEIMSYMVYGPLFIIRERIVEPVGEARNDFLILAELAKRLGYGHLYPQTEEELL RHVLQGSGYTLEEVKAVGGEVRLPAVMMQYKKWMKGLLRPDGKPGFNTPSGKFEIASSILAEHGYDALPVYVEPGEGPLANPQLAADYPLVFNSGARVFSDFRSQHH $\label{eq:listic} IGVDLLSLSSHKIHGPKGMGMLYVRKGIPLVPLIDGGQQEQKLRAGTENVAGIVGFGKACELAQRKLNERDMERVQALRDALEKGLRELVPDMKLNGHPSLRLPNTL$

>hvMES (hydrothermal vent metagenome, UniProt A0A3B1C0R1), plasmid: pCOLADuet-1

MGHHHHHAENLYFQGSGMDKRTLEWKKGICGICPAGCWIEAGMQAGKMVDIRADTŚHQLGMICRRGQHAPEIIYSEQRLKYPLKRVGPKGKHAFERISWDEAYDCI MARLEAAAKRGCDMVVIDPRYTETAKRTGAEWIAIRPGTDGALALSMMGVLIDEDLYDEKFVE0WTHGFADLTGYVOHFRPEVVERITGVPADKIRELARRIARATG AAPVMYTGLEYSNSGIQAVRAVLSLFAISGHLDTPGGTGLAMRGQHFPVNRSCNQQNPDLARAAARDKFPLYSDYRGESHASGLVDAVLHSEPYSIRGLIIHGASLL $\texttt{TSWPQTSIWRKTLSKLDFVVSIDRQLTADAAYADIVLPATTMFEIDSYMVYGPIFRLREKLVEPVGEARNDYLIMAELAKRLGYGHLYPQTEEDMIRFALKDSGYTLSURGARNDYLIMAELAKRLGYGHLYPQTEEDMIRFALKDSGYTLSURGARNDYLIMAELAKRLGYGHLYPQTEEDMIRFALKDSGYTLSURGARNDYLIMAELAKRLGYGHLYPQTEEDMIRFALKDSGYTLSURGARNDYLIMAELAKRLGYGHLYPQTEEDMIRFALKDSGYTLSURGARNDYLIMAELAKRLGYGHLYPQTEEDMIRFALKDSGYTLSURGARNDYLIMAELAKRLGYGHLYPQTEEDMIRFALKDSGYTLSURGARNDYLIMAELAKRLGYGHLYPQTEEDMIRFALKDSGYTLSURGARNDYLIMAELAKRLGYGHLYPQTEEDMIRFALKDSGYTLSURGARNDYLIMAELAKRLGYGHLYPQTEEDMIRFALKDSGYTLSURGARNDYLIMAELAKRLGYGHLYPQTEEDMIRFALKDSGYTLSURGARNDYLIMAELAKRLGYGHLYPQTEEDMIRFALKDSGYTLSURGARNDYLIMAELAKRLGYGHLYPQTEEDMIRFALKDSGYTLSURGARNDYLIMAELAKRLGYGHLYPQTEEDMIRFALKDSGYTLSURGARNDYLIMAELAKRLGYGHLYPGTEFT$ ${\tt EDIQRNGGWVKLPTPMMEYKKYEKGSLRADGKPGFETPTGKFEIWSSKLEEYGYEPLPKYVEPVEGPQAAPELSQRFPLVFNSGARPQTDFRSQHHGIKGLNKDNPE$ PTVE INSDDARERG I E PGDLVELRTPRGAVPFRARVSOD I VRGA I EANMGGGTPVG PKAWOEWNVNELTD LYNYDE I SGF PVYKALLC EVVKI KSADAKTRLRLTDS ${\tt GRHIITSRVEHPAILQTTDFLERQGFRITYLEVDRRGLVQPQKLEEALTDDTILVSIMLANNEVGSIQPIRELVQIAHAQSVLFHTDAVQAAGKIPIDIEKLDVDLL$ ${\tt GESLVVALDQHGISFSSGSACKSGSPKPTHVLmamgCSEEDAHCAVRFSLDAGIRQKDIDVTLAELKNVLLEIETTVRFLPCK}$

>EgtD (Mycolicibacterium smegmatis, UniProt AOR5M8), plasmid: pET19b

GTSEKTRMLLDAMRDAELLRRFIPFDVDAGVLRSAGAAIGAEYPGIEIDAVCGDFEEHLGKIPHVGRRLVVFLGSTIGNLTPAPRAEFLSTLADTLOPGDSLLLGTD $\label{eq:linear} LVKDTGRLVRAYDDAAGVTAAFNRNVLAVVNRELSADFDLDAFEHVAKWNSDEERIEMWLRARTAQHVRVAALDLEVDFAAGEEMLTEVSAKFRPENVVAELAEAGL$ ROTHWWTDPAGDFGLSLAVR

>CaMESc-term (C-terminus of CaMES), plasmid: pET28a MGHHHHHHAENLYFQGSGMAQPEFKRIYLDHNATTPIDPEVKKVMREYLDAGQGNPSAIYHEGKESRFAVEAARRSVARLLNCTARRIVFTGGGSEANNLAIKGIAF $\label{eq:construction} A \texttt{HegKrnhiitsgie} \\ \texttt{HegKrnhiitsgie}$ evdlltlsghkfygpkgigalyvrkdipltplvhgghqesdlragtenvlamvglgkaadlavqrlpkmkkvealrnhleeeikkiipearvnghpvhrvpvtlnmtikkvealrnheeeikkiipearvnghpvhrvpvtlnmtikkvealrnheeeikkiipearvnghpvhrvpvtlnmtikkvealrnheeeikkiipearvnghpvhrvpvtlnmtikkvealrnheeeikkiipearvnghpvhrvpvtlnmtikkvealrnheeeikkiipearvnghpvhrvpvtlnmtikkvealrnheeeikkiipearvnghpvhrvpvtlnmtikkvealrnheeeikkiipearvnghpvhrvpvtlnmtikkvealrnheeeikkiipearvnghpvhrvpvtlnmtikkvealrnheeeikkiipearvnghpvhrvpvtlnmtikkvealrnheeeikkiipearvnghpvhrvpvtlnmtikkvealrnheeeikkvealrnheekkvealrnheekkvealrnheeeikkvealrnheekkvealrnheekkvealrnheeeikkvealrnheekkvIPGMRGESLVLALDEKGLSLSSGSACRSGSPDPSPALLAMGLSEEEAHCALRFSLGVKTTAKDIERTLHLFEEVVTDAKTMVRFIPCR

