# Supplementary Information



GTEx gene expression correlation across tisues

Supplementary Figure 1. Gene expression correlation across tissues in the GTEx study. Using a linear mixed model with bivariate REML [1, 2], we calculated cis-genetic and residual (which captures variance due to both trans-genetic effects as well as residual effects) variance and covariance components for each gene-tissue pair across GTEx. The gray units indicate tissue pairs with less than 10% sample overlap. In both the genetic (upper) and residual (lower) components, there was widespread cis-genetic and residual correlation, with the brain tissues showing higher correlations compared to other tissues.



Supplementary Figure 2. Gene expression correlation across cell types in the CLUEs study. Using a linear mixed model with bivariate REML[1, 2], we calculated cis-genetic and residual (which includes trans-genetic effects) variance and covariance components for each gene-cell type pair across CLUEs.

#### Supplementary Methods

Intuition for using the decomposition to model genomic features The decomposition described in the methods section lays a framework for CONTENT as it directly accounts for the shared noise and generates orthogonal context-shared and context-specific components of genomic features. First, we note that in multi-context data, repeated measurements of one individual will likely have correlated errors; in the context of GTEx data, an individual's environment as well as technical noise is likely to affect their expression in all contexts. The above decomposition exploits this structure, which improves the power to learn the context-specific variability of expression. Put more rigorously, consider the expression of gene j in an individual measured in a baseline context and then again after a stimulation:

$$E_{ij1} = \mathbf{g}_{\mathbf{i}}\boldsymbol{\beta}_j + \epsilon_{ij1} \tag{1}$$

$$E_{ij2} = \mathbf{g}_{\mathbf{i}}\boldsymbol{\beta}_j + \mathbf{g}_{\mathbf{i}}\boldsymbol{\gamma}_j + \epsilon_{ij2} \tag{2}$$

Where  $E_{ij1}$  and  $E_{ij2}$  denote the observed expression level of individual *i* at gene *j* at baseline and stimulation respectively,  $\mathbf{g}_i$  represents a vector of the individuals' genotype at some nearby cis-SNPs,  $\beta_j$ denotes the baseline genetic effects on expression,  $\gamma_j$  denotes the stimulation-related genetic effects on expression, and  $\epsilon_{ij1}$  and  $\epsilon_{ij2}$  represent the environmental effects (or noise) on the individual's expression of gene *j* in baseline and stimulation respectively. In teasing apart the genetic effects that are different after stimulation, one might examine the difference in the expression between contexts:

$$E_{ij2} - E_{ij1} = \mathbf{g}_{\mathbf{i}}\beta_j + \mathbf{g}_{\mathbf{i}}\gamma_j + \epsilon_{ij2} - \mathbf{g}_{\mathbf{i}}\beta_j - \epsilon_{ij1}$$
(3)

$$=\mathbf{g}_{\mathbf{i}}\boldsymbol{\gamma}_j + \epsilon_{ij2} - \epsilon_{ij1} \tag{4}$$

which leaves only the difference in expression due to the stimulation-specific, or in other words, context-specific component, and noise. Under the scenario in which the errors are perfectly correlated, (4) simplifies to:

$$E_{ij2} - E_{ij1} = \mathbf{g}_{\mathbf{i}} \boldsymbol{\gamma}_j \tag{5}$$

Clearly, this will greatly increase our ability to build a genetic model of the stimulation-specific component. In terms of CONTENT, the baseline genetic effects correspond to the context-shared genetic effects, and the stimulation-specific effects correspond to the context-specific effects. Put simply, we propose the context-shared genetic effects be considered a "baseline" effect, and that the context-shared genetic effects are simply offsets to the context-shared effect. This model is directly related to equation (5):

$$E_{ijt_i} = (E_{ij.}) + (E_{ijt_i} - E_{ij.})$$
(6)

where  $E_{ij}$  and  $(E_{ijt_i} - E_{ij})$  correspond to the context-shared and context-specific genetic effects respectively. By construction,  $E_{ij}$  and  $(E_{ijt_i} - E_{ij})$  are orthogonal, and thus we have generated orthogonal components for the context-shared and context-specific components of expression.

Hierarchical false discovery correction Multiple hypotheses correction in the context of discovering genes, gene-context pairs, and downstream associations of genetically-regulated gene expression with phenotypes varies across approaches [3, 4, 5]. For discovering gene and gene-context associations, previous approaches often leverage a Bonferroni correction when investigating a single context, and may use FDR within a context when investigating multiple contexts [4, 5]. After conducting an association test between a phenotype and genetically regulated gene expression, an additional Bonferroni correction is often employed across all tested expression-context-phenotype trios [5]. As this approach across all expression-context-phenotype trios [5]. As this approach across all expression-context simultaneously may lead to an inflation or deflation to the false discovery proportion within certain contexts [6].

To simultaneously control the FDR across all contexts at once, a hierarchical false discovery correction—treeQTL—was developed [6]. Though treeQTL was originally developed for use in eQTL studies, its properties hold for any false discovery correction where such a hierarchy (e.g. gene level and gene-context level) exists [7]. Briefly, TreeQTL first combines all gene-context p-values for a given gene simultaneously using Simes's procedure (other related procedures may also be used) to determine if there is an association at this given locus. If there is an association at the locus, FDR is then employed across the contexts within that gene. Importantly, if a gene does not have a significant association as determined by the first step, contexts are not included in the additional correction procedure, thus decreasing the number of tests that need to be accounted for in multiple correction. This approach has been shown to properly control the false discovery rate across an arbitrary number of contexts and levels in the hierarchy, making it an invaluable tool in the context of gene, gene-context, and gene-context-trait discoveries.

To properly adjust the FDR for CONTENT, we use a hierarchy of 3 levels; (1) at the level of the gene, (2) at the level of the context, and (3) at the level of the method or model.



**Supplementary Figure 3. Hierarchical false discovery correction.** Here, we show the structure of the hypothesis tests for determining whether a gene has a heritable component. A gene (green, top level) is considered heritable if it has a heritable context-shared component or if it was heritable for a specific context (blue, second level). A given gene-context may be heritable due to either the full or context-specific model of CONTENT (red, third level).



Supplementary Figure 4. CONTENT is powerful and well-calibrated in simulated data. Accuracy of each method to predict the genetically regulated gene expression of each gene-context pair for different correlations of intra-individual noise across contexts. Mean adjusted  $R^2$  across contexts between the true (A) full, (B) shared, and (C) specific genetic components of expression and the predicted component for each method and for different levels of intra individual correlation. We show here the accuracy for each component and method for all gene-contexts pairs, regardless of whether they had only context-shared or had both context-shared and context-specific effects. Notably, 75% of gene-contexts did not have a context-specific effect, and therefore CONTENT(Shared) captures nearly all of the full variability in these contexts (i.e. the full model is comprised of only shared effects). Further, as only 25% of gene-contexts had context-specific effects, CONTENT(Specific) on average captures very little of the full variability.

