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Supplementary Note 1

We provide here (Fig. S1) a schematic representation of the four sperm motility variables used

in the computer-aided sperm analysis (CASA) that we also used in our analysis. This should

help in the interpretation and understanding of the results reported in this manuscript (Fig. 3,

Fig. 5, and Fig. S2.)

Figure S1: Representation of the main sperm motility variables of computer-aided
sperm analysis (CASA). A fictional sperm trajectory is shown, and the key motility measures
of CASA (that we used as input features in our analysis) are depicted. VCL = curvilinear
velocity, in µm/s: velocity measured with the actual path of the spermatozoa. VSL = straight-
line velocity, in µm/s: velocity measured from the initial to the last point of the trajectory.
VAP = average path velocity, in µm/s: velocity measure with an averaged trajectory. ALH
= amplitude of lateral head displacement, in µm: distance from the position of the head to the
average trajectory. BCF = beat cross frequency, in Hz: inverse of the number of times that the
head crosses the average trajectory. STR = straightness, in %: 100×V SL/V AP , measures the
straightness of the trajectory (not shown). LIN = linearity, in %: 100× V SL/V CL, measures
the linearity of the trajectory (not shown). WOB = wobble, in %: 100×V AP/V CL, measures
the wobble of the trajectory (not shown). Created with BioRender.com, and published under
the corresponding license permissions.

Supplementary Note 2

The sperm motility landscape can be visualized and inspected in different ways (Figures S2, S3

and S4).
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Figure S2: Sperm motility input features included in the t-SNE, and comparison to
CASA classification. a Quantile heatmap of the features used in the t-SNE (VCL, curvilinear
velocity, VSL, straight line velocity, ALH, lateral amplitude of the head displacement and
BCF, beat-cross frequency). Colors represent an interval of values (eight percentiles, from 0-
12.5 to 87.5-100) of each variable amended for a gradient visualization. b Mapping of the
five-class classification from the CASA system (F, fast sperm; FP, fast progressive sperm; M,
medium-speed sperm; MP, medium-speed progressive sperm; S, slow sperm). Note the high
correspondence between VAP and the different classes. c Quantile map of external motility
variables related to the four fundamental sperm motility features used in t-SNE (VAP, average
path velocity; LIN, linearity 100 x VSL/VCL; STR, straightness 100 x VSL/VAP, wobble, WOB
100 x VAP/VCL). Color gradient represents an interval of values (eight percentiles, from 0-12.5
to 87.5-100) of each variable from large (hot) to low (cold) values (colors).
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For instance, by displaying the values of the different input features (variables) used to

construct the landscape one can assess the biological meaning (in terms of motility) of different

regions of the landscape. In Fig. S2a we show the four sperm motility parameter values used

to build the landscape: curvilinear velocity (VCL), straight-line velocity (VSL), amplitude of

lateral head displacement (ALH) and beat-cross frequency (BCF). It is plainly visible how VCL

and ALH are closely related, as there is high correspondence between the two quantile heatmaps.

Figure S3: Visualization of the variability across boars and ejaculates. Note that
different boars and ejaculates show different sperm motility prevalence, and some ejaculates are
highly concentrated in specific regions, whilst others are widespread along the whole landscape.
The scale of density is common for all figures. The contours are depicted to help interpret the
density, and the clear lines are the limits to the clusters, as shown in Figure 1.

We can also map external variables (not used in the analysis), such as other relevant infor-

mation associated to sperm motility in the landscape (Fig.S2b-c). For example, we mapped the
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five sperm motility categories obtained with standard CASA algorithms (Fig. S2b). Note its

correspondence with VCL and VAP values, showing that CASA classification is mainly driven

by sperm speed (i.e. VAP). In Fig. S2c, we also mapped other variables like the average path

velocity (VAP), and specific motility quotients obtained from the four basic sperm motility

features used (VCL, VSL, ALH and BCF). Note that there was a tight correspondence between

VCL and VAP, and a good correlation between LIN, STR and VSL, despite in this latter case,

some differences were also observed.