>CaMES_{C1535}, plasmid: pET28a

LDFORIVAAOKRGAOVVVIDPRRTKTAKVTDAOWIPVRPGTDGALALGLCNVLIEEELYDESFARDWTLGFDDFTRHVOHYRPEVVERITGVPAOTVOELARRIAAA NGAAPVMYSGLEYSNSGVQAIRATMALWALAGQLDVPGGRCFNMRDNTFPINREGLIPNPNEAKALGRDRFPVYSAYRGESHAIALPEAVLNGDPYRIRSLIILGGS ${\tt IITAWPQPDIWRKTLKTLDFLVTIDRQLTADS} \\ {\tt AyadivLpattmyeiesymtygsmfrirekviepvgearndffimaelakrlgyghlypqnedellryvLkgsgficartextres} \\ {\tt AyadivLkgsgficartextres} \\ {\tt AyadivLkgsgficartex$ REPOVTMNSADAGERG I KSGDWVR I STRRGSVVMRAYVTDD I VAGS I DADMGGGGPVGPOAWOKCN I NDVTDLONYDP I SGF PVYKTLLCOVSKVE SGKDGTVLDSG EASGTIAADNGNGRAAQPEFKRIYLDHNATTPIDPEVKKVMREYLDAGQGNPSAIYHEGKESRFAVEAARRSVARLLNCTARRIVFTGGGSEANNLAIKGIAFAHEGFAVEAARRSVARLLNCTARRIVFTGGGSEANNLAIKGIAFAHEGFAVEAARRSVARLLNCTARRIVFTGGGSEANNLAIKGIAFAHEGFAVEAARRSVARLLNCTARRIVFTGGGSEANNLAIKGIAFAHEGFAVEAARRSVARLLNCTARRIVFTGGGSEANNLAIKGIAFAHEGFAVEAARRSVARLLNCTARRIVFTGGGSEANNLAIKGIAFAHEGFAVEAARRSVARLLNCTARRIVFTGGGSEANNLAIKGIAFAHEGFAVEAARRSVARLLNCTARRIVFTGGGSEANNLAIKGIAFAHEGFAVEAARRSVARLLNCTARRIVFTGGGSEANNLAIKGIAFAHEGFAVEAARRSVARLLNCTARRIVFTGGGSEANNLAIKGIAFAHEGFAVEAARRSVARLLNCTARRIVFTGGGSEANNLAIKGIAFAHEGFAVEAARRSVARLLNCTARRIVFTGGGSEANNLAIKGIAFAHEGFAVEAARRSVARLLNCTARRIVFTGGGSEANNLAIKGIAFAHEGFAVEAARRSVARLLNCTARRIVFTGGGSEANNLAIKGIAFAHEGFAVEAARRSVARLLNCTARRIVFTGGGSEANNLAIKGIAFAHEGFAVEAARRSVARLLNCTARRIVFTGGGSEANNLAIKGIAFAHEGFAVEAARRSVARLLNCTARRIVFTGGGSEANNLAIKGIAFAHEGFAVEARRSVARLLNCTARRIVFTGGGSEANNLAIKGIAFAHEGFAVEARRAVFAVEAARRSVARLLNCTARRIVFTGGGSEANNLAIKGIAFAHEGFAVEARRAVFAVEARRAVFAVEARRAVFAVEAARRAVFAVEARRAVFAVEALTLSGHKFYGPKGIGALYVRKDIPLTPLVHGGHQESDLRAGTENVLAMVGLGKAADLAVQRLPKMKKVEALRNHLEEEIKKIIPEARVNGHPVHRVPVTLNMTIPGM RGESLVLALDEKGLSLSSGSACRSGSPDPSPALLAMGLSEEEAHCALRFSLGVKTTAKDIERTLHLFEEVVTDAKTMVRFIPCR

>CaMES_{K952A_a}, plasmid: pET28a

T I VDNI. OK I KKE SG PE ATAVYTGRGSFELAMC DVFO PKGVAVSSASSVLF PFGS PNTLGVGA LCYVSFAM TA PHVTMGGMLT NMFSD T ERAEL I VVWGAN PATDSPP LDFQRIVAAQKRGAQVVVIDPRRTKTAKVTDAQWIPVRPGTDGALALGLCNVLIEEELYDESFARDWTLGFDDFTRHVQHYRPEVVERITGVPAQTVQELARRIAAA $\label{eq:construction} I \mbox{itable} T \mbox{itable} P \m$ REPQVTMNSADAGERGIKSGDWVRISTRRGSVVMRAYVTDDIVAGSIDADMGGGGPVGPQAWQKCNINDVTDLQNYDPISGFPVYKTLLCQVSKVESGKDGTVLDSGFVVKTLLCQVSKVESGKDGTVLDSGFVVKTLLCQVSKVESGKDGTVLDSGFVVKTLLCQVSKVESGKDGTVLDSGFVVKTLLCQVSKVESGKDGTVLDSGFVVKTLLCQVSKVESGKDGTVLDSGFVVKTLLCQVSKVESGKDGTVLDSGFVVKTLLCQVSKVESGKDGTVLDSGFVVKTLLCQVSKVESGKDGTVLDSGFVVKTLLCQVSKVESGKDGTVLDSGFVVKTLLCQVSKVESGKDGTVLDSGFVGPQAWQKCNINDVTDLQNYDPISGFVVKTLLCQVSKVESGKDGTVLDSGFVVKTLLCQVSKVESGKDGTVLDSGFVGPQAWQKCNINDVTDLQNYDPISGFVVKTLLCQVSKVESGKDGTVLDSGFVVKTLLCQVSKVESGKDGTVLDSGFVKTLLCQVSKVESGKDGTVLDSGFVVKTLLCQVSKVESGKDGTVLDSGFVVKTLLCQVSKVESGKDGTVLDSGFVGPQAWQKCNINDVTDLQNYDPISGFVYKTLLCQVSKVESGKDGTVLDSGFVKTLLCQVSKVESGKDGTVLDSGFVYKTLLCQVSKVESGKDGTVLDSGFVGPQAWQKCNINDVTDLQNYDPISGFVYKTLLCQVSKVESGKDGTVLDSGFVGPQAWQKCNINDVTDLQNYDPISGFVYKTLLCQVSKVESGKDGTVLDSGFVGPQAWQKCNINDVTDLQNYDFKRNHIITSOIEHPAIRNTCKWLESRGFTVTYLPVDOFGRVRPHDLEKAISDRTLLVSVMLANNETGSIOPVAELARIAHOHGAYMHTDAVOAVAKIPVDVNELEVDL

 $\label{eq:linear} LTLSGH \end{tabular} ISGENCE TO THE STARTENT STARTS THE STARTS AND A STARTS$

