1 Supplemental Table 1. Comparison of Intergenic Sequences and Transcriptional Start and Stop

2 Signals of AngV and other HNV.

Intergenic Region	Virus	Gene Stop	Junction	Gene Start
	AngV	TTAGAAAAAA	CTT	AGGAGCCAAGT
	NiV	TTAAGAAAAA	CTT	AGGAACCAAGA
	HeV	TTAAGAAAAA	CTT	AGGATCCAAGA
	MojV	TTAAACAAAA	CTT	AGGATCCAAG
N-P	CedV	TTACAAAAAA	CTT	AGGATCCAAG
	GhV	CTATAAAAAA	CTT	AGGATCACAA
	GAKV	TTAAGAAAAA	CTT	AAGAATCAAA
	DARV	TTATAAAAAA	CTT	AGGATGCAAG
	AngV	ΤΤΑΤΑΑΑΑΑΑ	CTT	AGGATCAACGA
	NiV	TTAAGAAAAA	CTT	AGGAGACAGGT
	HeV	TTAAGAAAAA	CTT	AGGAGACAGGT
B 14	MojV	TCATAAAAAA	CTT	AGGAGTCAAG
P-IVI	CedV	TTAGAAAAAA	CTT	AGGATCCCAG
	GhV	AGGATCACAA	CTT	AGGGATCAAG
	GAKV	TTAAGAAAAA	CTT	AAGAGTCAAA
	DARV	TTAAGAAAAA	CTT	AGGGGTAAAG
	AngV	TTAAGGAAAA	CTT	AGGAGTAAAGC
	NiV	TTACAAAAAA	CTT	AGGAGCCAAGC
	HeV	TTAAGAAAAA	CTT	AGGAGCCAAGT
	MojV	ΑΤΑΤΑΑΑΑΑΑ	CTT	AGGTGTCAGG
M-F	CedV	TTAAGAAAAA	CTT	AGGATCCCAG
	GhV	CTAAACAAAA	CTT	AGGAAATCAG
	GAKV	TTAGAAAAAA	CTT	AAGAATCAAA
	DARV	TTAAAGAAAA	CTT	AGGACGTCAA
	AngV	TTAGAAAAAA	CTT	AGGATCCAAG
	NiV	ΤΤΑΑΤΑΑΑΑΑ	СТТ	AGGACCCAGGT
	HeV	TTACAAAAAA	CTT	AGGACCCAAGT
	MojV	ΤΤΑΑΤΑΑΑΑ	CTT	AGGAGTCAGG
F-G	CedV	ΤΤΑΑΑΤΑΑΑΑ	CTT	AGGATCCCAG
	GhV	AATTAAAGAA	CTT	AATAATCGAG
	GAKV	TTAAGAAAAA	CTT	AAGAATCAAA
	DARV	ΤΤΑΤΑΑΑΑΑΑ	CTT	AGGGGTCAAG
	AngV	TTAAGAAAAA	CTT	AGGAGTAATGT
	NiV	TTAAGAAAAA	CTT	AGGACCCAGGT
	HeV	TTAAGAAAAA	CTT	AGGACCCAAGT
<u></u>	MojV	TTACAAAAAA	CTT	AGGATTCACG
G-L	CedV	TTAAAGAAAA	CTT	AGGATCCCAG
	GhV	CTAAGAAAAA	CTT	AGGAATTCAG
	GAKV	TTAAGAAAAA	CTT	AAGAATCAAA
	DARV	TTAAGAAAAA	CTT	AGGTGCAATG
	AngV	TTAAGAAAAA	CTT	
	NiV	TTAAGAAAAA	СТТ	
	HeV	TTAAGAAAAA	СТТ	
	MojV	ΤΤΑΑΤΑΑΑΑ	СТТ	
L	CedV	TTAAAGAAAA	СТТ	
	GhV	TTAAGAAAAA	СТТ	
	GAKV	TTAAGAAAAA	СТТ	

	Virus —	5' untranslated		3' untranslated	
Gene		Length	% Homology	Length	% Homology
	AngV			262	
	NiV			576	32.5
	HeV			558	34.8
N	MojV			154	36.2
IN	CedV			334	39.5
	GhV			294	38.7
	GAKV			326	47.0
	DARV			458	39.2
	AngV	221		56	
	NiV	94	33.3	459	12.8
	HeV	95	34.5	459	17.6
_	MojV	254	43.7	134	43.7
Р	CedV	98	35.5	192	19.0
	GhV	236	42.7	213	20.5
	GAKV	132	35.3	317	13.9
	DARV	324	35.8	199	52.2
	Δng\/	33	00.0	23	0111
	NiV	89	26.8	190	64.0
	HeV	89	57.6	190	18.6
	MoiV	30	36.4	130	10.0
M		11/	2/1 2	445	7.6
	Ccuv CbV	242	11 0	21/	22.0
	GAKV	243	545	226	23.9
		45	34.3	520	20.0 E 1
		105	20.0	327	5.1
	Angv	149	26.6	30	0.2
		273	30.0	401	9.2
	Hev	261	34.0	408	6.7
F	IVIOJV	942	12.7	163	28.6
	Cedv	276	38.9	88	23.5
	Gnv	391	22.7	59	40.9
	GAKV	844	18.2	340	10.6
	DARV	988	17.5	65	42.4
	AngV	82	a	223	
	NiV	222	25.7	494	30.8
	HeV	222	27.5	506	29.4
G	MojV	111	49.4	533	32.4
-	CedV	98	42.0	139	40.8
	GhV	201	26.8	223	20.7
	GAKV	134	39.2	440	30.8
	DARV	289	29.4	529	36.0
	AngV	245		65	
	NiV	142	38.1	57	45.5
	HeV	142	40.0	57	40.0
	MojV	212	44.6	40	35.8
L	CedV	293	42.1	63	50.8
	GhV	576	29.0	67	36.9
	GAKV	355	41.1	14	64.3
	DARV	593	28.6	68	32.6