To visually inspect how inter- and intra- (ejaculates) boar variability shows up in the overall

sperm motility landscape, we specifically visualize sperm motility landscapes per boar and

ejaculate (Fig. S3). Under the assumption that boar and ejaculate variability are low, one

would expect single boar/ejaculates to be spread all over the landscape. However, sperm from

different boars, and even from different ejaculates, occupied distinct regions of the map (Fig. S3).

Indeed, some ejaculates had a great variety of behaviours scattered over the landscape (e,g. boar

1 ejaculates 1, 2 and 3). Other ejaculates had a narrower spectrum of behaviours, with sperm

concentrated in specific regions of the landscape (e.g. boar 2, ejaculate 2; boar 4, ejaculate 2;

boar 7, ejaculate 2). It is worth noting that ejaculates from a particular boar could also display

very different behaviours (e.g. boar 2, ejaculates 1 and 2).

Supplementary Note 3

The landscape can be discretized into clusters, by different statistical methods. We used a

watershed algorithm, and merged the resulting partitions into a total of 11 clusters (see Results

and Methods). Here (Fig. S4), we present the features of each cluster, and order them according

to their effect on fertility (negative to positive, from left to right).
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Figure S4: Sperm motility features across landscape clusters and their effect on
boar fertility. Boxplots of the sperm motility features (VCL, curvilinear velocity; VSL, straight
line velocity; ALH lateral amplitude of head displacement; BCF, beat-cross frequency; VAP,
average path velocity; LIN, linearity; STR, straightness; WOB, wobble) in the 11 clusters that
conformed the motility landscape in our most predictive fertility model (model M3). Clusters
were ordered from left to right, in consonance with their effect on fertility (quantified from
negative to positive, according to the medians of the coefficients resulting from the fertility
model M3), and colored accordingly.
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Supplementary Note 4

Perplexity is a neighbouring parameter setting the scale where datapoint similarities in the

t-SNE algorithm are assessed. This parameter modulates the trade-off between emphasizing

the local or the global structure of the 2D embedded landscape (see Van der Maaten 2008

for details1). At low perplexities, fewer points are considered as neighbours and similarities

are compared only across small subsets of neighbouring points, hence, a greater focus on local

landscape structures is achieved. Opposed to that, high perplexities include large number of

neighbours, so that similarity metrics is applied over broader neighbourhood ranges, which is

better for a representation that reflects the global structure of data.

Figure S5: K-ary neighbour preservation (KNP) as a quality measure for 2D em-
beddings obtained through t-SNE methods. By means of KNP, we explored how different
perplexities in the t-SNE algorithm generate landscapes of different quality. We show the cor-
respondence high-dimensional vs. low-dimensional space for different neighbourhood sizes (K)
across different perplexities; from 64 to 6,393, representing from 0.1% to 10% dataset size,
respectively. a KNP for different neighbourhood sizes, as a measure of global structure preser-
vation. b KNP for different neighbourhood sizes in logarithmic scale, as a measure of local
structure preservation. See also Garriga & Bartumeus, 20212).

To comprehensively quantify this effect, we measured the local and global structure preser-

vation across a range of perplexities as suggested in Garriga & Bartumeus, 20212. We scanned
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different perplexities, ranging from a 0.1% to a 10% of the size of the dataset, and com-

pared the quality of the obtained 2D embeddings (Fig. S5). A Barnes-Hut implementation

of the t-SNE3 algorithm was run for each perplexity, using the bigMap R package4(available

in https://github.com/jgarriga65/bigMap, version 4.5.3). Each of these t-SNE outputs were

assessed in terms of k-ary neighbour preservation (KNP), a consensus measure for embeddings

resulting from dimensionality reduction methods5–8. Specifically, KNP is a quality measure that

compares neighbouring points between high-dimensional and low-dimensional spaces8. Follow-

ing Garriga & Bartumeus, 20212, the neighbourhood size K is expressed both linearly (K )

(Fig. S5a) and as log10(K) (Fig. S5b), depicting the quality of the global structure and the lo-

cal structure, respectively. The area under the curve of both functions was calculated to obtain

a quantification of global and local structure qualities across all of the embeddings (Table S1).