Simulations under additional parameter settings In this section, we evaluate CONTENT, UT-MOST, and the context-by-context approach using the same simulations framework as in the main text (Figure 2), however here we show each methods' performance while varying additional parameters (Supplementary Figure 5). We also show the performance of each method when the heritability of the context-shared and context-specific effects are equal (.2; Supplementary Figure 6) and where the context-shared heritability is less than the context-specific effects (.1 and .3 respectively; Supplementary Figure 7)).



Supplementary Figure 5. Prediction accuracy across simulated data with higher contextshared than context-specific heritability (.3 and .1 respectively). Under a simulations framework, we evaluated the performance of each method to predict the total expression using the mean adjusted  $R^2$  for each gene-context pair across all iterations for different (A,E) correlation between contexts, (B,F) proportion of causal cis-SNPs, (C,G) number of context-specific SNPs, and (D,H) the percent of contexts with context-specific effects on top of the shared effects. (A-D) show the correlation between the true full (specific + shared) genetic component and the estimated full genetic component of each method, and (E-H) show the correlations of the true genetic shared and specific genetic components of the output of each method (where CONTENT separates the two).

For all methods, the baseline of parameters was .3 shared heritability, .1 specific heritability, 500 cis-SNPs, 20 contexts, 0 correlation between contexts, .05 percent causal SNPs, 2 context-specific SNPs, and 20% specificity (signifying the overlap with the shared effects, as well as the percent of contexts with a specific effect). CONTENT continued to outperform the previous methods, and UTMOST consis-



Supplementary Figure 6. Prediction accuracy across simulated data with equal contextshared and context-specific heritability (.2). Under a simulations framework, we evaluated the performance of each method to predict the total expression using the mean adjusted  $R^2$  for each genecontext pair across all iterations for different (A,E) correlation between contexts, (B,F) proportion of causal cis-SNPs, (C,G) number of context-specific SNPs, and (D,H) the percent of contexts with contextspecific effects on top of the shared effects. (A-D) show the correlation between the true full (specific + shared) genetic component and the estimated full genetic component of each method, and (E-H) show the correlations of the true genetic shared and specific genetic components of the output of each method (where CONTENT separates the two).

tently outperformed the context-by-context approach. UTMOST consistently performed better than the context-by-context approach, likely as this simulation framework better fits the model's assumptions. We note that UTMOST performed better than CONTENT when there were context-specific effects across all contexts (and this set of effects lied on top of SNPs with a shared effect) and the heritability of context-specific effects dominated the heritability of context-shared effects (Supplementary Figure 7). Given our analysis of GTEx data this architecture may not be entirely common, however this provides further evidence that each method may outperform the other under different architectures, and should therefore be used in complement with the others.



Supplementary Figure 7. Prediction accuracy across simulated data with lower contextshared than context-specific heritability (.1 and .3 respectively). Under a simulations framework, we evaluated the performance of each method to predict the total expression using the mean adjusted  $R^2$  for each gene-context pair across all iterations for different (A,E) correlation between contexts, (B,F) proportion of causal cis-SNPs, (C,G) number of context-specific SNPs, and (D,H) the percent of contexts with context-specific effects on top of the shared effects. (A-D) show the correlation between the true full (specific + shared) genetic component and the estimated full genetic component of each method, and (E-H) show the correlations of the true genetic shared and specific genetic components of the output of each method (where CONTENT separates the two).



Supplementary Figure 8. Prediction accuracy across simulated data (2,000 cis-SNPs). Under a simulations framework, we evaluated the performance of each method to predict the total expression using the mean adjusted  $R^2$  for each gene-context pair across all iterations for different (A,E) correlation between contexts, (B,F) proportion of causal cis-SNPs, (C,G) number of context-specific SNPs, and (D,H) the percent of contexts with context-specific effects on top of the shared effects. (A-D) show the correlation between the true full (specific + shared) genetic component and the estimated full genetic component of each method, and (E-H) show the correlations of the true genetic shared and specific genetic components of the output of each method (where CONTENT separates the two).

Runtimes of methods We compared the runtimes and memory requirements of our software that fits both CONTENT and the context-by-context approach (10-fold cross-validation) to UTMOST (5-fold cross-validation). Our software takes advantage of the memory-mapped, fast penalized linear regression framework implemented by R package bigstatsr [8]. When we tested both approaches on 100 randomly-selected GTEx genes, not only was the runtime of UTMOST—while running half as many cross-validation folds as our method—on average over 3x the runtime of running our software, but the average memory required by UTMOST was also over 10x the memory required by our software.



Computational usage on 100 GTEx genes

Supplementary Figure 9. Runtime and memory usage of CONTENT and the context-bycontext approach compared to UTMOST. We saved the runtime and memory usage (in gigabytes— Gb) for UTMOST and our software that fits both CONTENT and the context-by-context approach on 100 randomly-selected GTEx genes (boxplots represent the minimum, first quartile, median, third quartile and maximum across 100 fit genes). The median runtime and memory usage of running UTMOST was over 3x and 10x the runtime and memory usage of running our software that fits both CONTENT and the context-by-context approach.



Supplementary Figure 10. Power of CONTENT, UTMOST and the context-by-context model across GTEx on genes run by UTMOST. (A) The number genes of genes with a significantly predictable component across each context with sample size included in parentheses (B) The median ratio of adjusted  $R^2$  (CONTENT/context-by-context,CONTENT/UTMOST) across the union of genes significantly predicted by CONTENT and either the context-by-context model or UTMOST.



Supplementary Figure 11. The difference in number of eAssociations when using FDR within each context separately and using hFDR across all tissues simultaneously. We show the difference in number of associations when using different FDR strategies as a function of tissue sample size in the GTEx dataset. CONTENT represents the CONTENT(Full) model. The changes are most interpretable using the context-by-context approach, as there is no "borrowing" of power by tissues with a small sample size from tissues with a larger sample size (which may be the case with CONTENT and UTMOST). Interestingly, in tissues with small sample sizes, there is a decrease in the number of significant associations when using FDR rather than hFDR. Conversely, in tissues with larger sample sizes, there is an increase in the number of significant associations.



Supplementary Figure 12. Performance of CONTENT, UTMOST, and the context-bycontext approach on individual gene-tissue pairs across GTEx tissues. We highlight several genes for which there was a sizable difference in performance between CONTENT and a previous method. (a) ENSG00000188878.12 had a significant CONTENT model in over 46 tissues. The shared component explained an average of 23% observed variability explained whereas the specific component explained an average of 5%. (b) ENSG00000255513.1 was similar to (a), but had a significant model in all 48 tissues and the shared component explained on average 44% of the variability in the observed expression while the specific component explained roughly 1%. (c) ENSG0000160072.15 Also was dominated by the shared variability which explained on average 31% of the variability in the 48 tissues for which a significant content model was built (as opposed to 1% by the specific component).