>CaMES_{K952A,b}, plasmid: pETDuet-1

MGHHHHHAÈNLŸFQGSGMSIÄEPNTEKRALCGICPAGCWVKVKYDAGGRLSQVKADDSSHLGMICTLGEHSADIVYSEHRLRYPMRRKGPKGSYDFERISWDTAYD IIVDNLQKIKKESGPEATAVYTGRGSFELAMCDVFQPKGVAVSSASSVLFPFGSPNTLGVGALCYVSFAMIAPHVTMGGMLINMFSDIERAELIVVWGANPATDSPP LDFQRIVAAQRGAQVVVIDPRRTKTAKVTDAQWIPVRPGTDGALALGLCNVLIEEELVDESFARDWTLGFDDFTHHVQHYRPEVVERITGVPAQTVQELARRIAAA NGAAPVMYSGLEYSNSGVQAIRATMALWALAGQLDVPGGRCFNMRDNTFPINREGLIPNPNEAKALGRDRFPVYSAYRGESHAIALPEAVLNGDPYRIRSLIILGGS IITAWPQPDIWRKTLKTDFLVTIDRQLTADSAYADIVLPATTMYEIESYMTYGSMFRIREKVIEPVGEARNDFFIMAELAKRLGYGHLYPQNEDELLRYVLKGSGF TPEEVRAKGGLVQKPTSILEYKKWEKGLLRSDGQKGFDTPSGKFELASQFLAEHGYDPLPVYTEPTEGPLSRPDLAKEFFLVFNSGSRVTTDFRSQHHGIPALNKRR REPQVTMNSADAGERGIKSGDWVRISTRRGSVVMRAYVTDDIVAGSIDADMGGGGPVGPQAWQKCNINDVTDLQNYDPISGFPVYKTLLCQVSKVESGKDGTVLDSG EASGTIAADNCNGRAAQPEFKRIYLDHNATTPIDPEVKKVMREYLDAGQGNPSAIYHEGKESRFAVEAARRSVARLLNCTARRIVFTGGGSEANNLAIKGIAFAHEG KRNHIITSQIEHPAIRNTCKWLESSGFTVTYLPVDQFGRVPHDLEKAISDRTLLVSVNLANNETGSIQPVAELARIAHGHGAYMHTDAVQAVAKIPVDVNELEVDL LTLSGHAFYGPKGIGALYVRKDIPLTPLVHGGHQESDLRAGTENVLAMVGLGKAADLAVQRLPKMKKVEALRNHLEEEIKKIIPEARVNGHPVHRVPVTLNMTIPGM RGESLVLALDEKGLSLSSGSACRSGSPDSPALLAMGLSEEEAHCALRFSLGVKTTAKDIERTLHLFEVVTDAKTWRFIPCR

>CaMESc1074s, plasmid: pET28a

Weinheltonsy product physical point of the product of the product

>CaMES_{C1097s}, plasmid: pET28a

MGHHHHHAENLYFQGSGMSIAEPNTEKRALCGICPAGCWVKVKYDAGGRLSQVKADDSSHLGMICTLGEHSADIVYSEHRLRYPMRRKGPKGSYDFERISWDTAYD IIVDNLQKIKKESGPEATAVYTGRGSFELAMCDVFQPKGVAVSSASSVLFPFGSPNTLGVGALCYVSFAMIAPHVTMGGMLINMFSDIERAELIVVWGANPATDSPP LDFQRIVAAQKRGAQVVVIDPRRTKTAKVTDAQWIPVRPGTOGALALGLCVLIEEELXDESFARDWTLGFDDFTRHVQHVRPEVVERITGVPAQTVQELARRIAAA NGAAPVMYSGLEYSNSGVQAIRATMALWALAGQLDVPGGRCFNMRDNTFPINREGLIPNPNEAKALGRDRFPVYSAYRGESHAIALPEAVLNGDPYRIRSLIILGGS IITAWPQPDUWRKTLKTLDFLVTIDRQLTADSAYADIVLPATTMYEIBSYMTYGSMFRIREKVIEPVGEARNDFFIMAELAKRLGYGHLYPQNEDELLRYVLKGSGF TPEEVRAKGGLVQKPTSILEYKKWEKGLLRSDGQKGFDTPSGKFELASQFLAEHGYDPLPVYTEPTEGPLSRPDLAKEFPLVFNSGSRVTTDFRSQHHGIPALNKRR REPQVTMNSADAGERGIKSGDWVRISTRRGSVVMRAYVTDDIVAGSIDADMGGGGPVGPQAWQKCNINDVTDLQNYDPISGFPVYKTLLCQVSKVESGKDGTVLDSG EASGTIAADNGNGRAAQPEFKRIYLDHNATTFIDPEVKKVMREYLDAGGNPSAIYHEGKESRFAVEAARRSVARLLNCTARRIVFTGGGSEANNLAIKGIAFAHEG KRNHIITSQIEHPAIRNTCKWLESRGFTVTYLPVDQFGRVRPHDLEKAIDRTLLVSVMLANNETGSIQPVAELARIAHGHGAYMHTDAVQAVAKIPVDVNELEVDL LTLSGHKFYGPKGIGALYVRKDIPLTPLVHGGHQESDLRAGTENVLAMVGLGKAADLAVQRLPKMKKVEALRNHLEEEIKKIIPEARVNGHPVHRVPVTLNMTIPGM RGESLVLALDEKGLSLSSGSACRSGSPDSPALLAMGLSEEEAH<mark>B</mark>ALKFSLGVKTTAKDIERTLHLFEVVTDAXTMVRFIPCR

>CaMESc1135s, plasmid: pET28a

MGHHHHHAENLYFQGSGMSIAEPNTEKRALCGICPAGCWVKVKYDAGGRLSQVKADDSSHLGMICTLGEHSADIVYSEHRLRYPMRRKGPKGSYDFERISWDTAYD IIVDNLQKIKKESGPEATAVYTGRGSFELAMCDVFQPKGVAVSSASSVLFPFGSPNTLGVGALCYVSFAMIAPHVTMGGMLINMFSDIERAELIVVWGANPATDSPP LDFQRIVAAQKRGAQVVVIDPRRTKTAKVTDAQWIPVRPGTDGALALGLCVLIEEELVDESFARDWTLGFDDFTHHVQHYRPEVERITGVPAQTVQELARRIAAA NGAAPVMYSGLEYSNSGVQAIRATMALWALAGQLDVPGGRCFNMRDNTFPINREGLIPNPNEAKALGRDRFPVYSAYRGESHAIALPEAVLNGDPYRIKSLIILGS IITAWPQPDIWRKTLKTLDFLVTIDRQLTADSAYADIVLPATTMYEIESYMTYGSMFRIREKVIEPVGEARNDFFIMAELAKRLGYGHLYPONEDELLRYVLKGSGF TPEEVRAKGGLVQKPTSILEYKKWEKGLLRSDGQKGFDTPSGKFELASQFLAEHGYDPLPVYTEPTEGPLSRPDLAKEFPLVFNSGSRVTTDFRSQHHGIPALNKRR REPQVTMNSADAGERGIKSGDWVRISTRRGSVVMRAYVTDDIVAGSIDADMGGGGPVGPQAWQKCNINDVTDLQNYDPISGFPVYKTLLCQVSKVESGKDGTVLDSG EASGTIAADNGNGRAAQPEFKRIYLDHNATTPIDPEVKKVMREYLDAGQGNPSAIYHEGKESRFAVEAARRSVARLLNCTARRIVFTGGGSEANNLAIKGIAFAHEG KRNHIITSQIEHPAIRNTCKWLESRGFTVTYLPVDQFGRVRPHDLEKAISDRTLLVSVMLANNETGSIQPVAELARIAHQHGAYMHTDAVQAVAKIPVDVNELEVDL LTLSGHKFYGFKGIGALYVRKDIPLTPLVHGGHQESDLRAGTENVLAMVGLGKAADLAVQRLPKKKVEALRNHLEEEIKKIIPEARVNGHPVHRVPVTLNMTIPGM RGESLVLALDEKGLSLSSGSACRSGSPDSPALLAMGLSEEAHCALRFSLGVKTTAKDIERTLHLFEEVVTDAKTMVRFIP<mark>S</mark>R