Table S1: K-ary neighbourhood preservation. The correspondence between the original
data (high-dimensional) and the low dimensional space resulting from t-SNE measures the
quality of the embedding. The area under the curve (AUC) of the quality across different
neighbourhood sizes (linAUC), and the AUC of its log-linear representation (logAUC) were
used to assess the global structure and the local structure (logAUC), respectively. These were
measured over a range of perplexities from 64 to 6,393 (0.1% to 10% of the size of the dataset),
revealing that the best balance (ratio closest to 1, presented as absolute value of the difference
1−Ratio) between global and local structure was obtained at 1% (639) perplexity.

Perplexity 64 320 639 3197 6393

linAUC 0.179 0.253 0.336 0.366 0.368

logAUC 0.462 0.409 0.380 0.312 0.293

Ratio 0.387 0.620 0.885 1.175 1.254

|1−Ratio| 0.613 0.380 0.115 0.175 0.254

A progressive shift from best local structure preservation (perplexity = 64, 0.1 %) to best

global structure preservation (perplexity = 6,393, 10 %) is observable in Table S1, where K -

AUC curves increased and log10(K)-AUC curves decreased as we moved from low to large

perplexities. However, the best trade-off between global and local structure (ratio closer to 1)

is achieved at 1 % perplexity (639). Consequently, perplexity was set at 639 to generate the

landscape for further analysis.
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Supplementary Note 5

In order to assess the robustness of our results, we applied the same procedure of analysis (see

Methods: Sperm motility landscape) using two additional methods for data dimension reduc-

tion: (i) the Fast-Fourier Interpolation-based t-SNE (FIt-SNE)9, and the Uniform Manifold

Approximation and Projection (UMAP)10.

Figure S6: Comparison of landscape merging scales for different data dimension
reduction algorithms: Barnes-Hut t-SNE, Fast-Fourier Interpolation-based t-SNE
(FIt-SNE) and Uniform Manifold Approximation and Projection (UMAP). a Signal
to noise ratio (S2NR) as a measure of information gain along the process of merging the clus-
ters in the landscape. The vertical dotted lines represent the best models selected for algorithm
(Barnes-Hut, FIt-SNE and UMAP). b Approximate leave-one-out cross-validation, used to as-
sess model performance (loo R package). The ELPD corresponds to the expected log pointwise
predictive density, as a measure of predictive capability of the model, being ELPD = 0 the best
performing model. Models of different landscape configurations (merging scales) are compared
across the different dimension reduction methods; the Barnes-Hut t-SNE (deep purple), the
FIt-SNE (dark green) and the UMAP (light green). The models chosen for comparison (i.e.
best models according to S2NR and ELPD criteria) are highlighted with a vertical dotted line.

A FIt-SNE with perplexity 1% (639), and a UMAP with a number of neighbors set to

639 were run. The KDE computed for both embeddings was run with the same perplexity

(639). The metrics involving the merging (Fig. S6) and the predictions of the model (Fig. S7)

were both assessed and compared between FIt-SNE, UMAP and Barnes-Hut t-SNE. As shown

in Figure S6a, the initial number of clusters was similar in all embeddings (39 for Barnes-

Hut, 38 for FIt-SNE and 41 for UMAP), and the merging process led to a similar hierarchical

organization of the landscape. The three embeddings showed a critical drop of information after
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Figure S7: Comparison of the model outputs for each dimension reduction algo-
rithm tested (Barnes-Hut t-SNE, FIt-SNE and UMAP). Left panels: Coefficients of
the sperm motility features for the models obtained with Barnes-Hut t-SNE a, FIt-SNE c and
UMAP e. The medians of the coefficients are represented as clear dots, the 50% C.I. as a thick
black line, and the 95% C.I. as a blue thin line. Right panels: Predicted fertility outcomes per
boar in the models obtained for Barnes-Hut t-SNE b, FIt-SNE d and UMAP f. The vertical
dotted lines represent threshold at 0.8 and 0.9, corresponding with a subjective categorisation
of the boars. The medians of the predictions are represented as clear dots, the 50% C.I. as a
thick black line, and the 95% C.I. as a blue thin line.
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the 11 cluster organization, indicating the existence of an optimal arrangement of the landscape

variability. Whilst this scale represented the highest S2NR peak in Barnes-Hut and FIt-SNE,