(d) ENSG00000198203.5 has a large specific component in the stomach explaining 13% of the variability of observed expression. The shared component of expression only explained a significant amount of variability in a subset of tissues in which the gene was expressed, and while it explained a similar amount of variability to the specific component (15%), there was likely heterogeneity in a subset the tissues since several had an insignificant amount of variability explained by the shared component. (e) ENSG00000238142.1 followed a similar trend to (a) and (b), where the shared component dominated the variability explained. (f) ENSG00000119673.10 also followed the same trend as (a), (b), and (c). (g) ENSG00000226314.3 was expressed in over 43 tissues, but only 22 had a significant CONTENT model. The shared component explained on average 7% of the observed variability, and explained much more in fibroblasts, spleen, and tibial nerve. There was a strong specific signal in only brain tissues. There likely was an additional level of heterogeneity that was shared across a subset of tissues rather than all tissues. (h) ENSG00000084628.5 showed a similar trend to (g) in which the shared component explained most of the variability within brain tissues, but was not predictive of expression in non-brain tissues. (i) ENSG00000166454.5 Though this gene was expressed in all 48 tissues, only 6 had significant predictors, and the variability explained in the observed expression was 10% by the specific component and 6% by the shared on average. In skeletal muscle, most of the variability explained was by the specific component. (j) ENSG00000160072.15 Most of the variability explained for the stomach expression came from the specific model (28.5%) than the shared model (1%). (k) ENSG00000153253.11 was expressed in 25 tissues, but only 6 tissues had a significant model. The amygdala in particular had predictors in which all the variability explained came from the CONTENT specific model. (1) ENSG00000261701.2 On average, the shared component explained a large portion of variability in the observed expression of brain tissues. There were large specific components of expression for both brain and non-brain tissues, but there was likely some heterogeneity of shared effects which led to a lower performance of CONTENT compared to UTMOST.

**Supplementary Table 1.** The number of eAssociations for each tissue and method when employing either FDR within each tissue separately or hFDR across all tissues simultaneously. CONTENT represents the CONTENT(Full) model.

|                                     |         | hFDR           |              |         | FDR            |        |
|-------------------------------------|---------|----------------|--------------|---------|----------------|--------|
| Tissue                              | CONTENT | $\mathbf{CxC}$ | UTMOST       | CONTENT | $\mathbf{CxC}$ | UTMOST |
| Adipose Subcutaneous (317)          | 7723    | 6011           | 5300         | 9369    | 7065           | 6244   |
| Adipose Visceral Omentum (267)      | 6776    | 4886           | 4432         | 8267    | 5698           | 5017   |
| Adrenal Gland (140)                 | 5083    | 3508           | 3205         | 6275    | 4011           | 3499   |
| Artery Aorta (230)                  | 7002    | 5211           | 4662         | 8552    | 6208           | 5374   |
| Artery Coronary (122)               | 5054    | 3261           | 2885         | 6226    | 3555           | 2970   |
| Artery Tibial (320)                 | 7582    | 6095           | 5222         | 9137    | 7170           | 6266   |
| Brain Amygdala (81)                 | 3222    | 2225           | 1760         | 3672    | 2136           | 1571   |
| Brain Anterior cingulate cortex     |         |                |              |         |                |        |
| BA24 (102)                          | 3984    | 2917           | 2364         | 4752    | 3202           | 2423   |
| Brain Caudate basal ganglia (126)   | 4600    | 3390           | 2851         | 5614    | 3829           | 3014   |
| Brain Cerebellar Hemisphere (113)   | 5348    | 4110           | 3592         | 6468    | 4699           | 3941   |
| Brain Cerebellum (138)              | 6298    | 5050           | 4333         | 7626    | 5965           | 5025   |
| Brain Cortex (119)                  | 4897    | 3628           | 3172         | 5963    | 4142           | 3448   |
| Brain Frontal Cortex BA9 (103)      | 4278    | 3167           | 2653         | 5108    | 3450           | 2684   |
| Brain Hippocampus (99)              | 3695    | 2708           | 2028         | 4377    | 2858           | 1954   |
| Brain Hypothalamus (97)             | 3930    | 2775           | 2120         | 4540    | 2928           | 2012   |
| Brain Nucleus accumbens basal       |         |                |              |         |                |        |
| ganglia (114)                       | 4303    | 3285           | 2612         | 5243    | 3615           | 2693   |
| Brain Putamen basal ganglia (98)    | 3893    | 2718           | 2334         | 4703    | 2919           | 2337   |
| Brain Spinal cord cervical (76)     | 3575    | 2422           | 1934         | 4059    | 2344           | 1782   |
| Brain Substantia nigra (69)         | 2838    | 1880           | 1554         | 3036    | 1448           | 1258   |
| Breast Mammary Tissue (205)         | 6421    | 4285           | 4015         | 8000    | 4956           | 4410   |
| Cells EBV-transformed               | _       |                |              |         |                | -      |
| lymphocytes (92)                    | 3638    | 2612           | 2057         | 4342    | 2839           | 2068   |
| Cells Transformed fibroblasts (248) | 6444    | 5393           | 4447         | 7732    | 6369           | 5309   |
| Colon Sigmoid (177)                 | 6220    | 4238           | 3930         | 7665    | 4863           | 4385   |
| Colon Transverse (202)              | 6048    | 4302           | 3881         | 7498    | 4953           | 4334   |
| Esophagus Gastroesophageal          |         |                |              |         |                |        |
| Junction (181)                      | 6143    | 4185           | 3927         | 7597    | 4906           | 4366   |
| Esophagus Mucosa (297)              | 7191    | 5917           | 5006         | 8727    | 6965           | 5840   |
| Esophagus Muscularis (278)          | 7364    | 5612           | 5009         | 8962    | 6599           | 5875   |
| Heart Atrial Appendage (225)        | 5723    | 4108           | 3720         | 7085    | 4816           | 4251   |
| Heart Left Ventricle (227)          | 4803    | 3511           | 3105         | 5954    | 4101           | 3535   |
| Liver (130)                         | 3616    | 2673           | 2083         | 4366    | 2974           | 2120   |
| Lung $(326)$                        | 7851    | 6023           | 5340         | 9578    | 7075           | 6189   |
| Minor Salivary Gland (71)           | 3630    | 2170           | 1884         | 4076    | 1925           | 1591   |
| Muscle Skeletal (410)               | 5773    | 4908           | 3910         | 6954    | 5760           | 4693   |
| Nerve Tibial (300)                  | 8791    | 7201           | 6097         | 10595   | 8477           | 7284   |
| Ovary (97)                          | 4557    | 3024           | 2531         | 5406    | 3252           | 2412   |
| Pancreas (171)                      | 5065    | 3725           | 3235         | 6229    | 4339           | 3629   |
| Pituitary (144)                     | 5838    | 4219           | 3667         | 7093    | 4875           | 3979   |
| · · · /                             | C       | ontinued       | on next page | 1       |                |        |