	Phe216 Thr213 Ile50 Tyr206 Met252 Phe47 Tyr56 Gu282
A0A3A4NKW8 4PIO A0A7V4UF19	MRSQADPSKINELPACVAIALNGGDSAIIDAAEEANPVLDFAHSAARTLSENPKW RRDVRAGLTATQKS RRDVRAGLTATQKS
A0A3A4NKW8 4PIO A0A7V4UF19	*: * * *: * MECRFLYDARGSALFEQICRQPEYYPTRRETAILHRYAGEICETTGCVT-LAELGCGSAI LPPKWFYDAVGSDLFDQITRLPEYYPTRTEAQILRTRSAEIISAAGADT-LVELGSGTSE LPCIYFYDERGSQLFEDICRLPEYYLTRCEAEILRQHSREIAASFPADTLLVELGSGSSV : ::** ** **::* * **** ** *: **. : ** : . * *.***.*::
A0A3A4NKW8 4PIO A0A7V4UF19	KTRHILSAYVKSNGSVRYVPVDVSRSALQHACAAITAWHPAVKVAGIRGTYECAFPFLKA KTRMLLDAMRDAELLRRFIPFDVDAGVLRSAGAAIGAEYPGIEIDAVCGDFEEHLGKIPH KTRYLLEAFMERHGQALYNPIDISHSILRQSALELLAHYPELKITAVAATYQEGLRRITD *** :*.* . : : *.*:. : : : : : : : : : :
A0A3A4NKW8 4PIO A0A7V4UF19	LSPVMVLFLGSTIGNLNEDQDRLFWRNIGRHLSEGDFFLLGVDLVKDTSILEAAYNDR VGRRLVVFLGSTIGNLTPAPRAEFLSTLADTLQPGDSLLLGTDLVKDTGRLVRAYDDA IPARTRLIMWLGSSIGNLGRQEAVEFLGQLRGIMKPQDHLLIGIDLKKDINILKPAYDDA : ::::***:*** * : :. * :*:* ** ** . * **:*
A0A3A4NKW8 4PIO A0A7V4UF19	AGVSAAFTLNLFERMNRELKTGIDVLHLQHVAYFSSAKSRIEIFAQFNREQRVRIKPLNK AGVTAAFNRNVLAVVNRELSADFDLDAFEHVAKWNSDEERIEMWLRARTAQHVRVAALDL QGVTAAFNLNVLERMNRELVADFDLNAFAHLCRYNEEQGRIEMHILSLKDQIVRFRQPAF **:***. *:: :**** :.:*: : *:. : : ***: * * *.
AOA3A4NKW8 4PIO AOA7V4UF19	SIPISAGERIQVEISRKFNLNELVPRLYSCGFATRRIFSDENSWFALLLLEKVAND EVDFAAGEEMLTEVSCKFRPENVVAELAEAGLRQTHWWTDPAGDFGLSLAVR RVAFDQGETIHTENSHKYAPAQIQTLARRSGLRIVKQWFDSRKWFSLNLLAASE : : ** : .* * *: ::*: . : * *.* *.

Figure S1. Top: the crystal structure of EgtD from *M. smegmatis* in complex with the reaction intermediate *Na*,*Na*-dimethylhistidine (yellow, PDB: 4PIO)¹. Residues in direct contact with the substrate are shown in stick representation (teal). **Bottom**: Sequence alignment of EgtD from *M. smegmatis* and the homologous methyltransferase from *Candidatus Abyssubacteria bacterium* (UniProt A0A3A4NKW8) and and *Caldithrix abyssi* (A0A7V4UF19). Most active site residues are conserved (green), or very similar.

Table S1. List of species with a gene that encodes MES homologs with the catalytic residues Cys153, Lys952, Cys1074, Cys1097 and Cys1135 conserved (*Ca*MES numbering).

UniProt ID	Organism	Phylum	
A0A399XDS8	Acidobacteria bacterium	Acidobacteria	
A0A6A0IP45	Acidobacteria bacterium	Acidobacteria	
A0A6G0A229	Actinobacteria bacterium	Actinobacteria	
A0A523V0G2	Actinobacteria bacterium	Actinobacteria	
A0A3M1PJS3	Calditrichaeota bacterium	Calditrichaeota	
A0A3M2FG68	Calditrichaeota bacterium	Calditrichaeota	
A0A6H9L4H4	Calditrichaeota bacterium	Calditrichaeota	
A0A7V4WV16	Caldithrix abyssi	Calditrichaeota	
A0A3A4NVY7	Candidatus Abyssubacteria bacterium SURF_5	Candidatus Abyssubacteria	
A0A524AS98	Dehalococcoidia bacterium	Chloroflexi	
A0A523UH11	Dehalococcoidia bacterium	Chloroflexi	
A0A2D6J0S4	Dehalococcoidales bacterium	Chloroflexi	
A0A523SK89	Dehalococcoidia bacterium	Chloroflexi	
A0A7J4FR07	Methanosarcinales archaeon	Euryarchaeota	
A0A7K4BI03	Methanomicrobiales archaeon	Euryarchaeota	
A0A7K4DD47	Methanomicrobiales archaeon	Euryarchaeota	
A0A1V6KBG7	Euryarchaeota archaeon ADurb.Bin009	Euryarchaeota	
A0A843KNK4	Methanoculleus sp.	Euryarchaeota	
A0A498H2I6	Methanoculleus taiwanensis	Euryarchaeota	
A0A2D5ZQU6	Gemmatimonadetes bacterium	Gemmatimonadetes	
A0A0S8G1P3	Gemmatimonas sp. SG8_38_2	Gemmatimonadetes	
A0A0S8HDI0	Gemmatimonas sp. SM23_52	Gemmatimonadetes	
A0A7V1AJK2	Nitrospirae bacterium	Nitrospirae	
A0A1G1GVX5	Nitrospirae bacterium GWC2_57_9	Nitrospirae	
A0A523NF38	Planctomycetes bacterium	Planctomycetes	
I3IKG5	Candidatus Jettenia caeni	Planctomycetes	
A0A6L3AHQ7	Candidatus Jettenia sp. AMX1	Planctomycetes	
A0A533Q600	Candidatus Jettenia ecosi	Planctomycetes	
A0A5C6DKM7	Candidatus Brocadiaceae bacterium S225	Planctomycetes	
A0A2C9CAM6	Kuenenia stuttgartiensis	Planctomycetes	
A0A6G7GT36	Kuenenia stuttgartiensis	Planctomycetes	
A0A0B0EG58	Candidatus Scalindua brodae	Planctomycetes	
A0A286U2N3	Candidatus Scalindua japonica	Planctomycetes	
Q1Q5D6	Kuenenia stuttgartiensis	Planctomycetes	
A0A523CMZ8	Candidatus Scalindua sp. AMX11	Planctomycetes	
A0A7Y3ULB5	Planctomycetes bacterium	Planctomycetes	
A0A3A4XW55	Desulfobacteraceae bacterium	Proteobacteria	
A0A7C1TE37	Gammaproteobacteria bacterium	Proteobacteria	
A0A2A5HFC2	Alteromonadaceae bacterium	Proteobacteria	
A0A1W7QPD6	Geobacter pelophilus	Proteobacteria	
A0A6F9X0J6	Geobacter sp. SVR	Proteobacteria	
C6E0P4	Geobacter sp. (strain M21)	Proteobacteria	