UMAP exhibited an uptrend beyond this point. Likely, this was due to a lack of structure in the

UMAP embedding with less than 11 clusters (higher variability within clusters than between

clusters).

When comparing the predictive density of the models (ELPD), a similar pattern appeared

in all embeddings (Fig. S6b). Coarser configurations of the landscape (i.e. two to eight clus-

ters) involved models with worse accuracies than landscapes conformed by nine to 15 clusters.

Specifically, the best models were obtained with 11 clusters the Barnes-Hut embedding, 13 to

15 clusters for FIt-SNE, and 14 to 15 clusters for UMAP. The FIt-SNE landscape with 13

clusters showed the largest information (S2NR) and better interpretability (smaller number of

clusters). The UMAP landscape with 14 clusters showed the best ELPD, and good enough

S2NR. Accordingly, we compared these two models (FIt-SNE with 13 clusters, and UMAP with

14 clusters) to the Barnes-Hut model with 11 clusters.

The qualitative meaning of the clusters (positive or negative correlation to fertility), and

the scales of the coefficients (orders of magnitude) of the different models were found to be

comparable (Fig. S7a,c,e). Nevertheless, FIt-SNE coefficients exhibited, in general, smaller

credible intervals (with less uncertainty), and more clusters near the value of 0 (less impact on

fertility) compared to the Barnes-Hut model. The semantics of the clusters were similar in the

three models: clusters with positive influence in fertility accounted for a higher VSL, LIN and

STR, compared to clusters with negative correlation to fertility.

The predictions obtained with the models (Fig. S7b,d,f) yielded a similar classification of

boars. Both the estimated fertility ratios and their ranking were analogous (Kendall corre-

lations: cor(BH|FIT ) = 0.779, pvalue = 1.3 × 10−5; cor(BH|UMAP ) = 0.647, pvalue =

2.9 × 10−4; cor(FIT |UMAP ) = 0.662, pvalue = 2.1 × 10−4). Additionally, it is evident that

the models make more accurate predictions (less uncertain) with boars showing high fertility
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rates. However, they reveal the presence of 3 qualitative groups: (i) boars with high fertility

rate estimates (above 0.9) (positions 1 to 7 in Barnes-Hut model; 1 to 9 in FIt-SNE model; 1

to 8 in UMAP model, e.g. Boar 2,3,4,5,11,17). Note that in the FIt-SNE and UMAP models

this group could be even subdivided in two groups, with the first five (six in case of UMAP)

boars in the rank showing very high (around 0.99) and accurate estimates of fertility rates; (ii)

boars with intermediate fertility rates (between 0.8 and 0.9) and higher uncertainty (positions

8 to 13 in Barnes-Hut model; 10 to 14 in FIt-SNE model; 9 to 14 in UMAP model, e.g. Boars

1,15); (iii) boars with low fertility rates (below 0.8) and high uncertainty in the estimates (po-

sitions 14 to 17 in Barnes-Hut model; 15 to 17 in FIt-SNE and UMAP models, e.g. Boar 8).

The above categorisation is indeed qualitative and somewhat arbitrary, based on the staircase-

ranked pattern of the fertility medians and the amplitude of credible interval percentiles, with

the only purpose to highlight robustness in our boar rank classification. Note that there are

some differences between the three models. However, the models share more similarities when

compared pairwise (i.e. Barnes-Hut t-SNE is similar to FIt-SNE and UMAP, but the three

models compared all at once have less consistent classification of boars).
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