S1 Appendix for

Covid-19 in Africa: underreporting, demographic effect, chaotic dynamics, and mitigation strategies impact

Authors: Nathan Thenon^{1,2†}, Marisa Peyre², Mireille Huc¹, François Roger², Sylvain Mangiarotti^{1*†}.

*To whom correspondence should be sent: sylvain.mangiarotti@ird.fr

†These authors contributed equally to this work

Appendix S1 - Estimating the contact number

A. Averaged number of contact estimated from the new cases

The governing equations of the observed dynamics are generally unknown. Here, we use a simplified formulation of the epidemic to explain how to reconstruct the efficacy of the non pharmaceutical measures from a single variable commonly observed under real conditions: the number of new cases per day I(t). It will be later applied to the dynamics of the SEi²RD model (see S2 Appendix) in order to investigate if, although based on a simple formulation, this formulation can apply to a dynamics of higher complexity.

The SEiRD model is commonly used in epidemiology where S stands for Susceptible, E for Exposed and i for infected, R for recovered and D for dead people at time t:

$$\begin{cases} \frac{dS_{t}}{dt} = -\frac{\beta}{N_{t}} S_{t} i_{t} \\ \frac{dE_{t}}{dt} = +\frac{\beta}{N_{t}} S_{t} i_{t} - \alpha E_{t} \\ \frac{di_{t}}{dt} = +\alpha S_{t} i_{t} - \nu i_{t} - m i_{t} \\ \frac{dR_{t}}{dt} = +\nu i_{t} \\ \frac{dD_{t}}{dt} = +m i_{t}, \end{cases}$$

$$(1)$$

and $N_t = S_t + E_t + i_t + R_t$ the total population at time *t*. Considering that *D* is only a by product of the SEIR model and that the variations of *N* are very small (and also slow) in comparison to the other variations, this dynamics can be reduced to the three equations

$$\begin{cases} \frac{dS_t}{dt} = -\frac{\beta}{N_t} S_t i_t \\ \frac{dE_t}{dt} = +\frac{\beta}{N_t} S_t i_t - \alpha E_t \\ \frac{di_t}{dt} = +\alpha S_t i_t - \upsilon i_t - m i_t, \end{cases}$$
(2)

and then, assuming that the exposure plays as a simple delay between the infection stage and infected stage, the system can be rewritten in two equations

$$\begin{cases} \frac{dS_t}{dt} = -\frac{\beta}{N} S_t i_t \\ \frac{di_t}{dt} = +\frac{\beta}{N} S_{t-\tau} i_{t-\tau} - \upsilon i_t - m i_t, \end{cases}$$
(3)

with τ the average time delay before an exposed people becomes infected (be he symptomatic or not).

The number of daily new cases $I_t^{(1)}$ (where the number in bracket denotes the first derivative) is thus given by

$$I_{t}^{(1)} = +\frac{\beta}{N} S_{t-\tau} i_{t-\tau} , \qquad (4)$$

and its cumulative number by

$$I_{t}^{(0)} = \int + \frac{\beta}{N} S_{t-\tau} i_{t-\tau} dt \,.$$
⁽⁵⁾

Rewriting the first equation of Eqs. (3) into

$$S_{t-\tau} = -\frac{N}{\beta i_{t-\tau}} \frac{dS_{t-\tau}}{dt},$$

we get

$$S_{t-\tau} = S_{t=0} - I_t^{(0)}, \tag{6}$$

by integrating Eq. (5). Replacing Eq. (6) in Eq. (4) we get

$$I_t^1 = +\frac{\beta}{N} \left(S_{t=0} - I_t^{(0)} \right) i_{t-\tau}.$$
(7)

The exposure ratio can thus be written

$$\beta = \frac{N I_t^{(1)}}{\left(S_{t=0} - I_t^{(0)}\right) i_{t-\tau}}.$$
(8)

