Original Papers

Medicinal Plants for the Treatment of Mental Diseases in Pregnancy: An *In Vitro* Safety Assessment

Deborah Spiess^{1,2,*}, Moritz Winker^{3,4,*}, Antoine Chauveau², Vanessa Fabienne Abegg², Olivier Potterat², Matthias Hamburger², Carsten Gründemann^{3,4,**}, Ana Paula Simões-Wüst^{1,**}

Affiliations

¹ Department of Obstetrics, University Hospital Zurich, University of Zurich, Zurich, Switzerland
² Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
³ Center for Complementary Medicine, Institute for Infection Prevention and Hospital Epidemiology, University of Freiburg, Faculty of Medicine, Freiburg, Germany
⁴ Translational Complementary Medicine, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland

* These authors contributed equally to the work and should be considered as joint first authors. ** These authors contributed equally to the work and should be considered as joint last authors.

Correspondence

PD Dr. Ana Paula Simões-Wüst

University Hospital of Zurich Department of Obstetrics Schmelzbergstrasse 12/PF 125, Path G51a 8091 Zurich Switzerland Phone: +41 44 255 51 31 Fax: +41 44 255 44 30 anapaula.simoes-wuest@usz.ch

Fig. 1S. HPLC-UV-MS analysis of *Valeriana officinalis* 70% EtOH extract. BPC: base peak chromatogram. **1**: chlorogenic acid, **2** and **3**: dicaffeoylquinic acid isomers (tentative assignment), **4**: valerenic acid.

Peak number	Retention time (min)	UV maxima (nm)	ESI MS (+) (m/z)	ESI MS (-) (m/z)	Identification
1	7.2	206, 310, 327	354.9 [M+H] ⁺	353.1 [M–H] ⁻	Chlorogenic acid
2	10.8	209, 310, 327	516.9 [M+H] ⁺	515.1 [M–H] [–]	Dicaffeoylquinic acid
			499.0		
3	11.1	217, 310, 327	516.9 [M+H] ⁺	515.1 [M–H] [–]	Dicaffeoylquinic acid
			499.0		
4	24.9	222	235.1 [M+H] ⁺	233.1 [M-H] ⁻	Valerenic acid

Table 1S. Retention times and spectroscopic data of annotated peaks in Valeriana officinalis 70% EtOH extract.

Fig. 2S. HPLC-UV-MS analysis of *Humulus lupulus* 70% EtOH extract. BPC: base peak chromatogram. 1: chlorogenic acid, **2**: isoquercitrin, **3**: kaempferol hexoside (tentative assignment), **4**: xanthohumol, **a**: unidentified flavonoid, MW 550 amu, **b**: unidentified flavonoid, MW 534 amu.

Peak number	Retention time (min)	UV maxima (nm)	ESI MS (+) (m/z)	ESI MS (-) (m/z)	Identification	
1	6.2	203, 300, 325	354.9 [M+H] ⁺	353.1 [M-H] ⁻	Chlorogenic acid	
2	9.6	203, 255, 353	465.1 [M+H] ⁺	463.0 [M–H] ⁻	Isoquercitrin	
3	10.3	201, 265, 343	$448.9 [M+H]^+$	447.0 [M–H] [–]	Kaempferol hexoside	
			286.7			
4	22.5	222, 369	354.9 [M+H] ⁺	353.0 [M–H] [–]	Xanthohumol	
а	10.5	204, 255, 353	550.8 [M+H] ⁺	549.2 [M-H] ⁻	Unidentified flavonoid	
b	11.3	205, 265, 346	534.9 [M+H] ⁺	533.0 [M–H] [–]	Unidentified flavonoid	

Table 2S. Retention time and spectroscopic data of annotated peaks in *Humulus lupulus* 70% EtOH extract.

Fig. 3S. HPLC-UV-MS analysis of *Eschscholzia californica* 70% EtOH extract. BPC: base peak chromatogram. 1: rutin rhamnoside (tentative assignment), 2: rutin, 3: rhamnoside of *O*-methyl quercetin (tentative assignment), 4: protopine, 5: californidine, 6: escholzine, 7: neocaryachine-7-*O*-methyl ether *N*-metho salt (CAS-Nr. 1310405-84-5, tentative assignment), a: unidentified flavonoid, MW 772 amu, b: unidentified flavonoid, MW 624 amu.

