iScience, Volume 25

Supplemental information

NOX-like ROS production by glutathione reductase

Julia M. Diaz and Xinying Shi

Enzyme	Substrate or product	IC ₅₀ (μM)
ToGR1	NADPH O2 ⁻	36.4 7.9
ToGR2	NADPH O2 ⁻	1831 545

Table S1. $\rm IC_{50}$ values of DPI inhibition, related to Fig 4c and Fig S3

Table S2. Uncatalyzed rate constants, related to Table 1 and STAR methods Data represent the avg. ± std. dev. of 22 observations

Substrate or product	k _{uncat} (min⁻¹)	n
NADPH	$(2.3\pm0.9)\times10^{-4}$	22
GSH	$(1.2\pm0.0)\times10^{-3}$	22
O2 ⁻	$(8.4\pm5.7)\times10^{-4}$	22

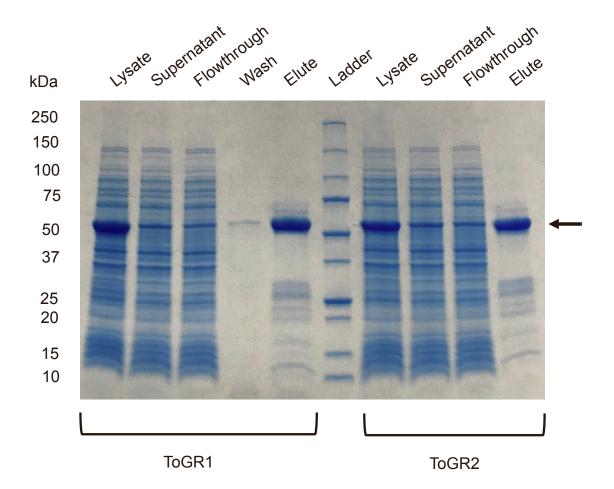


Fig S1. SDS-PAGE analysis of protein fractions obtained during the purification of recombinant ToGR1 and ToGR2, related to Fig 1a and STAR methods. Arrow indicates \sim 55 kDa

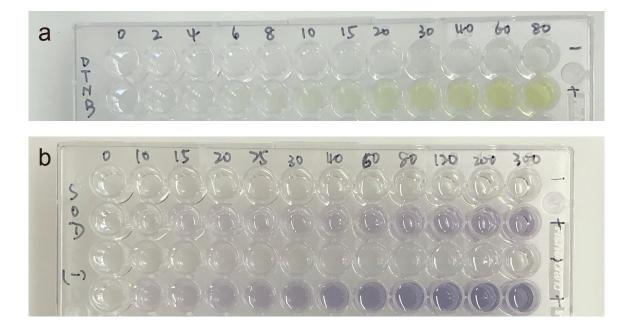


Fig S2. Activity assays showing color changes, related to Fig 1d,e and STAR methods. GSSG reduction (a) or superoxide production (b) by ToGR1. Top: NADPH concentration (μ M); Left: presence or absence (-) of SOD, as indicated; Right: presence (+) or absence (-) of ToGR1

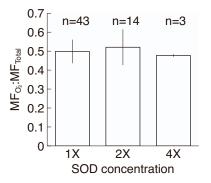


Fig S3. Proportion of superoxide-mediated monoformazan (MF) production by ToGR1 in the presence of increasing concentrations of superoxide dismutase (SOD), related to Fig 2c-f. $1X = 200 \text{ U mL}^{-1}$. Data represent the avg. ± std. dev. of n observations indicated above each bar. Results were statistically similar across all levels of SOD (p≥0.55, Tukey HSD)

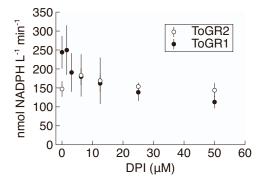


Fig S4. NADPH oxidation by ToGR1 and ToGR2 in the presence of DPI, related to Fig 4c. Data represent the avg. \pm std. dev. of triplicate observations