Supplementary Information:

Unravelling the role of transient redox partner complexes in P450 electron transfer mechanics

Tatiana Y. Hargrove¹, David C. Lamb², Jarrod A. Smith^{1,4}, Zdzislaw Wawrzak³, Steven L. Kelly², Galina I. Lepesheva^{1,4*}

¹Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA ²Faculty of Health, Medicine and Life Science, Swansea University, Swansea, SA2 8PP, UK. ³Synchrotron Research Center, Life Science Collaborative Access Team, Northwestern University, Argonne, Illinois 60439, USA

⁴Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, USA

*Corresponding author: galina.i.lepesheva@vanderbilt.edu

This file contains:

- 1. Supplementary Table S1 (Data collection and refinement statistics)
- 2. Supplementary Fig. S1 (The asymmetric unit of *M. capsulatus* CYP51)
- 3. Supplementary Fig. S2 (Structure superimposition and structure-based sequence alignment)
- 4. Supplementary Fig. S3 (Spectral responses to the binding of sterol substrates)
- 5. Supplementary Table S2 (Active site cavity lining residues)
- 6. Supplementary Fig. S4 (Rearrangements in the *M. capsulatus* CYP51 proton relay network)
- 7. Supplementary Fig. S5 (A Coot snapshot of the 2F₀-F_c density map)
- 8. Supplementary Fig. S6 (Molecular-dynamics trajectories)
- 9. Supplementary Fig. S7 (Possible ET path in *M. capsulatus* CYP51-fx)
- 10. Supplementary Fig. S8 (Overlaid ferredoxin structures and the M. capsulatus fx model)
- 11. Supplementary Fig. S9 (Alignment of bacterial CYP51-fused and mammalian ferredoxins)

Supplementary Table S1. Data collection and refinement statistics.

PDB ID	7SNM
Data collection	
Wavelength, Å	1.000
Space group	P ₁ 2 ₁ 1
Cell dimensions	
a, b, c, Å	73.2 206.20 81.4
$\alpha, \beta, \gamma, \circ$	90.0 114.1 90.0
Molecules per asymmetric unit	4
Resolution (upper shell), Å	74.45-2.55 (2.62-2.55)
Solvent content, %	47.7
R _{merge} (upper shell)	0.065 (0.637)
CC (1/2) (upper shell)	0.998 (0.960)
$I/\sigma(I)$ (upper shell)	13.4 (2.2)
Completeness (upper shell), %	99.0 (99.9)
Redundancy (upper shell)	7.1 (7.4)
Refinement	
No. of reflections	67008
R_{work}/R_{free}	0.204/0.246
R.m.s deviations	
Bond lengths, Å	0.002
Bond angles, °	1.3
Ramachandran plot	
Favorable/allowed, %	94.0/99.8
Outliers, %	0.2
Average B factor, Å ²	54.9
Model	
No. of atoms	14767
No. of residues per molecule	
Protein (B factor, Å ² , A/B/C/D)	443 (45.5/48.6/66.6/77.7)
Heme (B factor, Å ²)	1 (13.8/16.2/35.5/31.0)
Water (B factor, Å ²)	341 (47.1)
Lanosterol [Lan] (B factor, Å ²)	1 (13.5/20.0/31.0/34.3)

Supplementary Figure S1. The asymmetric unit of *M. capsulatus* CYP51. Four polypeptide chains of the P450 molecule are shown in a rainbow-colored ribbon representation, from the N-terminus (blue) to the C-terminus (red). The heme is seen in a stick representation, the carbon atoms are black. The atoms of lanosterol are presented as spheres, the carbons are cyan. The RMSD of C α between the four molecules is 0.35 Å.

6 fmc

Supplementary Figure S2. a. Superimposition of the substrate-bound *M. capsulatus*, human, and *T. cruzi* **CYP51s.** The coloring is as in Fig. 3b. The secondary structural elements that form the substrate entry (helices A', F'', and the β 4 hairpin) are colored in blue on the *M. capsulatus* structure. **b**. Structure-based sequence alignment (PROMALS3D). Sequences are colored according to secondary structures (red: alpha-helix, blue: betastrand). Conservation indices above 3 are shown.

Supplementary Figure S3. Spectral changes observed during titration of *M. capsulatus* CYP51-fx with (A) lanosterol (B) eburicol, and (C) obtusifoliol. Absolute (top) and difference (bottom) spectra. The P450 concentration was $\sim 2 \mu$ M. Inset: The titration curves fitted to the quadratic (Morrison) equation.