| Supplementary    | Table 1 co | ntinued: '  | The number   | of            | eAssoc | iations | for | each ti | issue :               | and method  | l when |
|------------------|------------|-------------|--------------|---------------|--------|---------|-----|---------|-----------------------|-------------|--------|
| employing either | FDR within | each tissue | e separately | $\mathbf{or}$ | hFDR   | across  | all | tissues | $\operatorname{simu}$ | ltaneously. | CON-   |
| TENT represents  | the CONTE  | NT(Full) n  | nodel.       |               |        |         |     |         |                       |             |        |

|                          |         |                |        | I       | EDD        |        |
|--------------------------|---------|----------------|--------|---------|------------|--------|
| Tissue                   | CONTENT | $\mathbf{CxC}$ | UTMOST | CONTENT | FDR<br>CxC | UTMOST |
| Prostate (108)           | 5030    | 3312           | 2667   | 6099    | 3557       | 2585   |
| Skin Not Sun Exposed     |         |                |        |         |            |        |
| Suprapubic (279)         | 7136    | 5713           | 4880   | 8722    | 6674       | 5666   |
| Skin Sun Exposed Lower   |         |                |        |         |            |        |
| $\log(353)$              | 7972    | 6633           | 5594   | 9590    | 7765       | 6573   |
| Small Intestine Terminal |         |                |        |         |            |        |
| Ileum (100)              | 4594    | 3013           | 2526   | 5420    | 3227       | 2468   |
| Spleen $(113)$           | 5490    | 3782           | 3480   | 6726    | 4284       | 3704   |
| Stomach (191)            | 5525    | 3705           | 3384   | 6865    | 4215       | 3655   |
| Testis (187)             | 7007    | 6077           | 4796   | 8342    | 7169       | 5534   |
| Thyroid (334)            | 8879    | 7305           | 6240   | 10603   | 8651       | 7392   |
| Uterus (81)              | 4087    | 2648           | 2155   | 4725    | 2595       | 1942   |
| Vagina (89)              | 4185    | 2792           | 2065   | 4842    | 2826       | 1794   |
| Whole Blood (305)        | 4739    | 4091           | 3221   | 5677    | 4782       | 3695   |



Supplementary Figure 13. PContribution of context-specific genetic regulation in GTEx. (A) The number of genes with a significant (FDR $\leq 5\%$ ) CONTENT(Specific) model of expression in GTEx. (B) Proportion of expression variance of CONTENT(Full) explained by CONTENT(Specific) and CONTENT(Shared) for genes with a significant CONTENT(Full) model.

**Evaluation TWAS simulations and fine-mapping** In this section, we explore the ability of each method to correctly determine the gene-context pair responsible for the association with the phenotype in TWAS. Notably, in these simulations we limited our analyses to situations in which the causal context(s) has been observed. In real data applications, this may not occur, and in such cases, further complexities may arise due to genetic correlation. In these situations, it is likely that all methods will produce false-positive gene-context associations since the true causal context is missing. The complexities posed by missing contexts and cell-types are beyond the scope of this manuscript, and we leave the development of relevant methodology as future work.

Importantly, the models built by CONTENT(Full) can be explained by either the context-shared component, the context-specific component, or both. To implicate a genuine CONTENT(Full) genecontext association (i.e., to elucidate whether a specific context's expression is more strongly associated than the context-shared expression), we propose using only gene-context pairs whose CONTENT(Full) TWAS test statistic is greater in magnitude than the context-shared TWAS test statistic—termed "CON-TENT(Fine)." In our simulations we used a test statistics threshold of .5 and found that this heuristic controlled the false positive rate of the CONTENT(Fine) model's associations as well as enriched for correctly-associated contexts.

We evaluated the ability of each method to implicate the correct eAssociation in simulated TWAS data. Across a range of heritability and hetereogeneity (percent of contexts with context-specific genetic effects in addition to the main effects), we simulated 1000 genes for 20 contexts, 100 of which had 3 contexts whose genetic component of expression was associated with the phenotype. We considered sensitivity and specificity as the ability of each method to implicate the correct context for an associated gene. To evaluate sensitivity and specificity, we examined which gene-context pairs were significantly associated with the phenotype after employing the hierarchical false discovery correction **6** as the gene-based false positive rate was well-controlled across methods using this approach.

In the absence of context-shared genetic effects, all methods showed high specificity and sensitivity (Supplementary Figure 15). However, as the genetic variability became more context-shared, the specificity and sensitivity of the context-by-context approach and UTMOST dropped substantially (Supplementary Figure 15). As neither the context-by-context approach nor UTMOST attempt to deconvolve the context-shared and context-specific effect sizes, their weights for a given context contain both contextshared and context-specific signal. Thus when the context-shared effects dominate the heritability, both methods are likely to suggest context-specific associations across all contexts that express an associated gene. The specificity of CONTENT's context-specific component, as well as the full model's weighting of each expression component are paramount to its specificity and sensitivity, as shown by its robust performance across various mixtures of genetic effects (Supplementary Figure 15).

In the GTEx dataset, the fine-mapping TWAS associations produced by our heuristic for the CONTENT(Full) model produced broad associations across many tissues. Though we observed many correct fine-mapping associations for several known gene-trait etiologies (e.g. CYLD and esophagus mucosa in Crohn's [9], LIPC and liver in HDL [10], SORT1 in liver in LDL and HDL [11], [12], [13]), there was not consistent enrichment of a specific tissue known to be relevant for a given trait (for example, the pancreas was not over-represented in associations of Type 2 Diabetes). This could be because the correct tissue or context is missing from the data, horizontal or vertical pleiotropy, or other unknown reasons. As the fine-mapping heuristic performed well in simulated data under a known architecture and where all contexts are observed, we are hopeful that the context-specific estimates will be useful in downstream tissue fine-mapping methods.



Supplementary Figure 14. Using a heuristic to fine-map CONTENT(Full) associations. Average AUC from 1000 TWAS simulations while varying the overall heritability of gene expression. Each phenotype (1000 per proportion of heritability) was generated from 300 (100 genes and 3 contexts each) randomly selected gene-context pairs' genetically regulated gene expression, and the 300 gene-context pairs' genetically regulated for 20% of the variability in the phenotype.