Peak	Retention time	UV maxima	ESI MS (+)	ESI MS (-)	Identification
number	(min)	(nm)	(m/z)	(m/z)	
1	14.4	219, 255, 353	757.1 [M+H] ⁺	755.1 [M–H] [–]	Rutin rhamnoside
2	16.7	216, 255, 353	$611.0 [\text{M+H}]^+$	609.1 [M–H] [–]	Rutin
3	18.7	204, 254, 353	625.1 [M+H] ⁺	623.1 [M–H] [–]	Rhamnoside of O-methyl
					quercetin
4	13.8	* OV	$354.0 [M+H]^+$	-	Protopine
5	14.9	* OV	337.9 [M+H] ⁺		Californidine
6	15.5	* OV	$324.0 [M+H]^+$	-	Escholzine
7	17.3	* OV	$340.0 [\text{M+H}]^+$	-	Neocaryachine-7-O-methyl
					ether N-metho salt
а	10.6	202, 255, 353	773.0 [M+H] ⁺	771.1 [M–H] [–]	Unidentified flavonoid
b	18.7	204, 254, 353	625.1 [M+H] ⁺	623.1 [M–H] [–]	Unidentified flavonoid

Table 3S. Retention time and spectroscopic data of annotated peaks in *Eschscholzia californica* 70% EtOH extract.

* UV spectrum overlapped by coeluting flavonoids.

Fig. 4S. HPLC-UV-MS analysis of *Hypericum perforatum* 70% EtOH extract. BPC: base peak chromatogram. 1: chlorogenic acid isomer (tentative assignment), 2: rutin, 3: hyperosid, 4: isoquercitrin, 5: miquelianin (quercetin-3-*O*-glucuronide), 6: quercitrin, 7: quercetin, 8: biapigenin.

1	6.8 21				
		10, 300, 325	355.0 [M+H] ⁺	353.1 [M–H] [–]	Chlorogenic acid isomer
2	18.7 22	21,255,351	$609.0 [M+H]^+$	611.0 [M–H] [–]	Rutin
3	19.7 21	15,255,353	$464.9 [M+H]^+$	463.1 [M–H] [–]	Hyperosid
4 2	20.2 20	01,255,353	$465.0 [M+H]^+$	463.1 [M–H] [–]	Isoquercitrin
5	22.2 20	01,255,353	$478.9 [M+H]^+$	477.0 [M–H] [–]	Miquelianin
6 2	23.6 20	01,254,349	$449.0 [M+H]^+$	447.0 [M–H] ⁻	Quercitrin
7	27.4 20	04,254,370	$302.9 [M+H]^+$	301.0 [M-H] ⁻	Quercetin
8 2	28.7 20	08,268,330	538.9 [M+H] ⁺	537.0 [M–H] [–]	Biapigenin

Table 4S. R	etention t	ime and s	pectroscop	ic data o	fannotated	peaks in	Hypericum	perforatum	70% EtOH extra	et.
-------------	------------	-----------	------------	-----------	------------	----------	-----------	------------	----------------	-----

Fig. 58. HPLC-UV analysis of hyperforin and adhyperforin in Hypericum perforatum extract. 1: hyperforin, 2: adhyperforin.

Fig. 6S. HPLC-UV analysis of hypericin and pseudohypericin in *Hypericum perforatum* extract. 1: pseudohypericin, 2: hypericin.

Fig. 7S. GC-MS analysis of Lavandula angustifolia essential oil. 1: linalool, 2: linalyl acetate.

Table 5S. Retention time, peak area, and identification of constituents of Lavendula augustifolia essential oil.

Peak number	Rentention time (min)	Area (%)	Identification	Spectrum identity (%, NIST)
1	6.71	43.4	Linalool	97
2	7.87	38.6	Linalyl acetate	90

Fig. 8S. Effects of different concentrations of citalopram (1) and diazepam (2) on *in vitro* safety using undifferentiated BeWo b30 cells. All controls consisted of cell culture media containing 0.2% of DMSO. All data were obtained from at least 3 independent experiments (D–F in triplicate) and are shown as mean \pm SD: *p < 0.05. (A) Effects on cell viability after treatment for 72 h as percent compared to the untreated control; treatments with camptothecin (CPT) and Triton-X-100 (TX) serve as toxicity controls. Results were normalized to untreated control signal = 100%. (B) Effects on cell death after treatment for 72 h as fold changes compared to the untreated controls with camptothecin (CPT) for apoptosis. (C) Effects on tail DNA after treatment for 3 h as fold changes compared to the untreated control with ethyl methanesulfonate (EMS) as a positive control. (D) Effects on glucose consumption and lactate production after treatment for 48 h expressed in mmol and normalized per amount of protein (mg). (E) Effects on β -hCG secretion (mU/mL) by BeWo b30 cells upon 48 h treatment with increasing concentrations of citalopram (1) or diazepam (2) and 50 μ M FSK control. Cells were pre-treated with test compound or cell culture medium for 24 h, before adding 5 μ M FSK for a further 24 h.

Fig. 9S. (A) Cytotoxic effects of DMSO (0.03-1%) on BeWo b30 cells. Viability assays were performed after a 72 h incubation period. Camptothecin (CPT) and Triton-X-100 (TX) were used as toxicity controls. **(B)** Effects of DMSO (0.0001-0.3%) on cell death after treatment for 72 h as fold changes compared to the untreated controls with camptothecin (CPT) for apoptosis. All data are represented as mean \pm SD of three independent experiments (n = 3; p* < 0.05).