Supplemental Table 2. Comparison of 5' and 3' untranslated regions of AngV and other HNVs.

17 included in panel C alignment because it does not encode a W protein.

- 22 points. The estimated time to MRCA for Angavokely virus and the previously-described bat-
- 23 borne HNVs is 9,794 (95% HPD: 6,519 14,025) years ago.

25 Supplemental Figure 3. Phylogenetic trees of AngV proteins and top BLASTx hits. Rooted

26 phylogenetic trees, with HRSV or Sendai virus (SeV) as an outgroup. Trees for V and W proteins

27 are unrooted. Novel HNV, AngV depicted in green. Icon represents host from which depicted 28 virus was isolated. GenBank Accessions depicted next to viral abbreviation. Bootstrap support 29 displayed. Scale bars represent substitutions per site. Abbreviations used as follows: Bat Ms-30 ParaV Bat Miniopterus schreibersii paramyxovirus; Bat-PV Bat paramyxovirus; BelV Belerina 31 virus; BeV Beilong virus; BtMl-ParaV Bat Murina leucogaster paramyxovirus; BOEV Boe virus; 32 CedV Cedar virus; DARV Daeryong virus; FeV Feline paramyxovirus; GAKV Gamak virus; GhV 33 Ghana bat virus; GUATV Guato paramyxovirus; HeV Hendra virus: -B Brisbane, -I Ingham siolate, 34 -G Gympie isolate, -Proserpine isolate, -S Sandgate Isolate; HRSV Human orthopneumovirus; 35 JeilV spp Jeilong virus species; JMSPV-1 Jingmen Miniopterus schreibersii paramyxovirus 1; JV J 36 virus; KANV Kanhgag paramyxovirus; MojV Mojiang virus; MMLV-1 Mount Mabu Lophuromys 37 virus 1; MMLV-2 Mount Mabu Lophuromys virus 2; NiV Nipah virus: -C Cambodia isolate, -B 38 Bangladesh isolate, -I India isolate, -M Mayasia isolate; PMPV-1 Pohorje Myodes paramyxovirus 39 1; RtAp-ParaV Rat Apodemus peninsulae Paramyxovirus; RtBi-ParaV Rat Bandicota indica 40 paramyxovirus; RtRe-ParaV Rattus exulans paramyxovirus; SeV Sendai virus; TA502 Ruloma 41 virus; WAHV-1 Wenzhou Apodemus agrarius henipavirus 1; WRPV-1 Wufeng Rhinolophus 42 pearsonii paramyxovirus 1. 43 44 45 46 47

51

Supplemental Figure 4. Structure-based alignment of the HNV G protein sequences. The 52 53 alignment was done with MultAlin (2) and visualized using ESPRIT (3). Residues highlighted red 54 are fully conserved and residues colored red are partially conserved. Disulfide bonds 1 through 55 6 are indicated numerically underneath the alignment. Notably AngV G protein disulfide bonds 56 1, 4, and 5 do not align across all HNVs. Homologous residues have been highlighted pink, blue 57 and green for disulfide bonds 1, 4, and 5, respectively. Virus name (abbreviation) GenBank 58 Accession: Angavokely virus (AngV) ON613535, Cedar virus (CedV) JQ001776; Daeryong virus (DARV) MZ574409; Gamak virus (GAKV) MZ574407; Hendra virus (HeV) AF017149; Mojiang 59 60 virus (MojV) KF278639; Nipah virus (NiV) AF212302; Ghanaian bat Henipavirus (GhV) 61 HQ660129. 62

64 Supplemental References

65	1.	Douglas J, Drummond AJ, Kingston RL. 2021. Evolutionary history of cotranscriptional
66		editing in the paramyxoviral phosphoprotein gene. Virus Evolution 7.
67	2.	Corpet F. 1988. Multiple sequence alignment with hierarchical clustering. Nucleic Acids
68		Research 16:10881–108890.
69	3.	Gouet P, Courcelle E, Stuart DI, Métoz F. 1999. ESPript: analysis of multiple sequence
70		alignments in PostScript. Bioinformatics 15:305–308.