Structural	M. capsulatus	Human	T. cruzi	
element	-	D231A/H314A	I105F	
	Substrate	Substrate	Substrate	
	(Lanosterol)	(Lanosterol)	(Obtusifoliol)	
\mathbf{D}^2 is a line	× /	V121	V102*	
D nenx	Y / 9		¥ 105" E105	
	101	L134	F103	
	M182	1155 E130		
	F 80	F139	FIIU	
B'' η-turn	V90	V143	V114	
	V91	A144	A115	
	F92	Y145	Y116	
C helix	K99	F152	M123	
	Q102	Q155	Q126	
	L103	K156	L127	
	M105	M158	F129	
	L106	L159	L130	
	M107			
F" helix			M204	
			S207	
	I181	F234	L208	
			1209	
			P210	
	Y186		V213	
G' helix			L219	
I helix	G249	G303	G283	
	M250	M304	M284	
	L251		1285	
	A253	G307	A287	
	T254	L308	A288	
	F256	L310	F290	
	A257	A311	A291	
	H260	A314**(H314)	H294	
	T261	T315	T295	
K/b1-4	P321	P376	P355	
loop	L322	1377	L356	
1	1323	M378	L357	
	L324***	L379***	M358***	
β1-4	L325	M380	V359	
'	M326	M381	M360	
β4 hairpin	M433	M487	M460	
1b.m	V434	I488	V461	
Total #,	32	29	36	
volume, Å ³	913	865	1203	

Supplementary Table S2. Active site cavity lining residues in the substrate-bound bacterial (*M. capsulatus*, 7SNM), protozoan (*T.cruzi*, 6FM0), and mammalian (human, 6UEZ) CYP51 structures

*Residues invariant across the biological kingdoms (**in bold**), **mutant (H314A), ***H-bond with the substrate OH group (*italic*)

Supplementary Figure S4. **Rearrangements in the proton relay network in** *M. capsulatus* **CYP51**. Ligandfree (salt bridge E178-H260, 3.0 Å) (A), lanosterol-bound (salt bridge E178-H259, 2.84 Å) (B) structures of *M. capsulatus* **CYP51**, and a snapshot from MD simulations of the CYP51-ferredoxin complex, |Fe-Fe1|=16.6 Å. (E178 is freed, proton delivery route activated) (C).

Supplementary Figure S5. A Coot snapshot of the $2F_0$ - F_c density map contoured at 1.5 σ , map radius 50 Å. The dots correspond to one molecule of P450 (top, proximal face down) and one molecule of ferredoxin (bottom, the docked pose, selected for MD simulations). The electron density is clearly seen for the P450 domain only, while any density close to the proximal P450 surface (where the ferredoxin domain is supposed to interact) is absent.

Supplementary Figure S6. Molecular-dynamics trajectories. The pbd files were written each 10 ns. The maximal Fe-Fe1 distance of 19.8 Å (at 400 ns of the 600 ns run) is perfectly compatible with electron transfer, the calculated K_{ET} value being 1.51/sec (or 90.8 electron transfer events per minute).

Supplementary Figure S7. Possible ET path in *M. capsulatus* CYP51-fx.

Supplementary Figure S8. Ferredoxins that serve as P450 redox partners display highly conserved structural fold. A. Overlaid structures of putidaredoxin from *Pseudomonas putida* [10QQ, tan] and adrenodoxin from human [2Y5C, plum]. B. The 35-103 fragments of the same structures overlaid with the model of *M. capsulatus* ferredoxin fusion (blue). The 2Fe-2S cluster, Cys10, 16, 54, and Glu19 of the model are selected (in green) and the residues are numbered.