A0A523K4L2	Gammaproteobacteria bacterium	Proteobacteria	
A0A450YCV5	Candidatus Kentron sp. SD	Proteobacteria	
A0A450YII0	Candidatus Kentron sp. SD	Proteobacteria	
A0A451BQ29	Candidatus Kentron sp. SD	Proteobacteria	
B5E8L6	Geobacter bemidjiensis (strain Bem / ATCC BAA-1014 / DSM 16622)	Proteobacteria	
A0A257SS02	Chromatiales bacterium 21-64-14	Proteobacteria	
B9M6I9	Geobacter daltonii (strain DSM 22248 / JCM 15807 / FRC-32)	Proteobacteria	
I4C6F5	Desulfomonile tiedjei (strain ATCC 49306 / DSM 6799 / DCB- 1)	Proteobacteria	
A0A450U8Z3	Candidatus Kentron sp. LFY	Proteobacteria	
A0A450U507	Candidatus Kentron sp. LFY	Proteobacteria	
A0A450W825	Candidatus Kentron sp. LFY	Proteobacteria	
A0A1F3Y2H8	Bdellovibrionales bacterium RIFOXYD1_FULL_55_31	Proteobacteria	
A0A3C0YC61	Polaromonas sp.	Proteobacteria	
A0A6P1DUA6	Thiorhodococcus mannitoliphagus	Proteobacteria	
L0GVW7	Thioflavicoccus mobilis 8321	Proteobacteria	
A0L7Z7	Magnetococcus marinus (strain ATCC BAA-1437 / JCM 17883 / MC-1)	Proteobacteria	
A0A6V8MUX4	0A6V8MUX4 Geomonas paludis		
A0A7C1TU51	Gammaproteobacteria bacterium	Proteobacteria	
A0A3A5AAI7	Desulfobacteraceae bacterium	Proteobacteria	
A0A2N2H090	Deltaproteobacteria bacterium HGW-Deltaproteobacteria-21	Proteobacteria	
A0A0F2R6L8	Desulfatitalea sp. BRH_c12	Proteobacteria	
A0A2N2KCG5	Deltaproteobacteria bacterium HGW-Deltaproteobacteria-15	Proteobacteria	
A0A451AXR2	Candidatus Kentron sp. UNK	Proteobacteria	
A0A3D3G9C8	Bdellovibrionales bacterium	Proteobacteria	
A0A450WRK2	Candidatus Kentron sp. LPFa	Proteobacteria	
A0A0K9I9K1	Desulfocarbo indianensis	Proteobacteria	
A0A212PG69	Geobacter sp. DSM 9736	Proteobacteria	
A0A1V5H0L3	Deltaproteobacteria bacterium ADurb.BinA179	Proteobacteria	
A0A1F3T9T9	Bdellovibrionales bacterium GWB1_55_8	Proteobacteria	
A0A6M0JW57	Thiorhodococcus minor	Proteobacteria	
A0A1S7LH69	Magnetococcus massalia (strain MO-1)	Proteobacteria	
A0A0S8CVX0	Desulfobacterales bacterium SG8_35_2	Proteobacteria	
A0A2N6C8B1	Desulfobulbaceae bacterium	Proteobacteria	
A0A1G5QK56	Thiohalomonas denitrificans	Proteobacteria	
A0A2H6K442	bacterium BMS3Abin01		
A0A2H6JEA0	bacterium BMS3Bbin12		
A0A3B1C0R1	hydrothermal vent metagenome		
A0A2H6F6M9	bacterium BMS3Abin06		
A0A2H6ED39	bacterium BMS3Abin03		
A0A485M3T7	anaerobic digester metagenome		
A0A3B0YYM1	hydrothermal vent metagenome		
A0A3B0Z7Q1	hydrothermal vent metagenome		