**Supplementary Figure 15. CONTENT is sensitive and specific.** We simulated 1000 phenotypes from 300 randomly selected gene-tisue pairs' expression while varying the percent heterogeneity and performed a TWAS using the weights output by each method. (A,B) When the total proportion of variability in the phenotype due to the genetically regulated gene expression is .5 and (C,D) when the proportion is .2. The full model of CONTENT was the most sensitive when finding the correct gene-context pair, and is most powerful when there is non-negligible context-specific heritability in addition to the tissue-shared heritability.

| Supplementary Table 2. GWAS summary statistics used as input for TWAS. Abbreviation                    |
|--------------------------------------------------------------------------------------------------------|
| used for each trait as well as its respective study and sample size. The collection of traits from the |
| UKBiobank were self-reported and measured on the same set of individuals across traits.                |

| Symbol                 | Trait                                    | Study                                               | Sample Size |
|------------------------|------------------------------------------|-----------------------------------------------------|-------------|
| AD                     | Alzheimer's disease                      | Lambert et al. Nat Genet. 2013 14                   | 74,046      |
| Asthma                 | Asthma (self-reported)                   | UKBB Loh et al. 2018 Nat Genet 15                   | 361141      |
| Bipolar                | Bipolar Disorder                         | PGC Cell 2018 16                                    | $73,\!684$  |
| CAD                    | Coronary Artery Disease                  | CARDIoGRAM Nat Genet. 2011 17                       | $86,\!995$  |
| CKD                    | Chronic Kidney Disease                   | Wuttke et al. Nat Genet. 2019 18                    | 1,046,070   |
| Crohn's                | Crohn's Disease                          | IIBDGC Europeans Nat Genet. 2015 19                 | 13,974      |
| Eczema                 | Eczema (self-reported)                   | UKBB Loh et al. 2018 Nat Genet 15                   | $361,\!141$ |
| FastGlu                | Fasting Glucose                          | MAGIC Nat Genet. 2012 20                            | $96,\!496$  |
| HDL                    | High-density Lipoprotein                 | Teslovich et al. Nature 2010 21                     | 99,900      |
| IBS                    | Irritible bowel syndrome (self-reported) | UKBB Loh et al. 2018 Nat Genet 15                   | $361,\!141$ |
| LDL                    | Low-density lipoprotein                  | Global lipids genetics consotrium Nat Genet 2013 22 | 188,577     |
| Lupus                  | Systemic Lupus Erythromous               | Bentham et al. Nat Genet 2015 23                    | 23,210      |
| MDD                    | Major Depression Disorder                | PGC; Howard et al. Nat Neuro 2019 24                | $807,\!553$ |
| MS                     | Multiple Sclerosis (self-reported)       | UKBB Loh et al. 2018 Nat Genet 15                   | $361,\!141$ |
| PBC                    | Primary biliary cirrhosis                | Cordell et all. Nat Comm 2015 25                    | 13,239      |
| Psoriasis              | Psoriasis (self-reported)                | UKBB Loh et al. 2018 Nat Genet 15                   | $361,\!141$ |
| $\mathbf{R}\mathbf{A}$ | Rheumatoid Arthritis                     | Okada et al. Nature 2013 26                         | $103,\!638$ |
| Sarcoidosis            | Sarcoidosis (self-reported)              | UKBB Loh et al. 2018 Nat Genet 15                   | 361,141     |
| Sjogren                | Sjogren's Syndrome (self-reported)       | UKBB Loh et al. 2018 Nat Genet 15                   | $361,\!141$ |
| T1D                    | Type 1 Diabetes                          | Inshaw et al. Diabetologia 2021 27                  | $17,\!685$  |
| T2D                    | Type 2 Diabetes                          | DIAGRAM Nat Genet 2018 28                           | $898,\!130$ |
| Ulc colitis            | Ulcerative Colitis (self-reported)       | UKBB Loh et al. 2018 Nat Genet 15                   | 361,141     |

| Metabolite                   | Gene     | Z(CONTENT)   | Z(CxC)    | Rank(CONTENT)        | Rank(CxC)            |
|------------------------------|----------|--------------|-----------|----------------------|----------------------|
| Alpha-Hydroxyisovalerate     | HAO2     | NA           | NA        | Inf                  | Inf                  |
| Arachidonate $(20:4n6)$      | FADS1    | 19.90        | 19.50     | 1.00                 | 1.00                 |
| Arachidonate $(20:4n6)$      | FADS2    | 16.50        | 14.70     | 3.00                 | 4.00                 |
| Arachidonate (20:4n6)        | FADS3    | 14.60        | 13.80     | 4.00                 | 5.00                 |
| Asparagine                   | ASPG     | 5.18         | NA        | 18.00                | $\operatorname{Inf}$ |
| Betaine                      | BHMT     | 7.93         | 7.90      | 1.00                 | 1.00                 |
| Betaine                      | CBS      | 6.33         | 6.04      | 1.00                 | 1.00                 |
| Betaine                      | CPS1     | NA           | NA        | $\operatorname{Inf}$ | $\operatorname{Inf}$ |
| Betaine                      | SLC6A12  | NA           | NA        | $\operatorname{Inf}$ | $\operatorname{Inf}$ |
| Biliverdin                   | UGT1A1   | 7.69         | NA        | 5.00                 | $\operatorname{Inf}$ |
| Bradykinin, $des-arg(9)$     | KLKB1    | 6.72         | 5.75      | 3.00                 | 3.00                 |
| Bradykinin, $des-arg(9)$     | KNG1     | NA           | NA        | $\operatorname{Inf}$ | Inf                  |
| Butyrylcarnitine             | ACADS    | 43.90        | 48.40     | 2.00                 | 1.00                 |
| Butyrylcarnitine             | SLC16A9  | 6.70         | 6.92      | 1.00                 | 1.00                 |
| Carnitine                    | SLC16A9  | 16.60        | 17.00     | 1.00                 | 1.00                 |
| Carnitine                    | SLC22A4  | 6.66         | 7.02      | 3.00                 | 2.00                 |
| Carnitine                    | SLC22A5  | 5.64         | 5.42      | 4.00                 | 6.00                 |
| Citrate                      | SLC13A5  | NA           | NA        | Inf                  | $\operatorname{Inf}$ |
| Citrulline                   | ALDH18A1 | 5.85         | 6.38      | 1.00                 | 1.00                 |
| Cysteine Glutathione         |          |              |           |                      |                      |
| Disulfide                    | GGT1     | 7.57         | 7.87      | 1.00                 | 1.00                 |
| Glutaroyl Carnitine          | CPS1     | NA           | NA        | Inf                  | $\operatorname{Inf}$ |
| Glutaroyl Carnitine          | CPT2     | 9.43         | 6.40      | 1.00                 | 2.00                 |
| Glutaroyl Carnitine          | GCDH     | 13.90        | 13.90     | 1.00                 | 2.00                 |
| Glutaroyl Carnitine          | SLC7A6   | 9.35         | 9.51      | 2.00                 | 2.00                 |
| Glycine                      | CPS1     | 7.77         | 7.88      | 6.00                 | 6.00                 |
| Homocitrulline               | SLC7A9   | 5.27         | 6.27      | 3.00                 | 2.00                 |
| HWESASXX*                    | ANPEP    | NA           | NA        | Inf                  | Inf                  |
| Hydroxyisovaleroyl Carnitine | MCCC1    | 7.97         | 8.54      | 2.00                 | 1.00                 |
| Indolelactate                | CCBL1    | NA           | NA        | Inf                  | Inf                  |
| Inosine                      | NT5E     | 7.73         | 7.78      | 1.00                 | 1.00                 |
| Isobutyrylcarnitine          | SLC22A1  | NA           | 5.77      | Inf                  | 7.00                 |
| Kynurenine                   | SLC7A5   | 9.98         | 6.93      | 1.00                 | 2.00                 |
| Leucine                      | PPM1K    | 5.27         | NA        | 3.00                 | Inf                  |
| Myo-Inositol                 | ISYNA1   | NA           | NA        | Inf                  | Inf                  |
| Myo-Inositol                 | SLC5A11  | 6.02         | 7.07      | 2.00                 | 1.00                 |
| Octadecanedioate             | SLCO1B1  | NA           | NA        | $\operatorname{Inf}$ | Inf                  |
| Pantothenate                 | SLC5A6   | NA           | NA        | $\operatorname{Inf}$ | Inf                  |
| Phenyllactate (PLA)          | GOT2     | 6.25         | 6.83      | 1.00                 | 1.00                 |
| Scyllo-Inositol              | SLC5A11  | 6.89         | 8.65      | 2.00                 | 2.00                 |
| Serine                       | CPS1     | NA           | NA        | Inf                  | Inf                  |
| Serine                       | PHGDH    | 9.56         | 10.00     | 1.00                 | 1.00                 |
| Serine                       | PSPH     | NA           | NA        | Inf                  | Inf                  |
|                              |          | Continued on | next page |                      |                      |