						*			
Bull	SSSEDKITVHFINBDGETLTTKGKIGDSLLD	VEONNLDIDGEGA	ECTLASSICH	-L. BEOHTEEK EA	TDEENDMLDLAYGLTDB	SBLGCOT	тк	DNMTVRVPDAVSDARESIDMGMNSSKIE~~~:1	2.8
Pig	:SSSEDKITVHFINRDGKTLTTOGKVGDSLLD	V ENNLDIDGFGA	EGTLACSTCH	-L EDHIFEK EA	TDEENDMLDLAYGLTDR	SRLGCOICI	TKAN	DNMTVRVPEAVADARESIDLGKNSSKLE~~~:1	28
Cat	:SSSEDKITVHFVNRDGETLTAKGKVGDSLLD	VVENNLDIDGFGA	EGTLACSTCH	-L BEDHIFEK DA	TDEENDMLDLAYGLTDR	SRLGCOI	TKS	DNMTVRVPDVVADAROSIDVGKNS~~~~~:1	24
Human	:SSSEDKITVHFINRDGETLTTKGKVGDSLLD	VVENNLDIDGFGA	EGTLACSTCH	-L BEDHIYEK DA	TDEENDMLDLAYGLTDR	SRLGCOI	TKS	DNMTVRVPETVADAROSIDVGKTSAENLYF0:1	131
Marmota	:SSSEDKITVHFINNDGVTLTTKGKVGDSLLD	VVENNLDIDGFGA	EGTLACSTCH	-L BEDHIYEK EA	TDEENDMLDLAYGLTDR	SRLGCOI	TKS	DNMTVRVPEAVADAROSIDVGKNS~~~~~?:1	24
Ketobacter	:~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	HRO		D D D D D D D D D D D D D D D D D D D	PNDAPTIASLEO	ANR AKH	NO	R AVEOO~~~~~~~~~~~~	66
Pseudomonadales	FR	HVDTOL		HI ROVDANNE OV	DSTPLMONLEO	AOO VRN	NOAL	R ELNHHEGTPS~~~~~~~~~~~	71
Alcanivoracaceae	FR	HVDTO		HI ROVDANNE OV	DSTPLMONLEO	AOO VRNO	NOAL	R ELNHHEGTPS~~~~~~~~~~~	71
Spirochaeta	FR	VVDEDI		E A GEDEKVAV	EESPRKDLRKK	AER VRYC	NRV	R EEG~~~~~~~	64
Candidatus Microthri;	x: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	VVDRDD			DERPPDEARAA	ADA VKY	THAT	S HEDPTPEDPNPEDPO~~~~~~~~	76
Gammaproteobacterium	FL	EVDMDI	KG ATCOGE	SD HVDESGK TV	KAIVSEGEVEK	ARL AKY	TOAL	K VKRGSV~~~~~~~~~~~~~~~~	67
Methvlococcus PowLak	FI	EVDRDI	KG ATCOGE	ADFTHVDDKGTT	KAIVSEGEVEK	ARL EKY	TKAL	K VKRVTL~~~~~~	67
Methvlotetracoccus	FR	AVDMD	KGIGNOMARA	EVEHNDDSGK TV	OTHCELELLEK	ARA AKY	TOAL	H ALDDEVP~~~~~~~~~~~~~	68
Methylococcaceae FWC.	3:~~~~~~~~~FR	AVDMDL	KCIGNCMARA	EV R HMDDSGKLTV	OAHCELELLEK	ARA AKY <mark>C</mark>	TOAT	HIALDDEAS~~~~~~~~~~~~	68
Methyloprfundus	:~~~~~~~~FK	DIDMDLO		EIPOVDDKGKISI	ODTPNNTLLKK	AQABAEYC	TSAT	K IQD~~~~~~~	64
Methylomonas lenta	:~~~~~~~FT	OIDKEL	OCATOMTEA	EL OVDDAGNLTV	OEOPOLDLLFK	AQO EKYC	TKAI	K KLN~~~~~~~	64
Methylomicrobium wind):~~~~~~~~FH	VIDRELO	OCATOMTEA	EL OVDDAGNLTV	QENPALDLLNK	AKO EKYC	TOAT	K KLK~~~~~~~	64
Methylovulvum	:~~~~~~~FO	TIDRAI	OCASCMTEA	EL OVDDAGNLTV	QESPPLDLLAK	ARO EKYC	AK	IVKST~~~~~~~	64
Methylobacter marinus	5:~~~~~~~~~F0	NIDRELO	OCTATOMAEA	DLHHVDDAGNVSV	QENPPLDLLSK	ARO EKYC	TRAI	K ELK~~~~~~~	64
Methylicorpusculum	:~~~~~~F0	KIDRELO	OCATOMTEA	EL P HVDDAGTVTV	QENPMLDLLVK	ARO EKYC	TKAI	SVVSTELNHYEEKE~~~~~~~~~	73
Methylosarcinia lacus	s:~~~~~~~~F0	KIDRELO	OCATOMTEA	EL P HVDDAGNVTV	ODNPPLDLLTK	ARO EKYC	SKAT	K ELNONP-KESKNGLIS~~~~~~~	76
Methylococcaceae NSM	:~~~~~~F0	KIDRELO	OCATOMTEA	EL P OVDDAGNVTV	QENPPLDLLEK	ARO EKYC	TKAI	KIESO~~~~~~~~	64