* - interaction with the peptide backbone atoms

DMSOreductase	$\tt MTKLSGQELHAELSRRAFLSYTAAVGALGLCGTSLLAQGARAEGLANGEVMSGCHWGVFK$	60
AcetyleneHydratase	NCVVE	19
hvMES	G <mark>C</mark> WIE	23
EaMES	GCGVI	23
CaMES	GCWVK	24
AbMES	MTEISTQLAPQQDSPAEQIKDGL G GI G PAG G WVR	34
DMSOreductase	ARVE-NGRAVAFEPWDKDPAPSHQLPGVLDSIYSPTRIKYPMVRREFLEKGVN	112
AcetyleneHydratase	AEVKADGKIQTKSISEPHPTTPPNSI <mark>C</mark> MKSVNADTIRTHKDRVLYPLKNV	69
hvMES	AGMQ-AGKMVDIRADTSHQLGMI <mark>C</mark> RRGQHAPEIIYSEQRLKYPLKRV	69
EaMES	VAYDDHGRIASVRPDEDAEIGII <mark>C</mark> RLGEASPEIVYSSDRVLYPLRRA	70
CaMES	VKYDAGGRLSQVKADDSSHLGMICTLGEHSADIVYSEHRLRYPMRRK	71
AbMES	VRLN-GGRMSGVKALPDHPLGMICTIGKHSPQIVHDPNRLQYPLRRT	80
	· · *: *: *: *: *: *: *: *: *: *: *: *: *:	
	114 118	
DMSOreductase	ADRSTRGNGDFVRVTWDEALDLVARELKRVQESYGPTGTFGGSYGWKSPGRLHNCQVLMR	172
AcetyleneHydratase	GSKRGEQRWERISWDQALDEIAEKLKKIIAKYGPESLGVSQTEINQQ	116
hVMES	GPK-GKHAFERISWDEAYDCIVKNLNAIKAESGPEAVSIYTGRGAFELSLCDMYQP	124
EaMES	GPK-GTHAFERITWDEAYETIVANLTRIREESGPEAVAIYTGSGSFELSFCDIFQP	125
Cames	GPK-GSYDFERISWDTAYDIIVDNLQKIKKESGPEATAVYTGRGSFELAMCDVFQP	126
ADMES	GPK-GSYDFERITWNEAMEAIAGKLDDIKREHGPEATAIYT <mark>G</mark> R <mark>G</mark> SFELSMCDVYQP	135
	. * : *::*: * : :. :* : . ** . : 147	
DMSOreductase	RALNLAGGFVNSSGDYSTAAAOIIMPHVMGTLEVYEOOTAWPVVVENTDL	222
AcetyleneHydratase	SEYGTLRRFMNLLGSPNWTSAMYMCIGNTAG-VHRVTHGSYSFASFADSNC	166
hvMES	KDVAVSSASNILFPFGSPNTMGVGALCYVSFAMIAPDVTLGSMLINMYTDIENAEL	180
EaMES	KGVAVSSASSVLFPFGSPNTMGVGALCYVSFAMIAPHVTMGEMYFNMFSDYEQSDL	181
CaMES	KGVAVSSASSVLFPFGSPNTLGVGALCYVSFAMIAPHVTMGGMLINMFSDIERAEL	182
AbMES	RGVAVSSASSVLFPFGSPNTLGVGALCYVSFAMIAPHVTMGEMLITMDTEIEQAEL	191
	.: * * ::	
	190 220	
DMSOreductase	MVFWAADPM <mark>KT</mark> NEIGWVIPDHGAYAGMKALKEKGTRVIC <mark>IN</mark> PVRTETADYFGADVVSPRP	282
AcetyleneHydratase	LLFIGKNLS <mark>NH</mark> NWVSQFNDLKAALKRGCKLIV <mark>ID</mark> PRRTKVAEMA-DIWLPLRY	218
hvMES	LFVWGANPA <mark>TD</mark> SPPLDMARLEAAAKRGCDMVV <mark>ID</mark> PRYTETAKRTGAEWIAIRP	233
EaMES	ILVWGTNPA <mark>TD</mark> CPPLALRALAGARRRGAEVVVIDPRRTRTVDLVDAEWVPIRP	234
CaMES	IVVWGANPA <mark>TD</mark> SPPLDFQRIVAAQKRGAQVVVIDPRRTKTAKVTDAQWIPVRP	235
AbMES	IVVWGANPA <mark>TD</mark> SPPLAHAQILRARERGAEVVVIDPRRSETAREAESEWIPLRP	244
	:: : . : : : : : : : : : : : : : : :	
DMSOreductase	QTDVALMLGMAHTLYSEDLHDKDFLENCTTGFDLFAAYLTGESDGTPKTAEWAAEICGLP	342
AcetyleneHydratase	GTDAALFLGMINVIINEQLYDKEFVENWCVGFEELKERVQEYPLDKVAEITGCD	272
hvMES	GTDGALALSMMGVLIDEDLYDEKFVEQWTHGFADLTGYVQHFRPEVVERITGVP	287
EaMES	GIDGALALGLANVIVAEELYDADFVANWCHGFEEFATYVQHYRPEVVESITGIP	288
CaMES	GIDGALALGLCNVLIEEELYDESFARDWTLGFDDFTRHVQHYRPEVVERITGVP	289
AbMES	GIDGALALGMINVLVEEELYDEDFAENWTLGFNELKQYVQHFRPETVEQITEVP	298
	** ** *.: .: *:*:* : ** : : : : . *	
		4.0.7
DMSOreductase	AEQIRELARSFVAGRTMLAAGW-SIQRMHHGEQAHWMLVTLASMIGQIGLPGGGFGLSYH	401
AcetyleneHydratase	AGEIRKAAVMFATESPASIPWAVSTDMQKNSCSAIRAQCILRAIVGSFVNGAEILGAPHS	332
NVMES ECMEC	ADKIKELARKIAKATGAAPVMTTGLEYSNSGIQAVRAVLSLFAISGHLDTPGGTGLAMRG	347
LAMES	ALTVADLAKKIAKAKGADFAMMT <mark>G</mark> LE <mark>M</mark> SDDGVQAIKAVFVLWGISGNLDVPGGRCFAMRG	348