Supplementary Table 3. The collection of metabolites and their associated gene(s) (as reported by Ndungu et al. [29]) and TWAS summary statistics.

| Metabolite          | Gene     | Z(CONTENT) | Z(CxC) | $\operatorname{Rank}(\operatorname{CONTENT})$ | Rank(CxC) |
|---------------------|----------|------------|--------|-----------------------------------------------|-----------|
| Succinylcarnitine   | CRAT     | 8.48       | 8.45   | 1.00                                          | 2.00      |
| Succinylcarnitine   | SUCLG2   | 5.73       | NA     | 1.00                                          | Inf       |
| Tryptophan          | SLC16A10 | NA         | NA     | $\operatorname{Inf}$                          | Inf       |
| Tryptophan          | TDO2     | NA         | NA     | $\operatorname{Inf}$                          | Inf       |
| Tryptophan Betaine  | SLC22A4  | 6.75       | 6.29   | 2.00                                          | 5.00      |
| Tryptophan Betaine  | SLC22A5  | 6.68       | 5.94   | 4.00                                          | 7.00      |
| Tyrosine            | SLC16A10 | NA         | NA     | $\operatorname{Inf}$                          | Inf       |
| Urate               | SLC2A9   | 9.98       | 10.36  | 2.00                                          | 1.00      |
| Uridine             | TYMP     | 7.14       | 7.52   | 2.00                                          | 2.00      |
| 1-Linoleoylglycerol |          |            |        |                                               |           |
| (1-Monolinolein)    | APOA5    | NA         | NA     | $\operatorname{Inf}$                          | Inf       |
| 1-Palmitoylglycero- |          |            |        |                                               |           |
| phosphoethanolamine | LIPC     | 6.01       | 7.91   | 3.00                                          | 1.00      |
| 2-Aminobutyrat      | PPM1K    | NA         | NA     | Inf                                           | Inf       |
| 2-Aminobutyrat      | SLC1A4   | 8.76       | 9.44   | 1.00                                          | 1.00      |
| 3-Dehydrocarnitine* | SLC22A4  | 10.60      | 11.10  | 2.00                                          | 2.00      |
| 3-Dehydrocarnitine* | SLC22A5  | 9.59       | 8.94   | 4.00                                          | 3.00      |
| 5-Oxoproline        | OPLAH    | 19.60      | 19.80  | 9.00                                          | 8.00      |

Supplementary Table 3 continued: The collection of metabolites and their associated gene(s) (as reported by Ndungu et al. [29]) and TWAS summary statistics.

**TWAS discoveries as a function of heritability thresholding.** In the main text, we put forth all gene-context pairs that were genetically predicted with a nominal pvalue of .1. As the procedure we use for false discovery adjustment was robust across contexts, we evaluated the number of discoveries that are potentially made when raising the threshold for the nominal pvalue. Our results suggest that there may be minimal correlation between genetic-predictability and strength of TWAS association.



**Supplementary Figure 16. TWAS discoveries across predictability thresholds.** The number of hierarchical-FDR-corrected TWAS discoveries as a function of the nominal pvalue cutoff for a given gene-tissue's cross-validation expression prediction.

**CONTENT can accommodate additional levels of pleiotropy among contexts** While the original model of CONTENT enables a simple decomposition into a component that is shared across all contexts and another that is specific to a single context, there may be cases in which additional sharing exists across a subset of contexts. For example, the group of brain tissues measured in the GTEx consortium have shown similar patterns in terms of cis-genetic variability [30], [31], [32] as well as intra-individual residual correlations (Supplementary Figure 1). To further disentangle the shared and tissue-specific genetic components of expression in the brain tissues, we added an additional term to the CONTENT decomposition which accounts for genetic effects that are only shared across the brain tissues. In more detail, we decompose the original context-shared component of expression into a new context-shared component that is shared across all tissues and a brain-shared component that is shared across only the brain tissues:

$$E_{j.} = E'_{j.} + E_{j\dot{b}} \tag{7}$$

Here,  $E'_{j.}$  (the new context-shared term) is an intercept,  $E_{jb}$  (the brain-shared term) is the effect size on an indicator variable for brain tissues, and estimates of both terms are generated for each individual using a simple linear regression. While introducing an additional term for the shared component will increase the resolution of the model, i.e. the novel model may discover new components of brain-sharing that were miscategorized as tissue-specific in multiple brain tissues, there may be a significant loss in power as this decomposition is only possible for individuals who have been sampled in both multiple brain and non-brain tissues. Additionally, under this decomposition, the full model for brain tissues contains three terms—the context-specific, brain-shared, and globally shared—resulting in a loss of a degree of freedom relative to the original model.

To evaluate the effect of an additional source of effects-sharing on the performance of CONTENT, we simulated an additional genetic effect that lied on top of a subset of SNPs with a main, overall contextsharing effect in 25% of the contexts. As the heritability of this additional source of sharing grew, the context-specific component of CONTENT began to capture variability due to both the context-specific and secondary context-shared effects (Supplementary Figure 17). When we used CONTENT brain, the context-specific component of CONTENT no longer produced predictors that captured variability due to the additional source of effects-sharing (mean  $R^2$  of true brain effects and predicted tissue-specific effects dropped from 0.127 to 0.004 across simulations), and the component responsible for capturing the additional source of effects-sharing–CONTENT(Brain)– was robust (average  $R^2$  between true and predicted brain-shared effects 0.49).

We applied the CONTENT brain model to GTEx, but note that such a component is only identifiable for individuals who have been sampled in both multiple brain and multiple non-brain tissues. For our analysis of the GTEx data, our sample size decreased to 12,904 genes, 26 tissues, and 150 individuals when using CONTENT brain. In general, using this model, the number of genetic tissue-specific components in the brain tissues decreased (Supplementary Figure 18). Of the genes that were implicated in the original CONTENT model as having a tissue-specific component but were no longer captured in the CONTENT brain model with a tissue-specific component, roughly 12% overlapped with the genes implicated by the additional brain-shared component. The CONTENT brain model discovered 4,811 genes with an overall tissue-shared component as well as 1,960 genes with a brain-shared components (of which 66% also had an overall tissue-shared component). The prediction accuracy was similar in both the original and brain models of CONTENT (Supplementary Figure 19).