Methylomagnum ishiza	7:~~~~~~~~IK	AVDWDLC	KCEANCMTEA	PEVEQUEDKGRLTV	DENPSPEWVEK	LRA EKY <mark>C</mark>	TRAI	KVEDGETEGGRCPFH~~~~~~~~~	74
Methylospira mobilis	:~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	EIDMDLC	KCEGACTGEA	PEISHVDEEGRVTL	DAQADHALLEK	ARQ EKY <mark>C</mark>	TQAI	RITQTG~~~~~~	65
M. capsulatus	:~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	TVDRDLC	KCEGNCMAEA	PEIERVDEDGRITL	SETPDPVLVGA	ALA ERF <mark>C</mark>	ARA	KILPQRDPATRDRSLSPSGED~~~~~~:	80
Methyloterricola ozy:	z:~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	EVDFDLC	KCESNCMTEA	PEIDQVDDKGHLTV	QETPDAVLLDK	ARE EKH <mark>C</mark>	ARA	RVVEEGS~~~~~~~~~~~~~~~~~	66
Methyloumidiphilus	:~~~~~~FG	EVDFDLC	KCEANCMARA	PEISHVDEKGKLTV	DGNPNVMLLQK	ARS EKY <mark>C</mark>	AGA	RIVIDG~~~~~~	65
Methylocaldum szeged	i : ~~~~~~~~~ FR	IVDRELC	KCEAHCMGEA	PELERVDEKGRLEV	DERPAATLIEK	ARA EKY <mark>C</mark>	NRAI	SIVNESKP~~~~~~~~~~~~~~~~	67
Cellvibrionales	:~~~~~~~TL	IHDAQIC	QCAMCQGEA	DYFVDAASVIHI	KQNEVQAGDEEK	VHR VHY <mark>C</mark>	NGAL	R EAVQAESAGLA~~~~~~~~~~	72
Spongiibacter tropic	:~~~~~~~LC	EVDTVLC	QCAMCMGEA	EVEKIDEDGILQI	KPQFDAGQREA	VER VKY <mark>C</mark>	NQAL	RIVER~~~~~~~	64
Stenotrophbium	:~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	VVDRGLC	QCAMCMGEA	ETCHVDSNNNLEI	RKPEIKAEEMEK	VEQ VKF <mark>C</mark>	NSAL	KIVHE~~~~~~~	64
Sinimarinibacterium	:~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	VVDRQLC	QCAMCMNEA	EVENVDANGQIHI	KPELTEQAREQ	VTR VRY <mark>C</mark>	NSAL	KIVEGPTP~~~~~~~	67
Algiphilus aromatici	7:~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	TVDRDL	QCAVCMGES	AHEQVGADGVIHI	vkeavdpgdkak	VDQAVEL <mark>C</mark> E	TQAL	K VEE~~~~~~	64
Oleomonas	:IT	MVDRQL	Q C AVCTGES	AHEQVGDDGIIKL	KEEVSEAELEK	VQL ALH <mark>C</mark>	NAAI	R VRHGP~~~~~	66
Zavarzinia comparanso):~~~~~~~~IT	AVDRGL	QCAMCMGEA	DHEHVGEDGVIRI	VKEAVTEAEMAA	VQSINYC	NAAI	R ERR~~~~~~	64
Sandaracinus NAT131	:~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	RIDRQI	VCAVOVSEA	KERAESGEAE	EAHPPAEQYAL	LARAEHC	NQAI	VVEQGDERCPFH~~~~~~~~	71
Myxococcales bacteria	1:~~~~~~LN	ALDLDV	QGHAVOVNEA	EVEYDDETGKVA	VHTDRPDPKHNDA	VRA ADY <mark>C</mark>	QRT	QLEEEALPLDDASLPSGCPVAH~~~~~:	82
Minicystis rosea	:~~~~~~YR	SVDLDL	QCIAACVGEA	EV B RVDGLGKV-R	VIDTTPDASLSAK	vek aqf <mark>c</mark> :	TKT	K EAI~~~~~~~	64

Supplementary Figure S9. Alignment of 5 mammalian ferredoxins and 30 bacterial ferredoxin domains that exist as naturally fused C-terminal portion of CYP51 genes. Four residues that form the interactions with the [Fe₂-S₂] cluster are marked with red stars.