CaMES AbMES	AQTVQELARRIAAANGAAPVMYS <mark>G</mark> LEYSNSGVQAIRATMALWALAGQLDVPGGRCFNMRD AEKVRSLSRRIARARGACPVMYT <mark>G</mark> LEYSDSGVQAIRAVHTLWALAGQLDVPGGLVFRMKE * : . : : * *	349 358
DMSOreductase AcetyleneHydratase	YSNGGSPTSDGPALGGISDGGKAVEGAAWLSESG DLVPISKIOMHEALPEEKKKLOLGTETYPFLT-YTGMSALEEPSERVYGVKYFHNMG	435 388
hvMES	OHFPVNRSCNOONPDLARAAARDKFPLYSDYRGE	381
EaMES	NAFPINRSGYIONPDLKRAIGTDRFPVYTHYROE	382
CaMES	NTFPINREGLIPNPNEAKALGRDRFPVYSAYRGE	383
AbMES	NIFPINRSGLIANPDVRKALGRDRFPVYSMYRGE	392
	*	
	438	
DMSOreductase	ATSIPCARVVDMLLNPGGEFQFNGATATYPDVKLAYWAGGNPFAHHQDRNRMLKAWEKLE	495
AcetyleneHydratase	AFMANPTALFTAMATEKPYPV-KAFFALASNALM <mark>G</mark> YANQQNALKGLMNQD	437
hvMES	SHASGLVDAVLHSEPYSI-RGLIIHGASLLTSWPQTSIWRKTLSKLD	427
EaMES	GHAIALPDAVLRGRPYRI-RALILEAAHMLISWPQTPVWRETLANLD	428
CaMES	SHAIALPEAVLNGDPYRI-RSLIILGGSIITAWPQPDIWRKTLKTLD	429
ADMES	SHAIALPESVLEGRPYKI-RSLIILGASIITTAWPQPDLWRRTLNALD	438
	458 511	
DMSOreductase	TETVODEOWTATARHADIVI.PATTSYERNDIESVGDYSNRATI.AMKKVVDPI.YEARSDYD	555
AcetyleneHydratase	LVVCYDOFMTPTAOLADYVLPGDHWLERPVVOPNWEGIPF-GNTSOOVVEPAGEAKDEYY	496
hvMES	FVVSIDROLTADAAYADIVLPATTMFEIDSYMVYGPI-FRLREKLVEPVGEARNDYL	483
EaMES	FLVSVDRHLTADAAYADIVLPATTLYERESYMTYGPV-FRLRERVIEPLGEARGDVO	484
CaMES	FLVT <mark>I</mark> DROLTADSAYADIVLPATTMYEIESYMTYGSM-FRIREKVIEPVGEARNDFF	485
AbMES	FLVCIDRYFTADAAYADIVLPATTMYEIMSYMVYGPL-FIIRERIVEPVGEARNDFL	494
	.: * * : ** ***. * :::::* **:.:	
		C 1 1
DMSOreductase	IFAALAERLGKGAEFTEGRD-EM-GWI-SSFYEAAVKQAEFKNVAMPSFEDFWSEGIVE	611
AcetyleneHydratase	FIRELAVRIGLEEHFPWKDRLELINYRISPTGMEWEEYQKQYTY	540
IIVMES Example		528
LAMES		529
APPES		530
ADMES	ILAELAKKIGIGHLIPQILE-ELLKHVLQGSGIILEEVKAVGGEVK	559
DMSOreductase	FPITEGANFVRYADFREDPLFNPLGTPSGLIEIYSKNIEKMGYDDCPAHPTWMEP	666
AcetyleneHydratase	MSKLP-DYFGPE-GVGVATPSGKVELYSSVFEKLGYDPLPYYHEPLQT	586
hvMES	LPTPMMEYKKYEK-GSLRADGKPGFETPTGKFEIWSSKLEEYGYEPLPKYVEPVEG	583
EaMES	SPAAMMEYRKWEK-GLLRPDGRPGFDTPTGKFEIYSTILEEYGYDPLPVYTEPGES	584
CaMES	KPTSILEYKKWEK-GLLRSDGQKGFDTPSGKFELASQFLAEHGYDPLPVYTEPTEG	585
AbMES	LPAVMMQYKKWMK-GLLRPDGKPGFNTPSGKFEIASSILAEHGYDALPVYVEPGEG	594
	. : . **:* .*: * : : **: * : : 641	
DMSOreductase	AERLGGAGAKYPLHVVAS-HPKSRLHSOLNGTSLRDLYAVAGHEPCLINPADAAARGIAD	725
AcetyleneHydratase	EISDPELAKEYPLILFAGL <mark>RE</mark> DS <mark>NFQSC</mark> YHQPGILRDAEPDPVALLHPKTAQSLGLPS	644
hvMES	PQAAPELSQRFPLVFN <mark>S</mark> GA <mark>RP</mark> QT <mark>D</mark> FRSQHHGIKGLNKDNPEPTVEINSDDARERGIEP	641
EaMES	PLSQPEQADRFPLVFN <mark>S</mark> GA <mark>RV</mark> TT <mark>D</mark> FHAQHHSIPSLVRERPEPTVTLNSHDARERGIRD	642
CaMES	PLSRPDLAKEFPLVFN <mark>S</mark> GS <mark>RV</mark> TT <mark>D</mark> FRSQHHGIPALNKRRREPQVTMNSADAGERGIKS	643
AbMES	PLANPQLAADYPLVFN <mark>S</mark> GA <mark>RV</mark> FS <mark>D</mark> F <mark>RSQ</mark> HHGVSGLREMTPDPIVTMNAVDASERGIEN	652
	· :** · : · : : : : * · · : * * * · : * * * *	
DMcOroduatago		701
AcetyleneHydratase	GDVLKVFNDRGQLLVGAKVSDAVMPGALQLILGGWIDPLDPSEEGILDKIGDVNVL CFWLWVFTTHCDIKIIIKHDCAODFCTTDIDHCDWCDFOFCCDFTCFSCAMIHNDAMVIS	701
hyMES		692
EaMES	CDRVIVRTARCEIVIRALVTDCIVRCAVEANMCCCCCHOADEAWRCOVVNEL	693
CaMES	GDWVRISTRRGSVVMRAYVTDDIVAGSIDADMGGGGGPVGPOAWOKCNINDV	694
AbMES	GDWVNVTTKRGOVKFRAIVTDDIMPGAIDACMGGGGPLGSRSWOECNVNEL	703
	*:::: *:: * . :::	
	755	
DMSOreductase	SLDVGTSKLA-QGNC <mark>GQ</mark> TILADVEKYAGAPVTVTVFDTPKGA	822
AcetyleneHydratase	DDDWNLDPEQGLPNL <mark>RG</mark> GILAKAYKC	730
hvMES	TDLYNYDEISGFPVYKALL-CEVVKIKSADAKTRLRLTDSEKGTKADFTFKGSDRKKNRQ	751
EAMES	TULARYDPISGFPVYKALL-CDVARAEGDGGRVAIGTGEVDSVAGAAPPPEAP	745
CAMES	TDLQNYDPISGFPVYKTLL-CQVSKVESGKDGTVLDSGE-ASGTIAADNGNGRAAQPEFK	152
ADMES	TULTRIDPISGFPVIKSLL-AEVVKAGVAKSADRITESVPAKTKSRERHRPPKLR	151

Figure S2. Top: schematic representation of bis-MGD binding in the DMSO reductase.² **Bottom**: Sequence alignment of DMSO reducase, acetylene hydratase and the MPT-binding domains of MES synthases. Conserved residues and conservative substitutions are highlighted in green (relative to DMSOR), semi-conserved substitutions are highlighted in yellow, non-conserved substitutions are highlighted in red. Conserved residues interacting with the ribose and the guanine are shown in the frame; Cys153 in MES is highlighted in blue; four conserved Cys residues involved in the formation of iron/sulfur cluster.

Figure S3. SDS PAGE of purified $CaMES_{C-term}$. M – molecular weight marker.

Desulfurase activity of CaMES_{C-term}

Figure S4. The product of cysteine consumption catalyzed by $CaMES_{C-term}$, was examined by ¹H-NMR (500 Hz, D2O). 3 μ M of $CaMES_{C-term}$ was incubated with 0.5 mM of cysteine, 2 mM of DTT in phosphate buffer (50 mM, pH 8.0) at 25°C overnight. The samples were lyophilized, dissolved in D₂O, and analyzed by ¹H-NMR (top spectrum). As control we also analyzed samples containing alanine (the expected product) and DTT (middle spectrum) or cysteine and DTT (bottom spectrum). Comparison of these spectra identifies alanine as the product of cysteine consumption catalyzed by $CaMES_{C-term}$.

Figure S5. The rate alanine production by $CaMES_{C-term}$ was quantified as follows: reactions containing 0.5 mM cysteine, 10 mM DTT, 2 µM of $CaMES_{C-term}$ in phosphate buffer (50 mM, pH 8.0) were incubated at 25°C for 0, 30, 60, 120, or 240 min. The samples were frozen, lyophilized, dissolved in D₂O, and analyzed by ¹H-NMR (left). The concentration of alanine in these reactions was estimated from the integrals of the chemical shifts at 1.45-1.42 ppm. A plot of these values against time shows that $CaMES_{C-term}$ -catalyzed conversion of 0.5 mM cysteine to alanine is complete within 2 h (right)

Characterization of full-length MES in recombinant *E. coli*

Table S2. Growing media recipes.