We next compared the performance of the original CONTENT model to the CONTENT brain model in TWAS using simulated data (generated as aforementioned) as well as GTEx. While the mean AUC between both methods was similar in the simulated data, CONTENT brain was more sensitive than the original CONTENT model when shared brain effects existed (Supplementary Figure 20). Further, despite the fact that the sample size and number of tissues in GTEx data subsetted for the brain model is smaller, CONTENT discovered a non-trivial additional number of TWAS associations (Supplementary Table 4). In several neurological disorders, the number of context-specific genes decreased when using



Supplementary Figure 17. Additional sources of tissue-sharing may confound the tissue-specific component. (A) The original CONTENT model without accounting for the additional source of shared genetic effects when such a component exists. (B) When we introduce an additional shared component to the CONTENT model, CONTENT(Brain), the specific component does not capture this additional component, and the additional component is recovered.

the brain model, however the brain model discovered genes whose genetics were shared across only the brain-shared component (Supplementary Table 4). When we examined previous TWAS associations, such as APOC1 and AD, the original CONTENT approach showed association with the thyroid. However, this signal was removed using the brain-pleiotropy approach and the brain pleiotropic component showed significant association (p=2.20e-23). We observed a similar trend with APOE, where the original CONTENT model implicated several brain tissue associations but no significant shared association. The brain pleiotropy model in turn discovered a brain-tissue-shared component with significant evidence of association (p=2.47e-29). Both genes are known to have neuronal roles in Alzheimer's disease 33.

**Performance in GTEx when using the brain component** We ran the original and brain versions of the CONTENT model on 12904 genes in 26 tissues and 150 individuals in the GTEx dataset. These individuals were measured in at least 3 brain and non-brain tissues. Interestingly, each model discovered eGenes that were not discovered by their counterpart. The amount of variability was roughly the same in both versions of the model, but the adjusted  $R^2$  was slightly higher in non-brain tissues and slightly lower in brain tissues in the brain model. Importantly, the brain tissues in the brain model have 3 explanatory variables and therefore suffer a larger penalty in the adjusted  $R^2$  relative to the original CONTENT model. The adjusted  $R^2$  improved in the non-brain tissues however, suggesting that the context-shared and context-specific components may be less confounded by the brain tissues in the brain model than in the original model.





Supplementary Figure 18. Additional sources of effects-sharing may confound the contextspecific component. When we run the original CONTENT model and the CONTENT model with the brain-sharing on GTEx genes that are expressed in at least 3 brain and 3 non-brain tissues, many of the previous genetic context-specific components in the brain tissues are absorbed by the additional brain-sharing across brain tissues.



Supplementary Figure 19. Prediction accuracy across tissues in the brain and original CONTENT model. The difference in adjusted  $R^2$  in the brain and original CONTENT(Full) models. While the variability explained is markedly similar in both versions of the model, the adjusted  $R^2$  generally increased in non-brain tissues, and decreased in the brain tissues in the brain model.



**Supplementary Figure 20. Simulated TWAS with brain-shared genetic effects**. While the AUC and specificity of the original CONTENT model (green) and the CONTENT model that accounts for brain-shared effects (pink) were nearly the same, the sensitivity was improved when using the brain version of CONTENT in simulated TWAS where there exists brain-shared effects.

**TWAS eGenes discovered using the brain version of CONTENT** We performed TWAS using weights trained by the original and brain versions of the CONTENT model on 26 tissues, 12,094 genes, and 150 individuals in the GTEx dataset for 17. These individuals were measured in at least 3 brain and non-brain tissues, leading the sample size to be smaller than when using the total GTEx data without any such constraint. While the brain version of the CONTENT model discovered more TWAS eGenes than the original model, the brain model discovered fewer context-specific eGenes than the original model.

Supplementary Table 4. eGenes discovered by each component of CONTENT model in the brain and original models. In total, there were fewer genes discovered using the brain model of CONTENT, however our simulations show that the brain model of CONTENT may improve the resolution of associations. Abbreviations are as follows: AD, Alzheimer's disease; CAD, Coronary Artery Disease; CKD, Chronic Kidney Disease; Crohn's, Crohn's Disease; FastGlu, Fasting Glucose; GFR, Glomerular filtration rate; HDL, High-density lipoprotein; IBS, Irritable bowel syndrome; LDL, Low-density lipoprotein; Lupus, Systemic lupus erythematosus; MDD, Major depressive disorder; MS, Multiple sclerosis; PBC, Primary biliary cholangitis; RA, Rheumatoid arthritis; Sjogren, Sjögren's syndrome; T1D, Type 1 diabetes; T2D Type 2 diabetes; TG, Triglycerides; Ulc colitis, Ulcerative colitis.

|             |                  | CONTEN            | T original            |                     | CONTENT brain    |                   |                       |                     |                    |
|-------------|------------------|-------------------|-----------------------|---------------------|------------------|-------------------|-----------------------|---------------------|--------------------|
| Trait       | CONTENT<br>(All) | CONTENT<br>(Full) | CONTENT<br>(Specific) | CONTENT<br>(Shared) | CONTENT<br>(All) | CONTENT<br>(Full) | CONTENT<br>(Specific) | CONTENT<br>(Shared) | CONTENT<br>(Brain) |
| AD          | 76               | 62                | 64                    | 19                  | 67               | 51                | 59                    | 10                  | 8                  |
| Asthma      | 594              | 415               | 487                   | 74                  | 545              | 386               | 412                   | 81                  | 39                 |
| Bipolar     | 75               | 49                | 47                    | 18                  | 78               | 43                | 47                    | 14                  | 8                  |
| CAD         | 13               | 11                | 7                     | 2                   | 14               | 9                 | 11                    | 2                   | 1                  |
| CKD         | 58               | 39                | 47                    | 14                  | 51               | 34                | 29                    | 15                  | 2                  |
| Crohn's     | 279              | 205               | 231                   | 48                  | 265              | 177               | 190                   | 46                  | 20                 |
| Eczema      | 109              | 66                | 84                    | 4                   | 78               | 53                | 61                    | 7                   | 5                  |
| FastGlu     | 65               | 44                | 58                    | 5                   | 65               | 45                | 45                    | 10                  | 8                  |
| GFR         | 1721             | 1243              | 1428                  | 357                 | 1550             | 1087              | 1167                  | 313                 | 168                |
| HDL         | 247              | 175               | 217                   | 37                  | 228              | 116               | 170                   | 45                  | 19                 |
| IBS         | 14               | 10                | 5                     | 2                   | 12               | 9                 | 3                     | 1                   | 0                  |
| LDL         | 506              | 380               | 437                   | 77                  | 477              | 331               | 391                   | 74                  | 45                 |
| Lupus       | 356              | 268               | 309                   | 73                  | 315              | 249               | 245                   | 59                  | 42                 |
| MDD         | 250              | 155               | 182                   | 44                  | 189              | 121               | 109                   | 43                  | 18                 |
| MS          | 114              | 94                | 98                    | 19                  | 114              | 91                | 100                   | 21                  | 6                  |
| PBC         | 204              | 147               | 170                   | 32                  | 194              | 137               | 147                   | 36                  | 23                 |
| Psoriasis   | 180              | 158               | 163                   | 39                  | 183              | 153               | 152                   | 39                  | 23                 |
| RA          | 286              | 230               | 251                   | 85                  | 274              | 212               | 231                   | 82                  | 44                 |
| Sarcoidosis | 90               | 69                | 75                    | 10                  | 90               | 57                | 73                    | 6                   | 7                  |
| Sjogren     | 24               | 13                | 18                    | 2                   | 19               | 8                 | 14                    | 1                   | 1                  |
| T1D         | 359              | 303               | 323                   | 92                  | 311              | 255               | 272                   | 101                 | 59                 |
| T2D         | 514              | 352               | 422                   | 91                  | 451              | 310               | 327                   | 94                  | 32                 |
| TG          | 3251             | 2429              | 2791                  | 641                 | 3079             | 2169              | 2452                  | 624                 | 299                |
| Ulc colitis | 35               | 28                | 27                    | 3                   | 16               | 12                | 10                    | 2                   | 0                  |