This formula remains valid locally if β is varying with time. As i_t is not always available, it can be estimated from $I_t^{(1)}$ such as

$$\hat{i}_{t} = \int_{t-T}^{t} I_{t}^{(1)} dt , \qquad (9)$$

with *T* the characteristic time of the disease, so that $\hat{\beta}(t)$ can be entirely deduced from the single variable $I_t^{(1)}$. Taking into account the number of vaccination V_t at time *t* (if available), we get

$$\hat{\beta}(t) = \frac{N I_t^{(1)}}{\left(S_{t=0} - I_t^{(0)} - V_t\right) i_{t-\tau}},$$
(10)

with $i_{t-\tau} \neq 0$. Note that i_t is composed of both symptomatic and asymptomatic compartment here $(i_t = i_t^S + i_t^A)$ and may thus be difficult to estimate practically since asymptomatic people are by definition difficult to count. However, this limitation will only have a marginal effect on the estimate of $\hat{\beta}(t)$ because it will act similarly onto $I_t^{(1)}$. To avoid singularities, $\hat{\beta}(t)$ is estimated only if $i_{t-\tau} \ge 100$. This formulation was tested on synthetic cases and revealed a systematic overestimation (in the range 1.28 to 1.42) when varying the infected period T_i from 5 to 7.5 days (see Table A in the present S1 Appendix). A correction coefficient $\xi = 0.75$ such as

$$\hat{\beta}_t = \xi \beta_t$$

was thus applied to get more realistic estimates of the average number of contact per person per time.

Table A:	Tal	bl	e	A	:
----------	-----	----	---	---	---

T _i	4.5	4.75	5	5.5	6	6.5	7	7.25	7.5
τ	3.2	3.4	3.6	3.9	4.3	4.6	5.0	5.2	5.4
ξ	0.63	0.67	0.70	0.73	0.78	0.78	0.78	0.75	0.70
$1/\xi$	1.59	1.50	1.42	1.37	1.28	1.28	1.28	1.33	1.42

B. Recovery and Mortality rates

The recovery rate v and the mortality rate m can also be deduced from i_t (deduced from $I_t^{(1)}$ using Eq. 9) and $R_t^{(1)}$ (to be estimated numerically from R_t)

$$\hat{\upsilon}(t) = \frac{R_t^{(1)}}{i_t}, \qquad (12)$$

or $D_t^{(1)}$ (to be estimated numerically from $D_t^{}$)

$$\hat{m}(t) = \frac{D_t^{(1)}}{i_t},$$
(13)

Here also, the contribution of the asymptomatic cases are compensated.

C. Effective reproduction number

Since the original dynamics is a priori unknown, three formulations of the basic reproduction number \mathbf{R}_0 were investigated, based on SIR model

$$\mathbf{R}_{0}^{\mathrm{SIR}} = \frac{\beta}{\nu},\tag{14}$$

SIRD model

$$\mathbf{R}_{0}^{\mathrm{SIRD}} = \frac{\beta}{\upsilon + m},\tag{15}$$

and SEi2RD model hypotheses:

$$\mathbf{R}_{0}^{\text{SEi2RD}} = \frac{\beta}{\upsilon + m} + \frac{(1 - p)m}{\upsilon + m}.$$
(16)

The three formulations were tested to estimate the effective reproduction number

$$\mathbf{R}_{t} = \mathbf{R}_{0} \times \frac{\left(S_{t=0} - I_{t}^{(0)} - V_{t}\right)}{N_{t}},$$
(17)

the SIRD formulation was found the more realistic when applied to the synthetic data. The following formulation

$$\hat{\mathbf{R}}_{t} = \frac{\beta_{t}}{\nu_{t} + m_{t}} \times \frac{\left(S_{t=0} - I_{t}^{(0)} - V_{t}\right)}{N_{t}},$$
(18)

was thus preferred – in practice – to estimate the effective reproduction number. Other formulations were kept to estimate the error resulting from this lack of knowledge.