Luria-Bertani (LB) medium, per 100 mL of H_2O , autoclaved:
1 g tryptone
0.5 g yeast extract
1 g NaCl
Chemically defined (CD) medium, per 100 mL of H_2O :
20 mL 5X M9 salts
5X M9: 34 g/L Na2HPO4, 15 g/L KH2PO4, 2.5 g/L NaCl, 5.0 g/L NH4Cl, autoclaved
2 mL 50X mixture of amino acids
50X amino acids: 10g/L each amino acid, sterile filtered
(Met and Tyr are added separately, 20 mg dissolved in water and sterile filtered)
1 mL 40% glucose, autoclaved
100 μL 2M MgSO4, autoclaved
100 μL 100 mM CaCl ₂ , autoclaved
1 mL 100X MEM vitamin solution (Pan Biotech), sterile
sterile H_2O to 100 mL

Table S3. Calculated and observed m/z values of ergothionei

compound	short name	<i>m/z</i> , calculated	<i>m/z</i> , observed	
Ergothioneine	ERG	230.0958	230.0958	
F-ergothioneine	F-ERG	248.0864	248.0861	
³⁴ S-ergothionene	S-ERG	232.0916	232.0916	
D ₄ - ¹⁵ N ₃ -ergothioneine	DN-ERG ("heavy")	237.1120	237.1123	
D ₄ - ¹⁵ N ₃ - ³⁴ S-ergothioneine	DNS-ERG ("super heavy")	239.1078	239.1078	
¹³ C ₆ - ¹⁵ N ₃ -ergothionene	CN-ERG	239.1071	239.1063	
D ₆ -ergothioneine	D-ERG	236.1340	236.1335	
trimethylhistidine	ТМН	198.1238	198.1239	
Nα-F-trimethylhistidine	F-TMH	216.1143	216.1141	
D ₅ - ¹⁵ N ₃ - trimethylhistidine DN-TMH		206.1462	206.1460	

Characterization of MES activity

Figure S6. The calibration curve and detection limit of ergothioneine (ERG) and trimethylhistidine (TMH) by RP-HPLC ESI-HR-MS. ERG and TMH concentrations varied between 2 nM to 20 μ M. The detection limit is determined as 20 nM.

Table S4. Concentration of ergothioneine and TMH in growth media, additives and untransformed E. coli.^a

entry		ERG content	TMH content
1	LB, 1 X	< 20 nM	$333 \pm 21 \text{ nM}$
2	CD, 1 X	< 20 nM	< 20 nM
3	Vitamin mix, 1 X	< 20 nM	< 20 nM
4	Amino acids mix, 1 X	< 20 nM	< 20 nM
5	E. coli grown in LB medium	< 20 nM	$110 \pm 20 \text{ nM}$
6	E. coli grown in CD medium	< 20 nM	$67 \pm 6 \text{ nM}$

^a Concentrations of ergothioneine and TMH were estimated by HR-ESI-MS based on the external calibration. All measurements were done in in triplicates. Analyzed samples were: entry 1) LB medium; 2) chemically defined medium; 3) mixture of added vitamins in 1 x concentration; 4) amino acid mix in 1 x concentration; 5) Cell-free extracts of *E. coli* Δ mtn grown in LB medium for 20 h at 25°C. 6) Cell-free extracts of *E. coli* Δ mtn grown in CD medium for 20 h at 25°C. These results show that the growth media did not contain detectable amounts of endogenous ergothioneine. *E. coli* cells that do not contain any recombinant ergothioneine biosynthetic enzyme do not accumulate or produce detectable amounts of ergothioneine.

	E. coli K12 (Δmtn)		E. coli	BL21
	No metal	+ MoO4 ²⁻	No metal	+ MoO4 ²⁻
CaMES	$0.08\pm0.09\;\mu M$	$5 \pm 7 \ \mu M$	$0.13\pm0.01~\mu M$	$0.14\pm0.02\;\mu M$
CaMES + 1 mM TMH	$420\pm130\;\mu M$	$370\pm50\;\mu M$	$23.0\pm4~\mu M$	$22.0\pm4~\mu M$

Figure S7. Ergothioneine production by *Ca*MES in *E. coli* BL21 and *E. coli* Δ mtn strains grown in CD media supplemented with 10 μ M Na₂MoO₄ (+ Mo) and/or 1 mM TMH for 20 h at 25°C. Maximal ergothioneine content in lysate of *E. coli* BL21 cells was estimated as 20 μ M; maximal ergothioneine content in lysate of *E. coli* Δ mtn cells was estimated as 400 μ M (based on external standard). Analysis was done in triplicate and standard deviation is shown. Example of the obtained mass spectra is shown.

Figure S8. Top left: Structures of $N\alpha$ -methyl fluorinated TMH (F-TMH) and $N\alpha$ -methyl fluorinated ergothioneine (F-ERG). **Top Right:** Production of F-ERG by *Ca*MES from in *E. coli* Δ mtn grown in CD media supplemented with 10 μ M Na₂MoO₄ and 0.1- μ M-1000 μ M of F-TMH for 20 h at 25°C. F-ergothioneine content was estimated based on external ergothioneine standard. The signal at 230.0995 corresponds to ergothioneine (produced from endogenous TMH) at a similar level as observed in cells that were not supplemented with TMH (Figure S7). These measurements were done only once. **Bottom:** Example of the obtained mass spectra is shown.

Figure S9. A: ESI-HRMS analysis of $CaMES_{K952A}$ mutant producing *heavy* (m/z calc. 237.1120; obs. 237.1123) and *superheavy* ergothioneine (m/z calc. 239.1078; obs. 239.1076). Top panel – extracted ion chromatogram, middle and bottom panels – average MS spectrum of the peak (t_R 4.1-4.9 min). **B:** Control ESI-HRMS analysis of $CaMES_{C153S}$ mutant unable to produce *heavy* and *superheavy* ergothioneine. The signals at 237.13761 and 239.1063 do not correspond to *heavy* and *superheavy* ergothioneine because these masses are outside the 5 ppm tolerance of the calculated masses (Table S3). Top panel – extracted ion chromatogram, middle and bottom panels – average MS spectrum of the peak (t_R 4.1-4.9 min).

References

- Vit, A.; Misson, L.; Blankenfeldt, W.; Seebeck, F. P., Ergothioneine biosynthetic methyltransferase EgtD reveals the structural basis of aromatic amino acid betaine biosynthesis. *Chembiochem* **2015**, *16* (1), 119-25. Schindelin, H.; Kisker, C.; Hilton, J.; Rajagopalan, K. V.; Rees, D. C., Crystal Structure of DMSO Reductase: Redox-Linked Changes in Molybdopterin Coordination. *Science* **1996**, *272*, 1615-1621. 1.
- 2.