## Supplementary References

- Yang, J., Lee, S., Goddard, M. & Visscher, P. GCTA: A Tool for Genome-wide Complex Trait Analysis. The American Journal Of Human Genetics. 88, 76-82 (2011)
- [2] Lee, S., Yang, J., Goddard, M., Visscher, P. & Wray, N. Estimation of pleiotropy between complex diseases using single-nucleotide polymorphism-derived genomic relationships and restricted maximum likelihood.. *Bioinformatics.* 28, 2540-2542 (2012,10)
- [3] Gusev, A., et al. Integrative approaches for large-scale transcriptome-wide association studies. Nature Genetics. 48 pp. 245 EP - (2016,2)
- [4] Gamazon, E., et al. A gene-based association method for mapping traits using reference transcriptome data. *Nature Genetics.* 47 pp. 1091 EP (2015,8)
- [5] Barbeira, A., et al. Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics. *Nature Communications.* 9, 1825 (2018)
- [6] Peterson, C., Bogomolov, M., Benjamini, Y. & Sabatti, C. TreeQTL: hierarchical error control for eQTL findings. *Bioinformatics.* 32, 2556-2558 (2016,8)
- [7] Peterson, C., Bogomolov, M., Benjamini, Y. & Sabatti, C. Many Phenotypes Without Many False Discoveries: Error Controlling Strategies for Multitrait Association Studies.. Genet Epidemiol. 40, 45-56 (2016,1)
- [8] Prive, F., Aschard, H., Ziyatdinov, A. & Blum, M. Efficient analysis of large-scale genome-wide data with two R packages: bigstatsr and bigsnpr.. *Bioinformatics.* 34, 2781-2787 (2018,8)
- [9] Mukherjee, S., et al. Deubiquitination of NLRP6 inflammasome by Cyld critically regulates intestinal inflammation. *Nature Immunology.* **21**, 626-635 (2020)
- [10] Guerra, R., Wang, J., Grundy, S. & Cohen, J. A hepatic lipase (LIPC) allele associated with high plasma concentrations of high density lipoprotein cholesterol.. Proc Natl Acad Sci U S A. 94, 4532-4537 (1997,4)
- [11] Strong, A., Patel, K. & Rader, D. Sortilin and lipoprotein metabolism: making sense out of complexity. *Current Opinion In Lipidology.* 25, 350-357 (2014,10)
- [12] Musunuru, K., et al. From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature. 466, 714-719 (2010,8)
- [13] Goettsch, C., Kjolby, M. & Aikawa, E. Sortilin and Its Multiple Roles in Cardiovascular and Metabolic Diseases. Arterioscler Thromb Vasc Biol. 38, 19-25 (2018,1)
- [14] Lambert, J., et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nature Genetics. 45, 1452-1458 (2013)
- [15] Loh, P., Kichaev, G., Gazal, S., Schoech, A. & Price, A. Mixed-model association for biobank-scale datasets. *Nature Genetics.* 50, 906-908 (2018)
- [16] Ruderfer, D., et al. Genomic Dissection of Bipolar Disorder and Schizophrenia, Including 28 Subphenotypes. Cell. 173, 1705-1715.e16 (2018)
- [17] Schunkert, H., et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. *Nature Genetics.* 43, 333-338 (2011)
- [18] Wuttke, M., et al. A catalog of genetic loci associated with kidney function from analyses of a million individuals. *Nature Genetics.* 51, 957-972 (2019)
- [19] Liu, J., et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations.. Nat Genet. 47, 979-986 (2015,9)
- [20] Manning, A., et al. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. *Nature Genetics.* 44, 659-669 (2012)
- [21] Teslovich, T., et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature.
   466, 707-713 (2010)
- [22] Willer, C., et al. Discovery and refinement of loci associated with lipid levels. Nature Genetics. 45, 1274-1283 (2013)

- [23] Bentham, J., et al. Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus. *Nature Genetics.* 47, 1457-1464 (2015)
- [24] Howard, D., et al. & Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. *Nature Neuroscience*. 22, 343-352 (2019,3,1), https://doi.org/10.1038/s41593-018-0326-7
- [25] Cordell, H., et al. International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways. *Nature Communications.* 6, 8019 (2015)
- [26] Okada, Y., et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature. 506, 376-381 (2014)
- [27] Inshaw, J., et al. Analysis of overlapping genetic association in type 1 and type 2 diabetes. *Diabetologia*. 64, 1342-1347 (2021)
- [28] Mahajan, A., et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. *Nature Genetics.* 50, 1505-1513 (2018)
- [29] Ndungu, A., Payne, A., Torres, J., Van de Bunt, M. & McCarthy, M. A Multi-tissue Transcriptome Analysis of Human Metabolites Guides Interpretability of Associations Based on Multi-SNP Models for Gene Expression. *The American Journal Of Human Genetics*. **106**, 188-201 (2020)
- [30] He, Y., et al. sn-spMF: matrix factorization informs tissue-specific genetic regulation of gene expression. *Genome Biology.* 21, 235 (2020)
- [31] Urbut, S., Wang, G., Carbonetto, P. & Stephens, M. Flexible statistical methods for estimating and testing effects in genomic studies with multiple conditions. *Nature Genetics.* 51, 187-195 (2019)
- [32] GTEx Consortium, et al. Genetic effects on gene expression across human tissues. *Nature*. **550** pp. 204 EP (2017,10)
- [33] Zhou, X., et al. Non-coding variability at the APOE locus contributes to the Alzheimer's risk. *Nature Communications.* 10, 3310 (2019)